1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/MSIL/MSILWriter.cpp
Anton Korobeynikov f3e62a428a Removed tabs everywhere except autogenerated & external files. Add make
target for tabs checking.

llvm-svn: 36146
2007-04-16 18:10:23 +00:00

1353 lines
42 KiB
C++

//===-- MSILWriter.cpp - Library for converting LLVM code to MSIL ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Roman Samoilov and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library converts LLVM code to MSIL code.
//
//===----------------------------------------------------------------------===//
#include "MSILWriter.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Intrinsics.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/TypeSymbolTable.h"
#include "llvm/Analysis/ConstantsScanner.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/StringExtras.h"
namespace {
// TargetMachine for the MSIL
struct VISIBILITY_HIDDEN MSILTarget : public TargetMachine {
const TargetData DataLayout; // Calculates type size & alignment
MSILTarget(const Module &M, const std::string &FS)
: DataLayout(&M) {}
virtual bool WantsWholeFile() const { return true; }
virtual bool addPassesToEmitWholeFile(PassManager &PM, std::ostream &Out,
CodeGenFileType FileType, bool Fast);
// This class always works, but shouldn't be the default in most cases.
static unsigned getModuleMatchQuality(const Module &M) { return 1; }
virtual const TargetData *getTargetData() const { return &DataLayout; }
};
}
RegisterTarget<MSILTarget> X("msil", " MSIL backend");
bool MSILModule::runOnModule(Module &M) {
ModulePtr = &M;
TD = &getAnalysis<TargetData>();
bool Changed = false;
// Find named types.
TypeSymbolTable& Table = M.getTypeSymbolTable();
std::set<const Type *> Types = getAnalysis<FindUsedTypes>().getTypes();
for (TypeSymbolTable::iterator I = Table.begin(), E = Table.end(); I!=E; ) {
if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second))
Table.remove(I++);
else {
std::set<const Type *>::iterator T = Types.find(I->second);
if (T==Types.end())
Table.remove(I++);
else {
Types.erase(T);
++I;
}
}
}
// Find unnamed types.
unsigned RenameCounter = 0;
for (std::set<const Type *>::const_iterator I = Types.begin(),
E = Types.end(); I!=E; ++I)
if (const StructType *STy = dyn_cast<StructType>(*I)) {
while (ModulePtr->addTypeName("unnamed$"+utostr(RenameCounter), STy))
++RenameCounter;
Changed = true;
}
// Pointer for FunctionPass.
UsedTypes = &getAnalysis<FindUsedTypes>().getTypes();
return Changed;
}
bool MSILWriter::runOnFunction(Function &F) {
if (F.isDeclaration()) return false;
LInfo = &getAnalysis<LoopInfo>();
printFunction(F);
return false;
}
bool MSILWriter::doInitialization(Module &M) {
ModulePtr = &M;
Mang = new Mangler(M);
Out << ".assembly extern mscorlib {}\n";
Out << ".assembly MSIL {}\n\n";
Out << "// External\n";
printExternals();
Out << "// Declarations\n";
printDeclarations(M.getTypeSymbolTable());
Out << "// Definitions\n";
printGlobalVariables();
return false;
}
bool MSILWriter::doFinalization(Module &M) {
delete Mang;
return false;
}
bool MSILWriter::isZeroValue(const Value* V) {
if (const Constant *C = dyn_cast<Constant>(V))
return C->isNullValue();
return false;
}
std::string MSILWriter::getValueName(const Value* V) {
// Name into the quotes allow control and space characters.
return "'"+Mang->getValueName(V)+"'";
}
std::string MSILWriter::getLabelName(const std::string& Name) {
if (Name.find('.')!=std::string::npos) {
std::string Tmp(Name);
// Replace unaccepable characters in the label name.
for (std::string::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I)
if (*I=='.') *I = '@';
return Tmp;
}
return Name;
}
std::string MSILWriter::getLabelName(const Value* V) {
return getLabelName(Mang->getValueName(V));
}
std::string MSILWriter::getConvModopt(unsigned CallingConvID) {
switch (CallingConvID) {
case CallingConv::C:
case CallingConv::Cold:
case CallingConv::Fast:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl) ";
case CallingConv::X86_FastCall:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvFastcall) ";
case CallingConv::X86_StdCall:
return "modopt([mscorlib]System.Runtime.CompilerServices.CallConvStdcall) ";
default:
cerr << "CallingConvID = " << CallingConvID << '\n';
assert(0 && "Unsupported calling convention");
}
}
std::string MSILWriter::getArrayTypeName(Type::TypeID TyID, const Type* Ty) {
std::string Tmp = "";
const Type* ElemTy = Ty;
assert(Ty->getTypeID()==TyID && "Invalid type passed");
// Walk trought array element types.
for (;;) {
// Multidimensional array.
if (ElemTy->getTypeID()==TyID) {
if (const ArrayType* ATy = dyn_cast<ArrayType>(ElemTy))
Tmp += utostr(ATy->getNumElements());
else if (const VectorType* VTy = dyn_cast<VectorType>(ElemTy))
Tmp += utostr(VTy->getNumElements());
ElemTy = cast<SequentialType>(ElemTy)->getElementType();
}
// Base element type found.
if (ElemTy->getTypeID()!=TyID) break;
Tmp += ",";
}
return getTypeName(ElemTy)+"["+Tmp+"]";
}
std::string MSILWriter::getPrimitiveTypeName(const Type* Ty, bool isSigned) {
unsigned NumBits = 0;
switch (Ty->getTypeID()) {
case Type::VoidTyID:
return "void ";
case Type::IntegerTyID:
NumBits = getBitWidth(Ty);
if(NumBits==1)
return "bool ";
if (!isSigned)
return "unsigned int"+utostr(NumBits)+" ";
return "int"+utostr(NumBits)+" ";
case Type::FloatTyID:
return "float32 ";
case Type::DoubleTyID:
return "float64 ";
default:
cerr << "Type = " << *Ty << '\n';
assert(0 && "Invalid primitive type");
}
}
std::string MSILWriter::getTypeName(const Type* Ty, bool isSigned) {
if (Ty->isPrimitiveType() || Ty->isInteger())
return getPrimitiveTypeName(Ty,isSigned);
// FIXME: "OpaqueType" support
switch (Ty->getTypeID()) {
case Type::PointerTyID:
return "void* ";
case Type::StructTyID:
return "valuetype '"+ModulePtr->getTypeName(Ty)+"' ";
case Type::ArrayTyID:
return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
case Type::VectorTyID:
return "valuetype '"+getArrayTypeName(Ty->getTypeID(),Ty)+"' ";
default:
cerr << "Type = " << *Ty << '\n';
assert(0 && "Invalid type in getTypeName()");
}
}
MSILWriter::ValueType MSILWriter::getValueLocation(const Value* V) {
// Function argument
if (isa<Argument>(V))
return ArgumentVT;
// Function
else if (const Function* F = dyn_cast<Function>(V))
return F->hasInternalLinkage() ? InternalVT : GlobalVT;
// Variable
else if (const GlobalVariable* G = dyn_cast<GlobalVariable>(V))
return G->hasInternalLinkage() ? InternalVT : GlobalVT;
// Constant
else if (isa<Constant>(V))
return isa<ConstantExpr>(V) ? ConstExprVT : ConstVT;
// Local variable
return LocalVT;
}
std::string MSILWriter::getTypePostfix(const Type* Ty, bool Expand,
bool isSigned) {
unsigned NumBits = 0;
switch (Ty->getTypeID()) {
// Integer constant, expanding for stack operations.
case Type::IntegerTyID:
NumBits = getBitWidth(Ty);
// Expand integer value to "int32" or "int64".
if (Expand) return (NumBits<=32 ? "i4" : "i8");
if (NumBits==1) return "i1";
return (isSigned ? "i" : "u")+utostr(NumBits/8);
// Float constant.
case Type::FloatTyID:
return "r4";
case Type::DoubleTyID:
return "r8";
case Type::PointerTyID:
return "i"+utostr(TD->getTypeSize(Ty));
default:
cerr << "TypeID = " << Ty->getTypeID() << '\n';
assert(0 && "Invalid type in TypeToPostfix()");
}
}
void MSILWriter::printPtrLoad(uint64_t N) {
switch (ModulePtr->getPointerSize()) {
case Module::Pointer32:
printSimpleInstruction("ldc.i4",utostr(N).c_str());
// FIXME: Need overflow test?
assert(N<0xFFFFFFFF && "32-bit pointer overflowed");
break;
case Module::Pointer64:
printSimpleInstruction("ldc.i8",utostr(N).c_str());
break;
default:
assert(0 && "Module use not supporting pointer size");
}
}
void MSILWriter::printConstLoad(const Constant* C) {
if (const ConstantInt* CInt = dyn_cast<ConstantInt>(C)) {
// Integer constant
Out << "\tldc." << getTypePostfix(C->getType(),true) << '\t';
if (CInt->isMinValue(true))
Out << CInt->getSExtValue();
else
Out << CInt->getZExtValue();
} else if (const ConstantFP* CFp = dyn_cast<ConstantFP>(C)) {
// Float constant
Out << "\tldc." << getTypePostfix(C->getType(),true) << '\t' <<
CFp->getValue();
} else {
cerr << "Constant = " << *C << '\n';
assert(0 && "Invalid constant value");
}
Out << '\n';
}
void MSILWriter::printValueLoad(const Value* V) {
switch (getValueLocation(V)) {
// Global variable or function address.
case GlobalVT:
case InternalVT:
if (const Function* F = dyn_cast<Function>(V)) {
std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
printSimpleInstruction("ldftn",
getCallSignature(F->getFunctionType(),NULL,Name).c_str());
} else {
const Type* ElemTy = cast<PointerType>(V->getType())->getElementType();
std::string Tmp = getTypeName(ElemTy)+getValueName(V);
printSimpleInstruction("ldsflda",Tmp.c_str());
}
break;
// Function argument.
case ArgumentVT:
printSimpleInstruction("ldarg",getValueName(V).c_str());
break;
// Local function variable.
case LocalVT:
printSimpleInstruction("ldloc",getValueName(V).c_str());
break;
// Constant value.
case ConstVT:
if (isa<ConstantPointerNull>(V))
printPtrLoad(0);
else
printConstLoad(cast<Constant>(V));
break;
// Constant expression.
case ConstExprVT:
printConstantExpr(cast<ConstantExpr>(V));
break;
default:
cerr << "Value = " << *V << '\n';
assert(0 && "Invalid value location");
}
}
void MSILWriter::printValueSave(const Value* V) {
switch (getValueLocation(V)) {
case ArgumentVT:
printSimpleInstruction("starg",getValueName(V).c_str());
break;
case LocalVT:
printSimpleInstruction("stloc",getValueName(V).c_str());
break;
default:
cerr << "Value = " << *V << '\n';
assert(0 && "Invalid value location");
}
}
void MSILWriter::printBinaryInstruction(const char* Name, const Value* Left,
const Value* Right) {
printValueLoad(Left);
printValueLoad(Right);
Out << '\t' << Name << '\n';
}
void MSILWriter::printSimpleInstruction(const char* Inst, const char* Operand) {
if(Operand)
Out << '\t' << Inst << '\t' << Operand << '\n';
else
Out << '\t' << Inst << '\n';
}
void MSILWriter::printPHICopy(const BasicBlock* Src, const BasicBlock* Dst) {
for (BasicBlock::const_iterator I = Dst->begin(), E = Dst->end();
isa<PHINode>(I); ++I) {
const PHINode* Phi = cast<PHINode>(I);
const Value* Val = Phi->getIncomingValueForBlock(Src);
if (isa<UndefValue>(Val)) continue;
printValueLoad(Val);
printValueSave(Phi);
}
}
void MSILWriter::printBranchToBlock(const BasicBlock* CurrBB,
const BasicBlock* TrueBB,
const BasicBlock* FalseBB) {
if (TrueBB==FalseBB) {
// "TrueBB" and "FalseBB" destination equals
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("pop");
printSimpleInstruction("br",getLabelName(TrueBB).c_str());
} else if (FalseBB==NULL) {
// If "FalseBB" not used the jump have condition
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
} else if (TrueBB==NULL) {
// If "TrueBB" not used the jump is unconditional
printPHICopy(CurrBB,FalseBB);
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
} else {
// Copy PHI instructions for each block
std::string TmpLabel;
// Print PHI instructions for "TrueBB"
if (isa<PHINode>(TrueBB->begin())) {
TmpLabel = getLabelName(TrueBB)+"$phi_"+utostr(getUniqID());
printSimpleInstruction("brtrue",TmpLabel.c_str());
} else {
printSimpleInstruction("brtrue",getLabelName(TrueBB).c_str());
}
// Print PHI instructions for "FalseBB"
if (isa<PHINode>(FalseBB->begin())) {
printPHICopy(CurrBB,FalseBB);
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
} else {
printSimpleInstruction("br",getLabelName(FalseBB).c_str());
}
if (isa<PHINode>(TrueBB->begin())) {
// Handle "TrueBB" PHI Copy
Out << TmpLabel << ":\n";
printPHICopy(CurrBB,TrueBB);
printSimpleInstruction("br",getLabelName(TrueBB).c_str());
}
}
}
void MSILWriter::printBranchInstruction(const BranchInst* Inst) {
if (Inst->isUnconditional()) {
printBranchToBlock(Inst->getParent(),NULL,Inst->getSuccessor(0));
} else {
printValueLoad(Inst->getCondition());
printBranchToBlock(Inst->getParent(),Inst->getSuccessor(0),
Inst->getSuccessor(1));
}
}
void MSILWriter::printSelectInstruction(const Value* Cond, const Value* VTrue,
const Value* VFalse) {
std::string TmpLabel = std::string("select$true_")+utostr(getUniqID());
printValueLoad(VTrue);
printValueLoad(Cond);
printSimpleInstruction("brtrue",TmpLabel.c_str());
printSimpleInstruction("pop");
printValueLoad(VFalse);
Out << TmpLabel << ":\n";
}
void MSILWriter::printIndirectLoad(const Value* V) {
printValueLoad(V);
std::string Tmp = "ldind."+getTypePostfix(V->getType(),false);
printSimpleInstruction(Tmp.c_str());
}
void MSILWriter::printStoreInstruction(const Instruction* Inst) {
const Value* Val = Inst->getOperand(0);
const Value* Ptr = Inst->getOperand(1);
// Load destination address.
printValueLoad(Ptr);
// Load value.
printValueLoad(Val);
// Instruction need signed postfix for any type.
std::string postfix = getTypePostfix(Val->getType(),false);
if (*postfix.begin()=='u') *postfix.begin() = 'i';
postfix = "stind."+postfix;
printSimpleInstruction(postfix.c_str());
}
void MSILWriter::printCastInstruction(unsigned int Op, const Value* V,
const Type* Ty) {
std::string Tmp("");
printValueLoad(V);
switch (Op) {
// Signed
case Instruction::SExt:
case Instruction::SIToFP:
case Instruction::FPToSI:
Tmp = "conv."+getTypePostfix(Ty,false,true);
printSimpleInstruction(Tmp.c_str());
break;
// Unsigned
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::FPToUI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
Tmp = "conv."+getTypePostfix(Ty,false);
printSimpleInstruction(Tmp.c_str());
break;
// Do nothing
case Instruction::BitCast:
// FIXME: meaning that ld*/st* instruction do not change data format.
break;
default:
cerr << "Opcode = " << Op << '\n';
assert(0 && "Invalid conversion instruction");
}
}
void MSILWriter::printGepInstruction(const Value* V, gep_type_iterator I,
gep_type_iterator E) {
// Load address
printValueLoad(V);
// Calculate element offset.
unsigned TySize;
for (++I; I!=E; ++I){
const Type* Ty = I.getIndexedType();
const Value* Idx = I.getOperand();
// Get size of type.
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
case Type::PointerTyID:
TySize = TD->getTypeSize(Ty);
break;
case Type::StructTyID:
TySize = 0;
break;
case Type::ArrayTyID:
TySize = TD->getTypeSize(cast<ArrayType>(Ty)->getElementType());
break;
case Type::VectorTyID:
TySize = TD->getTypeSize(cast<VectorType>(Ty)->getElementType());
break;
default:
cerr << "Type = " << *Ty << '\n';
assert(0 && "Invalid index type in printGepInstruction()");
}
// Calculate offset to structure field.
if (const StructType* STy = dyn_cast<StructType>(Ty)) {
TySize = 0;
uint64_t FieldIdx = cast<ConstantInt>(Idx)->getZExtValue();
// Offset is the summ of all previous structure fields.
for (uint64_t F = 0; F<FieldIdx; ++F)
TySize += TD->getTypeSize(STy->getContainedType(unsigned(F)));
// Add field offset to stack top.
printPtrLoad(TySize);
printSimpleInstruction("add");
continue;
}
// Add offset of current element to stack top.
if (!isZeroValue(Idx)) {
uint64_t TySize = TD->getTypeSize(I.getIndexedType());
// Constant optimization
if (const ConstantInt* CInt = dyn_cast<ConstantInt>(Idx)) {
printPtrLoad(CInt->getZExtValue()*TySize);
} else {
printPtrLoad(TySize);
printValueLoad(Idx);
printSimpleInstruction("mul");
}
printSimpleInstruction("add");
}
}
}
std::string MSILWriter::getCallSignature(const FunctionType* Ty,
const Instruction* Inst,
std::string Name) {
std::string Tmp = "";
if (Ty->isVarArg()) Tmp += "vararg ";
// Name and return type.
Tmp += getTypeName(Ty->getReturnType())+Name+"(";
// Function argument type list.
unsigned NumParams = Ty->getNumParams();
for (unsigned I = 0; I!=NumParams; ++I) {
if (I!=0) Tmp += ",";
Tmp += getTypeName(Ty->getParamType(I));
}
// CLR needs to know the exact amount of parameters received by vararg
// function, because caller cleans the stack.
if (Ty->isVarArg() && Inst) {
// Origin to function arguments in "CallInst" or "InvokeInst"
unsigned Org = isa<InvokeInst>(Inst) ? 3 : 1;
// Print variable argument types.
unsigned NumOperands = Inst->getNumOperands()-Org;
if (NumParams<NumOperands) {
if (NumParams!=0) Tmp += ", ";
Tmp += "... , ";
for (unsigned J = NumParams; J!=NumOperands; ++J) {
if (J!=NumParams) Tmp += ", ";
Tmp += getTypeName(Inst->getOperand(J+Org)->getType());
}
}
}
return Tmp+")";
}
void MSILWriter::printFunctionCall(const Value* FnVal,
const Instruction* Inst) {
// Get function calling convention
std::string Name = "";
if (const CallInst* Call = dyn_cast<CallInst>(Inst))
Name = getConvModopt(Call->getCallingConv());
else if (const InvokeInst* Invoke = dyn_cast<InvokeInst>(Inst))
Name = getConvModopt(Invoke->getCallingConv());
else {
cerr << "Instruction = " << Inst->getName() << '\n';
assert(0 && "Need \"Invoke\" or \"Call\" instruction only");
}
if (const Function* F = dyn_cast<Function>(FnVal)) {
// Direct call
Name += getValueName(F);
printSimpleInstruction("call",
getCallSignature(F->getFunctionType(),Inst,Name).c_str());
} else {
// Indirect function call
const PointerType* PTy = cast<PointerType>(FnVal->getType());
const FunctionType* FTy = cast<FunctionType>(PTy->getElementType());
// Load function address
printValueLoad(FnVal);
printSimpleInstruction("calli",getCallSignature(FTy,Inst,Name).c_str());
}
}
void MSILWriter::printCallInstruction(const Instruction* Inst) {
// Load arguments to stack
for (int I = 1, E = Inst->getNumOperands(); I!=E; ++I)
printValueLoad(Inst->getOperand(I));
printFunctionCall(Inst->getOperand(0),Inst);
}
void MSILWriter::printICmpInstruction(unsigned Predicate, const Value* Left,
const Value* Right) {
switch (Predicate) {
case ICmpInst::ICMP_EQ:
printBinaryInstruction("ceq",Left,Right);
break;
case ICmpInst::ICMP_NE:
// Emulate = not (Op1 eq Op2)
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("not");
break;
case ICmpInst::ICMP_ULE:
case ICmpInst::ICMP_SLE:
// Emulate = (Op1 eq Op2) or (Op1 lt Op2)
printBinaryInstruction("ceq",Left,Right);
if (Predicate==ICmpInst::ICMP_ULE)
printBinaryInstruction("clt.un",Left,Right);
else
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
break;
case ICmpInst::ICMP_UGE:
case ICmpInst::ICMP_SGE:
// Emulate = (Op1 eq Op2) or (Op1 gt Op2)
printBinaryInstruction("ceq",Left,Right);
if (Predicate==ICmpInst::ICMP_UGE)
printBinaryInstruction("cgt.un",Left,Right);
else
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
break;
case ICmpInst::ICMP_ULT:
printBinaryInstruction("clt.un",Left,Right);
break;
case ICmpInst::ICMP_SLT:
printBinaryInstruction("clt",Left,Right);
break;
case ICmpInst::ICMP_UGT:
printBinaryInstruction("cgt.un",Left,Right);
case ICmpInst::ICMP_SGT:
printBinaryInstruction("cgt",Left,Right);
break;
default:
cerr << "Predicate = " << Predicate << '\n';
assert(0 && "Invalid icmp predicate");
}
}
void MSILWriter::printFCmpInstruction(unsigned Predicate, const Value* Left,
const Value* Right) {
// FIXME: Correct comparison
std::string NanFunc = "bool [mscorlib]System.Double::IsNaN(float64)";
switch (Predicate) {
case FCmpInst::FCMP_UGT:
// X > Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("cgt",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OGT:
// X > Y
printBinaryInstruction("cgt",Left,Right);
break;
case FCmpInst::FCMP_UGE:
// X >= Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OGE:
// X >= Y
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("cgt",Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_ULT:
// X < Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("clt",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OLT:
// X < Y
printBinaryInstruction("clt",Left,Right);
break;
case FCmpInst::FCMP_ULE:
// X <= Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OLE:
// X <= Y
printBinaryInstruction("ceq",Left,Right);
printBinaryInstruction("clt",Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_UEQ:
// X == Y || llvm_fcmp_uno(X, Y)
printBinaryInstruction("ceq",Left,Right);
printFCmpInstruction(FCmpInst::FCMP_UNO,Left,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_OEQ:
// X == Y
printBinaryInstruction("ceq",Left,Right);
break;
case FCmpInst::FCMP_UNE:
// X != Y
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("not");
break;
case FCmpInst::FCMP_ONE:
// X != Y && llvm_fcmp_ord(X, Y)
printBinaryInstruction("ceq",Left,Right);
printSimpleInstruction("not");
break;
case FCmpInst::FCMP_ORD:
// return X == X && Y == Y
printBinaryInstruction("ceq",Left,Left);
printBinaryInstruction("ceq",Right,Right);
printSimpleInstruction("or");
break;
case FCmpInst::FCMP_UNO:
// X != X || Y != Y
printBinaryInstruction("ceq",Left,Left);
printSimpleInstruction("not");
printBinaryInstruction("ceq",Right,Right);
printSimpleInstruction("not");
printSimpleInstruction("or");
break;
default:
assert(0 && "Illegal FCmp predicate");
}
}
void MSILWriter::printInvokeInstruction(const InvokeInst* Inst) {
std::string Label = "leave$normal_"+utostr(getUniqID());
Out << ".try {\n";
// Load arguments
for (int I = 3, E = Inst->getNumOperands(); I!=E; ++I)
printValueLoad(Inst->getOperand(I));
// Print call instruction
printFunctionCall(Inst->getOperand(0),Inst);
// Save function result and leave "try" block
printValueSave(Inst);
printSimpleInstruction("leave",Label.c_str());
Out << "}\n";
Out << "catch [mscorlib]System.Exception {\n";
// Redirect to unwind block
printSimpleInstruction("pop");
printBranchToBlock(Inst->getParent(),NULL,Inst->getUnwindDest());
Out << "}\n" << Label << ":\n";
// Redirect to continue block
printBranchToBlock(Inst->getParent(),NULL,Inst->getNormalDest());
}
void MSILWriter::printSwitchInstruction(const SwitchInst* Inst) {
// FIXME: Emulate with IL "switch" instruction
// Emulate = if () else if () else if () else ...
for (unsigned int I = 1, E = Inst->getNumCases(); I!=E; ++I) {
printValueLoad(Inst->getCondition());
printValueLoad(Inst->getCaseValue(I));
printSimpleInstruction("ceq");
// Condition jump to successor block
printBranchToBlock(Inst->getParent(),Inst->getSuccessor(I),NULL);
}
// Jump to default block
printBranchToBlock(Inst->getParent(),NULL,Inst->getDefaultDest());
}
void MSILWriter::printInstruction(const Instruction* Inst) {
const Value *Left = 0, *Right = 0;
if (Inst->getNumOperands()>=1) Left = Inst->getOperand(0);
if (Inst->getNumOperands()>=2) Right = Inst->getOperand(1);
// Print instruction
// FIXME: "ShuffleVector","ExtractElement","InsertElement","VAArg" support.
switch (Inst->getOpcode()) {
// Terminator
case Instruction::Ret:
if (Inst->getNumOperands()) {
printValueLoad(Left);
printSimpleInstruction("ret");
} else
printSimpleInstruction("ret");
break;
case Instruction::Br:
printBranchInstruction(cast<BranchInst>(Inst));
break;
// Binary
case Instruction::Add:
printBinaryInstruction("add",Left,Right);
break;
case Instruction::Sub:
printBinaryInstruction("sub",Left,Right);
break;
case Instruction::Mul:
printBinaryInstruction("mul",Left,Right);
break;
case Instruction::UDiv:
printBinaryInstruction("div.un",Left,Right);
break;
case Instruction::SDiv:
case Instruction::FDiv:
printBinaryInstruction("div",Left,Right);
break;
case Instruction::URem:
printBinaryInstruction("rem.un",Left,Right);
break;
case Instruction::SRem:
case Instruction::FRem:
printBinaryInstruction("rem",Left,Right);
break;
// Binary Condition
case Instruction::ICmp:
printICmpInstruction(cast<ICmpInst>(Inst)->getPredicate(),Left,Right);
break;
case Instruction::FCmp:
printFCmpInstruction(cast<FCmpInst>(Inst)->getPredicate(),Left,Right);
break;
// Bitwise Binary
case Instruction::And:
printBinaryInstruction("and",Left,Right);
break;
case Instruction::Or:
printBinaryInstruction("or",Left,Right);
break;
case Instruction::Xor:
printBinaryInstruction("xor",Left,Right);
break;
case Instruction::Shl:
printBinaryInstruction("shl",Left,Right);
break;
case Instruction::LShr:
printBinaryInstruction("shr.un",Left,Right);
break;
case Instruction::AShr:
printBinaryInstruction("shr",Left,Right);
break;
case Instruction::Select:
printSelectInstruction(Inst->getOperand(0),Inst->getOperand(1),Inst->getOperand(2));
break;
case Instruction::Load:
printIndirectLoad(Inst->getOperand(0));
break;
case Instruction::Store:
printStoreInstruction(Inst);
break;
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
printCastInstruction(Inst->getOpcode(),Left,
cast<CastInst>(Inst)->getDestTy());
break;
case Instruction::GetElementPtr:
printGepInstruction(Inst->getOperand(0),gep_type_begin(Inst),
gep_type_end(Inst));
break;
case Instruction::Call:
printCallInstruction(cast<CallInst>(Inst));
break;
case Instruction::Invoke:
printInvokeInstruction(cast<InvokeInst>(Inst));
break;
case Instruction::Unwind: {
std::string Class = "instance void [mscorlib]System.Exception::.ctor()";
printSimpleInstruction("newobj",Class.c_str());
printSimpleInstruction("throw");
break;
}
case Instruction::Switch:
printSwitchInstruction(cast<SwitchInst>(Inst));
break;
case Instruction::Alloca:
printValueLoad(Inst->getOperand(0));
printSimpleInstruction("localloc");
break;
case Instruction::Malloc:
assert(0 && "LowerAllocationsPass used");
break;
case Instruction::Free:
assert(0 && "LowerAllocationsPass used");
break;
case Instruction::Unreachable:
printSimpleInstruction("ldnull");
printSimpleInstruction("throw");
break;
default:
cerr << "Instruction = " << Inst->getName() << '\n';
assert(0 && "Unsupported instruction");
}
}
void MSILWriter::printLoop(const Loop* L) {
Out << getLabelName(L->getHeader()->getName()) << ":\n";
const std::vector<BasicBlock*>& blocks = L->getBlocks();
for (unsigned I = 0, E = blocks.size(); I!=E; I++) {
BasicBlock* BB = blocks[I];
Loop* BBLoop = LInfo->getLoopFor(BB);
if (BBLoop == L)
printBasicBlock(BB);
else if (BB==BBLoop->getHeader() && BBLoop->getParentLoop()==L)
printLoop(BBLoop);
}
printSimpleInstruction("br",getLabelName(L->getHeader()->getName()).c_str());
}
void MSILWriter::printBasicBlock(const BasicBlock* BB) {
Out << getLabelName(BB) << ":\n";
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
const Instruction* Inst = I;
// Comment llvm original instruction
Out << "\n//" << *Inst << "\n";
// Do not handle PHI instruction in current block
if (Inst->getOpcode()==Instruction::PHI) continue;
// Print instruction
printInstruction(Inst);
// Save result
if (Inst->getType()!=Type::VoidTy) {
// Do not save value after invoke, it done in "try" block
if (Inst->getOpcode()==Instruction::Invoke) continue;
printValueSave(Inst);
}
}
}
void MSILWriter::printLocalVariables(const Function& F) {
std::string Name;
const Type* Ty = NULL;
// Find variables
for (const_inst_iterator I = inst_begin(&F), E = inst_end(&F); I!=E; ++I) {
const AllocaInst* AI = dyn_cast<AllocaInst>(&*I);
if (AI && !isa<GlobalVariable>(AI)) {
Ty = PointerType::get(AI->getAllocatedType());
Name = getValueName(AI);
} else if (I->getType()!=Type::VoidTy) {
Ty = I->getType();
Name = getValueName(&*I);
} else continue;
Out << "\t.locals (" << getTypeName(Ty) << Name << ")\n";
}
}
void MSILWriter::printFunctionBody(const Function& F) {
// Print body
for (Function::const_iterator I = F.begin(), E = F.end(); I!=E; ++I) {
if (Loop *L = LInfo->getLoopFor(I)) {
if (L->getHeader()==I && L->getParentLoop()==0)
printLoop(L);
} else {
printBasicBlock(I);
}
}
}
void MSILWriter::printConstantExpr(const ConstantExpr* CE) {
const Value *left = 0, *right = 0;
if (CE->getNumOperands()>=1) left = CE->getOperand(0);
if (CE->getNumOperands()>=2) right = CE->getOperand(1);
// Print instruction
switch (CE->getOpcode()) {
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::BitCast:
printCastInstruction(CE->getOpcode(),left,CE->getType());
break;
case Instruction::GetElementPtr:
printGepInstruction(CE->getOperand(0),gep_type_begin(CE),gep_type_end(CE));
break;
case Instruction::ICmp:
printICmpInstruction(CE->getPredicate(),left,right);
break;
case Instruction::FCmp:
printFCmpInstruction(CE->getPredicate(),left,right);
break;
case Instruction::Select:
printSelectInstruction(CE->getOperand(0),CE->getOperand(1),CE->getOperand(2));
break;
case Instruction::Add:
printBinaryInstruction("add",left,right);
break;
case Instruction::Sub:
printBinaryInstruction("sub",left,right);
break;
case Instruction::Mul:
printBinaryInstruction("mul",left,right);
break;
case Instruction::UDiv:
printBinaryInstruction("div.un",left,right);
break;
case Instruction::SDiv:
case Instruction::FDiv:
printBinaryInstruction("div",left,right);
break;
case Instruction::URem:
printBinaryInstruction("rem.un",left,right);
break;
case Instruction::SRem:
case Instruction::FRem:
printBinaryInstruction("rem",left,right);
break;
case Instruction::And:
printBinaryInstruction("and",left,right);
break;
case Instruction::Or:
printBinaryInstruction("or",left,right);
break;
case Instruction::Xor:
printBinaryInstruction("xor",left,right);
break;
case Instruction::Shl:
printBinaryInstruction("shl",left,right);
break;
case Instruction::LShr:
printBinaryInstruction("shr.un",left,right);
break;
case Instruction::AShr:
printBinaryInstruction("shr",left,right);
break;
default:
cerr << "Expression = " << *CE << "\n";
assert(0 && "Invalid constant expression");
}
}
void MSILWriter::printStaticInitializerList() {
// List of global variables with uninitialized fields.
for (std::map<const GlobalVariable*,std::vector<StaticInitializer> >::iterator
VarI = StaticInitList.begin(), VarE = StaticInitList.end(); VarI!=VarE;
++VarI) {
const std::vector<StaticInitializer>& InitList = VarI->second;
if (InitList.empty()) continue;
// For each uninitialized field.
for (std::vector<StaticInitializer>::const_iterator I = InitList.begin(),
E = InitList.end(); I!=E; ++I) {
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(I->constant)) {
Out << "\n// Init " << getValueName(VarI->first) << ", offset " <<
utostr(I->offset) << ", type "<< *I->constant->getType() << "\n\n";
// Load variable address
printValueLoad(VarI->first);
// Add offset
if (I->offset!=0) {
printPtrLoad(I->offset);
printSimpleInstruction("add");
}
// Load value
printConstantExpr(CE);
// Save result at offset
std::string postfix = getTypePostfix(CE->getType(),true);
if (*postfix.begin()=='u') *postfix.begin() = 'i';
postfix = "stind."+postfix;
printSimpleInstruction(postfix.c_str());
} else {
cerr << "Constant = " << *I->constant << '\n';
assert(0 && "Invalid static initializer");
}
}
}
}
void MSILWriter::printFunction(const Function& F) {
const FunctionType* FTy = F.getFunctionType();
const ParamAttrsList *Attrs = FTy->getParamAttrs();
bool isSigned = Attrs && Attrs->paramHasAttr(0, ParamAttr::SExt);
Out << "\n.method static ";
Out << (F.hasInternalLinkage() ? "private " : "public ");
if (F.isVarArg()) Out << "vararg ";
Out << getTypeName(F.getReturnType(),isSigned) <<
getConvModopt(F.getCallingConv()) << getValueName(&F) << '\n';
// Arguments
Out << "\t(";
unsigned ArgIdx = 1;
for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I!=E;
++I, ++ArgIdx) {
isSigned = Attrs && Attrs->paramHasAttr(ArgIdx, ParamAttr::SExt);
if (I!=F.arg_begin()) Out << ", ";
Out << getTypeName(I->getType(),isSigned) << getValueName(I);
}
Out << ") cil managed\n";
// Body
Out << "{\n";
// FIXME: Convert "string[]" to "argc,argv"
if (F.getName()=="main") {
printSimpleInstruction(".entrypoint");
printLocalVariables(F);
printStaticInitializerList();
} else {
printLocalVariables(F);
}
printFunctionBody(F);
Out << "}\n";
}
void MSILWriter::printDeclarations(const TypeSymbolTable& ST) {
std::string Name;
std::set<const Type*> Printed;
//cerr << "UsedTypes = " << UsedTypes << '\n';
for (std::set<const Type*>::const_iterator
UI = UsedTypes->begin(), UE = UsedTypes->end(); UI!=UE; ++UI) {
const Type* Ty = *UI;
if (isa<ArrayType>(Ty))
Name = getArrayTypeName(Ty->getTypeID(),Ty);
else if (isa<VectorType>(Ty))
Name = getArrayTypeName(Ty->getTypeID(),Ty);
else if (isa<StructType>(Ty))
Name = ModulePtr->getTypeName(Ty);
// Type with no need to declare.
else continue;
// Print not duplicated type
if (Printed.insert(Ty).second) {
Out << ".class value explicit ansi sealed '" << Name << "'";
Out << " { .pack " << 1 << " .size " << TD->getTypeSize(Ty) << " }\n\n";
}
}
}
unsigned int MSILWriter::getBitWidth(const Type* Ty) {
unsigned int N = Ty->getPrimitiveSizeInBits();
assert(N!=0 && "Invalid type in getBitWidth()");
switch (N) {
case 1:
case 8:
case 16:
case 32:
case 64:
return N;
default:
cerr << "Bits = " << N << '\n';
assert(0 && "Unsupported integer width");
}
}
void MSILWriter::printStaticConstant(const Constant* C, uint64_t& Offset) {
uint64_t TySize = 0;
const Type* Ty = C->getType();
// Print zero initialized constant.
if (isa<ConstantAggregateZero>(C) || C->isNullValue()) {
TySize = TD->getTypeSize(C->getType());
Offset += TySize;
Out << "int8 (0) [" << TySize << "]";
return;
}
// Print constant initializer
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
TySize = TD->getTypeSize(Ty);
const ConstantInt* Int = cast<ConstantInt>(C);
Out << getPrimitiveTypeName(Ty,true) << "(" << Int->getSExtValue() << ")";
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
TySize = TD->getTypeSize(Ty);
const ConstantFP* CFp = cast<ConstantFP>(C);
Out << getPrimitiveTypeName(Ty,true) << "(" << CFp->getValue() << ")";
break;
}
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID:
for (unsigned I = 0, E = C->getNumOperands(); I<E; I++) {
if (I!=0) Out << ",\n";
printStaticConstant(C->getOperand(I),Offset);
}
break;
case Type::PointerTyID:
TySize = TD->getTypeSize(C->getType());
// Initialize with global variable address
if (const GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
std::string name = getValueName(G);
Out << "&(" << name.insert(name.length()-1,"$data") << ")";
} else {
// Dynamic initialization
if (!isa<ConstantPointerNull>(C) && !C->isNullValue())
InitListPtr->push_back(StaticInitializer(C,Offset));
// Null pointer initialization
if (TySize==4) Out << "int32 (0)";
else if (TySize==8) Out << "int64 (0)";
else assert(0 && "Invalid pointer size");
}
break;
default:
cerr << "TypeID = " << Ty->getTypeID() << '\n';
assert(0 && "Invalid type in printStaticConstant()");
}
// Increase offset.
Offset += TySize;
}
void MSILWriter::printStaticInitializer(const Constant* C,
const std::string& Name) {
switch (C->getType()->getTypeID()) {
case Type::IntegerTyID:
case Type::FloatTyID:
case Type::DoubleTyID:
Out << getPrimitiveTypeName(C->getType(),true);
break;
case Type::ArrayTyID:
case Type::VectorTyID:
case Type::StructTyID:
case Type::PointerTyID:
Out << getTypeName(C->getType());
break;
default:
cerr << "Type = " << *C << "\n";
assert(0 && "Invalid constant type");
}
// Print initializer
std::string label = Name;
label.insert(label.length()-1,"$data");
Out << Name << " at " << label << '\n';
Out << ".data " << label << " = {\n";
uint64_t offset = 0;
printStaticConstant(C,offset);
Out << "\n}\n\n";
}
void MSILWriter::printVariableDefinition(const GlobalVariable* G) {
const Constant* C = G->getInitializer();
if (C->isNullValue() || isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
InitListPtr = 0;
else
InitListPtr = &StaticInitList[G];
printStaticInitializer(C,getValueName(G));
}
void MSILWriter::printGlobalVariables() {
if (ModulePtr->global_empty()) return;
Module::global_iterator I,E;
for (I = ModulePtr->global_begin(), E = ModulePtr->global_end(); I!=E; ++I) {
// Variable definition
if (I->isDeclaration()) continue;
Out << ".field static " << (I->hasExternalLinkage() ? "public " :
"private ");
printVariableDefinition(&*I);
}
}
void MSILWriter::printExternals() {
Module::const_iterator I,E;
for (I=ModulePtr->begin(),E=ModulePtr->end(); I!=E; ++I) {
// Skip intrisics
if (I->getIntrinsicID()) continue;
// FIXME: Treat as standard library function
if (I->isDeclaration()) {
const Function* F = &*I;
const FunctionType* FTy = F->getFunctionType();
std::string Name = getConvModopt(F->getCallingConv())+getValueName(F);
std::string Sig = getCallSignature(FTy,NULL,Name);
Out << ".method static hidebysig pinvokeimpl(\"msvcrt.dll\" cdecl)\n\t"
<< Sig << " preservesig {}\n\n";
}
}
}
//===----------------------------------------------------------------------===//
// External Interface declaration
//===----------------------------------------------------------------------===//
bool MSILTarget::addPassesToEmitWholeFile(PassManager &PM, std::ostream &o,
CodeGenFileType FileType, bool Fast)
{
if (FileType != TargetMachine::AssemblyFile) return true;
MSILWriter* Writer = new MSILWriter(o);
PM.add(createLowerGCPass());
PM.add(createLowerAllocationsPass(true));
// FIXME: Handle switch trougth native IL instruction "switch"
PM.add(createLowerSwitchPass());
PM.add(createCFGSimplificationPass());
PM.add(new MSILModule(Writer->UsedTypes,Writer->TD));
PM.add(Writer);
return false;
}