1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-25 05:52:53 +02:00
llvm-mirror/include/llvm/ProfileData/SampleProfReader.h
Dehao Chen 55d461dd66 SamplePGO ThinLTO ICP fix for local functions.
Summary:
In SamplePGO, if the profile is collected from non-LTO binary, and used to drive ThinLTO, the indirect call promotion may fail because ThinLTO adjusts local function names to avoid conflicts. There are two places of where the mismatch can happen:

1. thin-link prepends SourceFileName to front of FuncName to build the GUID (GlobalValue::getGlobalIdentifier). Unlike instrumentation FDO, SamplePGO does not use the PGOFuncName scheme and therefore the indirect call target profile data contains a hash of the OriginalName.
2. backend compiler promotes some local functions to global and appends .llvm.{$ModuleHash} to the end of the FuncName to derive PromotedFunctionName

This patch tries at the best effort to find the GUID from the original local function name (in profile), and use that in ICP promotion, and in SamplePGO matching that happens in the backend after importing/inlining:

1. in thin-link, it builds the map from OriginalName to GUID so that when thin-link reads in indirect call target profile (represented by OriginalName), it knows which GUID to import.
2. in backend compiler, if sample profile reader cannot find a profile match for PromotedFunctionName, it will try to find if there is a match for OriginalFunctionName.
3. in backend compiler, we build symbol table entry for OriginalFunctionName and pointer to the same symbol of PromotedFunctionName, so that ICP can find the correct target to promote.

Reviewers: mehdi_amini, tejohnson

Reviewed By: tejohnson

Subscribers: llvm-commits, Prazek

Differential Revision: https://reviews.llvm.org/D30754

llvm-svn: 297757
2017-03-14 17:33:01 +00:00

463 lines
18 KiB
C++

//===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions needed for reading sample profiles.
//
// NOTE: If you are making changes to this file format, please remember
// to document them in the Clang documentation at
// tools/clang/docs/UsersManual.rst.
//
// Text format
// -----------
//
// Sample profiles are written as ASCII text. The file is divided into
// sections, which correspond to each of the functions executed at runtime.
// Each section has the following format
//
// function1:total_samples:total_head_samples
// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
// ...
// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
// offsetA[.discriminator]: fnA:num_of_total_samples
// offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
// ...
//
// This is a nested tree in which the identation represents the nesting level
// of the inline stack. There are no blank lines in the file. And the spacing
// within a single line is fixed. Additional spaces will result in an error
// while reading the file.
//
// Any line starting with the '#' character is completely ignored.
//
// Inlined calls are represented with indentation. The Inline stack is a
// stack of source locations in which the top of the stack represents the
// leaf function, and the bottom of the stack represents the actual
// symbol to which the instruction belongs.
//
// Function names must be mangled in order for the profile loader to
// match them in the current translation unit. The two numbers in the
// function header specify how many total samples were accumulated in the
// function (first number), and the total number of samples accumulated
// in the prologue of the function (second number). This head sample
// count provides an indicator of how frequently the function is invoked.
//
// There are two types of lines in the function body.
//
// * Sampled line represents the profile information of a source location.
// * Callsite line represents the profile information of a callsite.
//
// Each sampled line may contain several items. Some are optional (marked
// below):
//
// a. Source line offset. This number represents the line number
// in the function where the sample was collected. The line number is
// always relative to the line where symbol of the function is
// defined. So, if the function has its header at line 280, the offset
// 13 is at line 293 in the file.
//
// Note that this offset should never be a negative number. This could
// happen in cases like macros. The debug machinery will register the
// line number at the point of macro expansion. So, if the macro was
// expanded in a line before the start of the function, the profile
// converter should emit a 0 as the offset (this means that the optimizers
// will not be able to associate a meaningful weight to the instructions
// in the macro).
//
// b. [OPTIONAL] Discriminator. This is used if the sampled program
// was compiled with DWARF discriminator support
// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
// DWARF discriminators are unsigned integer values that allow the
// compiler to distinguish between multiple execution paths on the
// same source line location.
//
// For example, consider the line of code ``if (cond) foo(); else bar();``.
// If the predicate ``cond`` is true 80% of the time, then the edge
// into function ``foo`` should be considered to be taken most of the
// time. But both calls to ``foo`` and ``bar`` are at the same source
// line, so a sample count at that line is not sufficient. The
// compiler needs to know which part of that line is taken more
// frequently.
//
// This is what discriminators provide. In this case, the calls to
// ``foo`` and ``bar`` will be at the same line, but will have
// different discriminator values. This allows the compiler to correctly
// set edge weights into ``foo`` and ``bar``.
//
// c. Number of samples. This is an integer quantity representing the
// number of samples collected by the profiler at this source
// location.
//
// d. [OPTIONAL] Potential call targets and samples. If present, this
// line contains a call instruction. This models both direct and
// number of samples. For example,
//
// 130: 7 foo:3 bar:2 baz:7
//
// The above means that at relative line offset 130 there is a call
// instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
// with ``baz()`` being the relatively more frequently called target.
//
// Each callsite line may contain several items. Some are optional.
//
// a. Source line offset. This number represents the line number of the
// callsite that is inlined in the profiled binary.
//
// b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line.
//
// c. Number of samples. This is an integer quantity representing the
// total number of samples collected for the inlined instance at this
// callsite
//
//
// Binary format
// -------------
//
// This is a more compact encoding. Numbers are encoded as ULEB128 values
// and all strings are encoded in a name table. The file is organized in
// the following sections:
//
// MAGIC (uint64_t)
// File identifier computed by function SPMagic() (0x5350524f463432ff)
//
// VERSION (uint32_t)
// File format version number computed by SPVersion()
//
// SUMMARY
// TOTAL_COUNT (uint64_t)
// Total number of samples in the profile.
// MAX_COUNT (uint64_t)
// Maximum value of samples on a line.
// MAX_FUNCTION_COUNT (uint64_t)
// Maximum number of samples at function entry (head samples).
// NUM_COUNTS (uint64_t)
// Number of lines with samples.
// NUM_FUNCTIONS (uint64_t)
// Number of functions with samples.
// NUM_DETAILED_SUMMARY_ENTRIES (size_t)
// Number of entries in detailed summary
// DETAILED_SUMMARY
// A list of detailed summary entry. Each entry consists of
// CUTOFF (uint32_t)
// Required percentile of total sample count expressed as a fraction
// multiplied by 1000000.
// MIN_COUNT (uint64_t)
// The minimum number of samples required to reach the target
// CUTOFF.
// NUM_COUNTS (uint64_t)
// Number of samples to get to the desrired percentile.
//
// NAME TABLE
// SIZE (uint32_t)
// Number of entries in the name table.
// NAMES
// A NUL-separated list of SIZE strings.
//
// FUNCTION BODY (one for each uninlined function body present in the profile)
// HEAD_SAMPLES (uint64_t) [only for top-level functions]
// Total number of samples collected at the head (prologue) of the
// function.
// NOTE: This field should only be present for top-level functions
// (i.e., not inlined into any caller). Inlined function calls
// have no prologue, so they don't need this.
// NAME_IDX (uint32_t)
// Index into the name table indicating the function name.
// SAMPLES (uint64_t)
// Total number of samples collected in this function.
// NRECS (uint32_t)
// Total number of sampling records this function's profile.
// BODY RECORDS
// A list of NRECS entries. Each entry contains:
// OFFSET (uint32_t)
// Line offset from the start of the function.
// DISCRIMINATOR (uint32_t)
// Discriminator value (see description of discriminators
// in the text format documentation above).
// SAMPLES (uint64_t)
// Number of samples collected at this location.
// NUM_CALLS (uint32_t)
// Number of non-inlined function calls made at this location. In the
// case of direct calls, this number will always be 1. For indirect
// calls (virtual functions and function pointers) this will
// represent all the actual functions called at runtime.
// CALL_TARGETS
// A list of NUM_CALLS entries for each called function:
// NAME_IDX (uint32_t)
// Index into the name table with the callee name.
// SAMPLES (uint64_t)
// Number of samples collected at the call site.
// NUM_INLINED_FUNCTIONS (uint32_t)
// Number of callees inlined into this function.
// INLINED FUNCTION RECORDS
// A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
// callees.
// OFFSET (uint32_t)
// Line offset from the start of the function.
// DISCRIMINATOR (uint32_t)
// Discriminator value (see description of discriminators
// in the text format documentation above).
// FUNCTION BODY
// A FUNCTION BODY entry describing the inlined function.
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#define LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/GCOV.h"
#include "llvm/Support/MemoryBuffer.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
namespace llvm {
class raw_ostream;
namespace sampleprof {
/// \brief Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
/// 1. The total number of samples collected in F.
///
/// 2. The samples collected at each line in F. To provide some
/// protection against source code shuffling, line numbers should
/// be relative to the start of the function.
///
/// The reader supports two file formats: text and binary. The text format
/// is useful for debugging and testing, while the binary format is more
/// compact and I/O efficient. They can both be used interchangeably.
class SampleProfileReader {
public:
SampleProfileReader(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: Profiles(0), Ctx(C), Buffer(std::move(B)) {}
virtual ~SampleProfileReader() = default;
/// \brief Read and validate the file header.
virtual std::error_code readHeader() = 0;
/// \brief Read sample profiles from the associated file.
virtual std::error_code read() = 0;
/// \brief Print the profile for \p FName on stream \p OS.
void dumpFunctionProfile(StringRef FName, raw_ostream &OS = dbgs());
/// \brief Print all the profiles on stream \p OS.
void dump(raw_ostream &OS = dbgs());
/// \brief Return the samples collected for function \p F.
FunctionSamples *getSamplesFor(const Function &F) {
// The function name may have been updated by adding suffix. In sample
// profile, the function names are all stripped, so we need to strip
// the function name suffix before matching with profile.
if (Profiles.count(F.getName().split('.').first))
return &Profiles[(F.getName().split('.').first)];
return nullptr;
}
/// \brief Return all the profiles.
StringMap<FunctionSamples> &getProfiles() { return Profiles; }
/// \brief Report a parse error message.
void reportError(int64_t LineNumber, Twine Msg) const {
Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(),
LineNumber, Msg));
}
/// \brief Create a sample profile reader appropriate to the file format.
static ErrorOr<std::unique_ptr<SampleProfileReader>>
create(const Twine &Filename, LLVMContext &C);
/// \brief Create a sample profile reader from the supplied memory buffer.
static ErrorOr<std::unique_ptr<SampleProfileReader>>
create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C);
/// \brief Return the profile summary.
ProfileSummary &getSummary() { return *(Summary.get()); }
protected:
/// \brief Map every function to its associated profile.
///
/// The profile of every function executed at runtime is collected
/// in the structure FunctionSamples. This maps function objects
/// to their corresponding profiles.
StringMap<FunctionSamples> Profiles;
/// \brief LLVM context used to emit diagnostics.
LLVMContext &Ctx;
/// \brief Memory buffer holding the profile file.
std::unique_ptr<MemoryBuffer> Buffer;
/// \brief Profile summary information.
std::unique_ptr<ProfileSummary> Summary;
/// \brief Compute summary for this profile.
void computeSummary();
};
class SampleProfileReaderText : public SampleProfileReader {
public:
SampleProfileReaderText(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: SampleProfileReader(std::move(B), C) {}
/// \brief Read and validate the file header.
std::error_code readHeader() override { return sampleprof_error::success; }
/// \brief Read sample profiles from the associated file.
std::error_code read() override;
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
};
class SampleProfileReaderBinary : public SampleProfileReader {
public:
SampleProfileReaderBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: SampleProfileReader(std::move(B), C), Data(nullptr), End(nullptr) {}
/// \brief Read and validate the file header.
std::error_code readHeader() override;
/// \brief Read sample profiles from the associated file.
std::error_code read() override;
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
protected:
/// \brief Read a numeric value of type T from the profile.
///
/// If an error occurs during decoding, a diagnostic message is emitted and
/// EC is set.
///
/// \returns the read value.
template <typename T> ErrorOr<T> readNumber();
/// \brief Read a string from the profile.
///
/// If an error occurs during decoding, a diagnostic message is emitted and
/// EC is set.
///
/// \returns the read value.
ErrorOr<StringRef> readString();
/// Read a string indirectly via the name table.
ErrorOr<StringRef> readStringFromTable();
/// \brief Return true if we've reached the end of file.
bool at_eof() const { return Data >= End; }
/// Read the contents of the given profile instance.
std::error_code readProfile(FunctionSamples &FProfile);
/// \brief Points to the current location in the buffer.
const uint8_t *Data;
/// \brief Points to the end of the buffer.
const uint8_t *End;
/// Function name table.
std::vector<StringRef> NameTable;
private:
std::error_code readSummaryEntry(std::vector<ProfileSummaryEntry> &Entries);
/// \brief Read profile summary.
std::error_code readSummary();
};
typedef SmallVector<FunctionSamples *, 10> InlineCallStack;
// Supported histogram types in GCC. Currently, we only need support for
// call target histograms.
enum HistType {
HIST_TYPE_INTERVAL,
HIST_TYPE_POW2,
HIST_TYPE_SINGLE_VALUE,
HIST_TYPE_CONST_DELTA,
HIST_TYPE_INDIR_CALL,
HIST_TYPE_AVERAGE,
HIST_TYPE_IOR,
HIST_TYPE_INDIR_CALL_TOPN
};
class SampleProfileReaderGCC : public SampleProfileReader {
public:
SampleProfileReaderGCC(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: SampleProfileReader(std::move(B), C), GcovBuffer(Buffer.get()) {}
/// \brief Read and validate the file header.
std::error_code readHeader() override;
/// \brief Read sample profiles from the associated file.
std::error_code read() override;
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
protected:
std::error_code readNameTable();
std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack,
bool Update, uint32_t Offset);
std::error_code readFunctionProfiles();
std::error_code skipNextWord();
template <typename T> ErrorOr<T> readNumber();
ErrorOr<StringRef> readString();
/// \brief Read the section tag and check that it's the same as \p Expected.
std::error_code readSectionTag(uint32_t Expected);
/// GCOV buffer containing the profile.
GCOVBuffer GcovBuffer;
/// Function names in this profile.
std::vector<std::string> Names;
/// GCOV tags used to separate sections in the profile file.
static const uint32_t GCOVTagAFDOFileNames = 0xaa000000;
static const uint32_t GCOVTagAFDOFunction = 0xac000000;
};
} // end namespace sampleprof
} // end namespace llvm
#endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H