mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
833a8ea187
llvm-svn: 41075
828 lines
27 KiB
C++
828 lines
27 KiB
C++
//===- Dominators.cpp - Dominator Calculation -----------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements simple dominator construction algorithms for finding
|
|
// forward dominators. Postdominators are available in libanalysis, but are not
|
|
// included in libvmcore, because it's not needed. Forward dominators are
|
|
// needed to support the Verifier pass.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
static std::ostream &operator<<(std::ostream &o,
|
|
const std::set<BasicBlock*> &BBs) {
|
|
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
|
|
I != E; ++I)
|
|
if (*I)
|
|
WriteAsOperand(o, *I, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
return o;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominatorTree Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// DominatorTree construction - This pass constructs immediate dominator
|
|
// information for a flow-graph based on the algorithm described in this
|
|
// document:
|
|
//
|
|
// A Fast Algorithm for Finding Dominators in a Flowgraph
|
|
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
|
|
//
|
|
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
|
|
// LINK, but it turns out that the theoretically slower O(n*log(n))
|
|
// implementation is actually faster than the "efficient" algorithm (even for
|
|
// large CFGs) because the constant overheads are substantially smaller. The
|
|
// lower-complexity version can be enabled with the following #define:
|
|
//
|
|
#define BALANCE_IDOM_TREE 0
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char DominatorTree::ID = 0;
|
|
static RegisterPass<DominatorTree>
|
|
E("domtree", "Dominator Tree Construction", true);
|
|
|
|
// NewBB is split and now it has one successor. Update dominator tree to
|
|
// reflect this change.
|
|
void DominatorTree::splitBlock(BasicBlock *NewBB) {
|
|
assert(NewBB->getTerminator()->getNumSuccessors() == 1
|
|
&& "NewBB should have a single successor!");
|
|
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
|
|
|
|
std::vector<BasicBlock*> PredBlocks;
|
|
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
|
|
PI != PE; ++PI)
|
|
PredBlocks.push_back(*PI);
|
|
|
|
assert(!PredBlocks.empty() && "No predblocks??");
|
|
|
|
// The newly inserted basic block will dominate existing basic blocks iff the
|
|
// PredBlocks dominate all of the non-pred blocks. If all predblocks dominate
|
|
// the non-pred blocks, then they all must be the same block!
|
|
//
|
|
bool NewBBDominatesNewBBSucc = true;
|
|
{
|
|
BasicBlock *OnePred = PredBlocks[0];
|
|
unsigned i = 1, e = PredBlocks.size();
|
|
for (i = 1; !isReachableFromEntry(OnePred); ++i) {
|
|
assert(i != e && "Didn't find reachable pred?");
|
|
OnePred = PredBlocks[i];
|
|
}
|
|
|
|
for (; i != e; ++i)
|
|
if (PredBlocks[i] != OnePred && isReachableFromEntry(OnePred)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
|
|
if (NewBBDominatesNewBBSucc)
|
|
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
|
|
PI != E; ++PI)
|
|
if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The other scenario where the new block can dominate its successors are when
|
|
// all predecessors of NewBBSucc that are not NewBB are dominated by NewBBSucc
|
|
// already.
|
|
if (!NewBBDominatesNewBBSucc) {
|
|
NewBBDominatesNewBBSucc = true;
|
|
for (pred_iterator PI = pred_begin(NewBBSucc), E = pred_end(NewBBSucc);
|
|
PI != E; ++PI)
|
|
if (*PI != NewBB && !dominates(NewBBSucc, *PI)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find NewBB's immediate dominator and create new dominator tree node for
|
|
// NewBB.
|
|
BasicBlock *NewBBIDom = 0;
|
|
unsigned i = 0;
|
|
for (i = 0; i < PredBlocks.size(); ++i)
|
|
if (isReachableFromEntry(PredBlocks[i])) {
|
|
NewBBIDom = PredBlocks[i];
|
|
break;
|
|
}
|
|
assert(i != PredBlocks.size() && "No reachable preds?");
|
|
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
|
if (isReachableFromEntry(PredBlocks[i]))
|
|
NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
|
}
|
|
assert(NewBBIDom && "No immediate dominator found??");
|
|
|
|
// Create the new dominator tree node... and set the idom of NewBB.
|
|
DomTreeNode *NewBBNode = addNewBlock(NewBB, NewBBIDom);
|
|
|
|
// If NewBB strictly dominates other blocks, then it is now the immediate
|
|
// dominator of NewBBSucc. Update the dominator tree as appropriate.
|
|
if (NewBBDominatesNewBBSucc) {
|
|
DomTreeNode *NewBBSuccNode = getNode(NewBBSucc);
|
|
changeImmediateDominator(NewBBSuccNode, NewBBNode);
|
|
}
|
|
}
|
|
|
|
unsigned DominatorTree::DFSPass(BasicBlock *V, unsigned N) {
|
|
// This is more understandable as a recursive algorithm, but we can't use the
|
|
// recursive algorithm due to stack depth issues. Keep it here for
|
|
// documentation purposes.
|
|
#if 0
|
|
InfoRec &VInfo = Info[Roots[i]];
|
|
VInfo.Semi = ++N;
|
|
VInfo.Label = V;
|
|
|
|
Vertex.push_back(V); // Vertex[n] = V;
|
|
//Info[V].Ancestor = 0; // Ancestor[n] = 0
|
|
//Info[V].Child = 0; // Child[v] = 0
|
|
VInfo.Size = 1; // Size[v] = 1
|
|
|
|
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
|
|
InfoRec &SuccVInfo = Info[*SI];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = V;
|
|
N = DFSPass(*SI, N);
|
|
}
|
|
}
|
|
#else
|
|
std::vector<std::pair<BasicBlock*, unsigned> > Worklist;
|
|
Worklist.push_back(std::make_pair(V, 0U));
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = Worklist.back().first;
|
|
unsigned NextSucc = Worklist.back().second;
|
|
|
|
// First time we visited this BB?
|
|
if (NextSucc == 0) {
|
|
InfoRec &BBInfo = Info[BB];
|
|
BBInfo.Semi = ++N;
|
|
BBInfo.Label = BB;
|
|
|
|
Vertex.push_back(BB); // Vertex[n] = V;
|
|
//BBInfo[V].Ancestor = 0; // Ancestor[n] = 0
|
|
//BBInfo[V].Child = 0; // Child[v] = 0
|
|
BBInfo.Size = 1; // Size[v] = 1
|
|
}
|
|
|
|
// If we are done with this block, remove it from the worklist.
|
|
if (NextSucc == BB->getTerminator()->getNumSuccessors()) {
|
|
Worklist.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, increment the successor number for the next time we get to it.
|
|
++Worklist.back().second;
|
|
|
|
// Visit the successor next, if it isn't already visited.
|
|
BasicBlock *Succ = BB->getTerminator()->getSuccessor(NextSucc);
|
|
|
|
InfoRec &SuccVInfo = Info[Succ];
|
|
if (SuccVInfo.Semi == 0) {
|
|
SuccVInfo.Parent = BB;
|
|
Worklist.push_back(std::make_pair(Succ, 0U));
|
|
}
|
|
}
|
|
#endif
|
|
return N;
|
|
}
|
|
|
|
void DominatorTree::Compress(BasicBlock *VIn) {
|
|
|
|
std::vector<BasicBlock *> Work;
|
|
SmallPtrSet<BasicBlock *, 32> Visited;
|
|
BasicBlock *VInAncestor = Info[VIn].Ancestor;
|
|
InfoRec &VInVAInfo = Info[VInAncestor];
|
|
|
|
if (VInVAInfo.Ancestor != 0)
|
|
Work.push_back(VIn);
|
|
|
|
while (!Work.empty()) {
|
|
BasicBlock *V = Work.back();
|
|
InfoRec &VInfo = Info[V];
|
|
BasicBlock *VAncestor = VInfo.Ancestor;
|
|
InfoRec &VAInfo = Info[VAncestor];
|
|
|
|
// Process Ancestor first
|
|
if (Visited.insert(VAncestor) &&
|
|
VAInfo.Ancestor != 0) {
|
|
Work.push_back(VAncestor);
|
|
continue;
|
|
}
|
|
Work.pop_back();
|
|
|
|
// Update VInfo based on Ancestor info
|
|
if (VAInfo.Ancestor == 0)
|
|
continue;
|
|
BasicBlock *VAncestorLabel = VAInfo.Label;
|
|
BasicBlock *VLabel = VInfo.Label;
|
|
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
|
|
VInfo.Label = VAncestorLabel;
|
|
VInfo.Ancestor = VAInfo.Ancestor;
|
|
}
|
|
}
|
|
|
|
BasicBlock *DominatorTree::Eval(BasicBlock *V) {
|
|
InfoRec &VInfo = Info[V];
|
|
#if !BALANCE_IDOM_TREE
|
|
// Higher-complexity but faster implementation
|
|
if (VInfo.Ancestor == 0)
|
|
return V;
|
|
Compress(V);
|
|
return VInfo.Label;
|
|
#else
|
|
// Lower-complexity but slower implementation
|
|
if (VInfo.Ancestor == 0)
|
|
return VInfo.Label;
|
|
Compress(V);
|
|
BasicBlock *VLabel = VInfo.Label;
|
|
|
|
BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
|
|
if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
|
|
return VLabel;
|
|
else
|
|
return VAncestorLabel;
|
|
#endif
|
|
}
|
|
|
|
void DominatorTree::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
|
|
#if !BALANCE_IDOM_TREE
|
|
// Higher-complexity but faster implementation
|
|
WInfo.Ancestor = V;
|
|
#else
|
|
// Lower-complexity but slower implementation
|
|
BasicBlock *WLabel = WInfo.Label;
|
|
unsigned WLabelSemi = Info[WLabel].Semi;
|
|
BasicBlock *S = W;
|
|
InfoRec *SInfo = &Info[S];
|
|
|
|
BasicBlock *SChild = SInfo->Child;
|
|
InfoRec *SChildInfo = &Info[SChild];
|
|
|
|
while (WLabelSemi < Info[SChildInfo->Label].Semi) {
|
|
BasicBlock *SChildChild = SChildInfo->Child;
|
|
if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
|
|
SChildInfo->Ancestor = S;
|
|
SInfo->Child = SChild = SChildChild;
|
|
SChildInfo = &Info[SChild];
|
|
} else {
|
|
SChildInfo->Size = SInfo->Size;
|
|
S = SInfo->Ancestor = SChild;
|
|
SInfo = SChildInfo;
|
|
SChild = SChildChild;
|
|
SChildInfo = &Info[SChild];
|
|
}
|
|
}
|
|
|
|
InfoRec &VInfo = Info[V];
|
|
SInfo->Label = WLabel;
|
|
|
|
assert(V != W && "The optimization here will not work in this case!");
|
|
unsigned WSize = WInfo.Size;
|
|
unsigned VSize = (VInfo.Size += WSize);
|
|
|
|
if (VSize < 2*WSize)
|
|
std::swap(S, VInfo.Child);
|
|
|
|
while (S) {
|
|
SInfo = &Info[S];
|
|
SInfo->Ancestor = V;
|
|
S = SInfo->Child;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void DominatorTree::calculate(Function &F) {
|
|
BasicBlock* Root = Roots[0];
|
|
|
|
// Add a node for the root...
|
|
DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
|
|
|
|
Vertex.push_back(0);
|
|
|
|
// Step #1: Number blocks in depth-first order and initialize variables used
|
|
// in later stages of the algorithm.
|
|
unsigned N = DFSPass(Root, 0);
|
|
|
|
for (unsigned i = N; i >= 2; --i) {
|
|
BasicBlock *W = Vertex[i];
|
|
InfoRec &WInfo = Info[W];
|
|
|
|
// Step #2: Calculate the semidominators of all vertices
|
|
for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
|
|
if (Info.count(*PI)) { // Only if this predecessor is reachable!
|
|
unsigned SemiU = Info[Eval(*PI)].Semi;
|
|
if (SemiU < WInfo.Semi)
|
|
WInfo.Semi = SemiU;
|
|
}
|
|
|
|
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
|
|
|
|
BasicBlock *WParent = WInfo.Parent;
|
|
Link(WParent, W, WInfo);
|
|
|
|
// Step #3: Implicitly define the immediate dominator of vertices
|
|
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
|
|
while (!WParentBucket.empty()) {
|
|
BasicBlock *V = WParentBucket.back();
|
|
WParentBucket.pop_back();
|
|
BasicBlock *U = Eval(V);
|
|
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
|
|
}
|
|
}
|
|
|
|
// Step #4: Explicitly define the immediate dominator of each vertex
|
|
for (unsigned i = 2; i <= N; ++i) {
|
|
BasicBlock *W = Vertex[i];
|
|
BasicBlock *&WIDom = IDoms[W];
|
|
if (WIDom != Vertex[Info[W].Semi])
|
|
WIDom = IDoms[WIDom];
|
|
}
|
|
|
|
// Loop over all of the reachable blocks in the function...
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
|
if (BasicBlock *ImmDom = getIDom(I)) { // Reachable block.
|
|
DomTreeNode *BBNode = DomTreeNodes[I];
|
|
if (BBNode) continue; // Haven't calculated this node yet?
|
|
|
|
// Get or calculate the node for the immediate dominator
|
|
DomTreeNode *IDomNode = getNodeForBlock(ImmDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNode *C = new DomTreeNode(I, IDomNode);
|
|
DomTreeNodes[I] = IDomNode->addChild(C);
|
|
}
|
|
|
|
// Free temporary memory used to construct idom's
|
|
Info.clear();
|
|
IDoms.clear();
|
|
std::vector<BasicBlock*>().swap(Vertex);
|
|
|
|
updateDFSNumbers();
|
|
}
|
|
|
|
void DominatorTreeBase::updateDFSNumbers() {
|
|
unsigned DFSNum = 0;
|
|
|
|
SmallVector<std::pair<DomTreeNode*, DomTreeNode::iterator>, 32> WorkStack;
|
|
|
|
for (unsigned i = 0, e = Roots.size(); i != e; ++i) {
|
|
DomTreeNode *ThisRoot = getNode(Roots[i]);
|
|
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
DomTreeNode *Node = WorkStack.back().first;
|
|
DomTreeNode::iterator ChildIt = WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
DomTreeNode *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back(std::make_pair(Child, Child->begin()));
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
const bool DominatorTreeBase::isReachableFromEntry(BasicBlock* A) {
|
|
assert (!isPostDominator()
|
|
&& "This is not implemented for post dominators");
|
|
return dominates(&A->getParent()->getEntryBlock(), A);
|
|
}
|
|
|
|
// dominates - Return true if A dominates B. THis performs the
|
|
// special checks necessary if A and B are in the same basic block.
|
|
bool DominatorTreeBase::dominates(Instruction *A, Instruction *B) {
|
|
BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
|
if (BBA != BBB) return dominates(BBA, BBB);
|
|
|
|
// It is not possible to determine dominance between two PHI nodes
|
|
// based on their ordering.
|
|
if (isa<PHINode>(A) && isa<PHINode>(B))
|
|
return false;
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
BasicBlock::iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I) /*empty*/;
|
|
|
|
if(!IsPostDominators) {
|
|
// A dominates B if it is found first in the basic block.
|
|
return &*I == A;
|
|
} else {
|
|
// A post-dominates B if B is found first in the basic block.
|
|
return &*I == B;
|
|
}
|
|
}
|
|
|
|
// DominatorTreeBase::reset - Free all of the tree node memory.
|
|
//
|
|
void DominatorTreeBase::reset() {
|
|
for (DomTreeNodeMapType::iterator I = DomTreeNodes.begin(),
|
|
E = DomTreeNodes.end(); I != E; ++I)
|
|
delete I->second;
|
|
DomTreeNodes.clear();
|
|
IDoms.clear();
|
|
Roots.clear();
|
|
Vertex.clear();
|
|
RootNode = 0;
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
BasicBlock *DominatorTreeBase::findNearestCommonDominator(BasicBlock *A,
|
|
BasicBlock *B) {
|
|
|
|
assert (!isPostDominator()
|
|
&& "This is not implemented for post dominators");
|
|
assert (A->getParent() == B->getParent()
|
|
&& "Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator.
|
|
BasicBlock &Entry = A->getParent()->getEntryBlock();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
|
|
// If B dominates A then B is nearest common dominator.
|
|
if (dominates(B, A))
|
|
return B;
|
|
|
|
// If A dominates B then A is nearest common dominator.
|
|
if (dominates(A, B))
|
|
return A;
|
|
|
|
DomTreeNode *NodeA = getNode(A);
|
|
DomTreeNode *NodeB = getNode(B);
|
|
|
|
// Collect NodeA dominators set.
|
|
SmallPtrSet<DomTreeNode*, 16> NodeADoms;
|
|
NodeADoms.insert(NodeA);
|
|
DomTreeNode *IDomA = NodeA->getIDom();
|
|
while (IDomA) {
|
|
NodeADoms.insert(IDomA);
|
|
IDomA = IDomA->getIDom();
|
|
}
|
|
|
|
// Walk NodeB immediate dominators chain and find common dominator node.
|
|
DomTreeNode *IDomB = NodeB->getIDom();
|
|
while(IDomB) {
|
|
if (NodeADoms.count(IDomB) != 0)
|
|
return IDomB->getBlock();
|
|
|
|
IDomB = IDomB->getIDom();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void DomTreeNode::setIDom(DomTreeNode *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
std::vector<DomTreeNode*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
DomTreeNode *DominatorTree::getNodeForBlock(BasicBlock *BB) {
|
|
if (DomTreeNode *BBNode = DomTreeNodes[BB])
|
|
return BBNode;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
BasicBlock *IDom = getIDom(BB);
|
|
DomTreeNode *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this BasicBlock, and link it as a child of
|
|
// IDomNode
|
|
DomTreeNode *C = new DomTreeNode(BB, IDomNode);
|
|
return DomTreeNodes[BB] = IDomNode->addChild(C);
|
|
}
|
|
|
|
static std::ostream &operator<<(std::ostream &o, const DomTreeNode *Node) {
|
|
if (Node->getBlock())
|
|
WriteAsOperand(o, Node->getBlock(), false);
|
|
else
|
|
o << " <<exit node>>";
|
|
|
|
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
|
|
|
|
return o << "\n";
|
|
}
|
|
|
|
static void PrintDomTree(const DomTreeNode *N, std::ostream &o,
|
|
unsigned Lev) {
|
|
o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
|
|
for (DomTreeNode::const_iterator I = N->begin(), E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree(*I, o, Lev+1);
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the domiantor tree. Block must not
|
|
/// domiante any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void DominatorTreeBase::eraseNode(BasicBlock *BB) {
|
|
DomTreeNode *Node = getNode(BB);
|
|
assert (Node && "Removing node that isn't in dominator tree.");
|
|
assert (Node->getChildren().empty() && "Node is not a leaf node.");
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNode *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
std::vector<DomTreeNode*>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
delete Node;
|
|
}
|
|
|
|
void DominatorTreeBase::print(std::ostream &o, const Module* ) const {
|
|
o << "=============================--------------------------------\n";
|
|
o << "Inorder Dominator Tree: ";
|
|
if (DFSInfoValid)
|
|
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
o << "\n";
|
|
|
|
PrintDomTree(getRootNode(), o, 1);
|
|
}
|
|
|
|
void DominatorTreeBase::dump() {
|
|
print(llvm::cerr);
|
|
}
|
|
|
|
bool DominatorTree::runOnFunction(Function &F) {
|
|
reset(); // Reset from the last time we were run...
|
|
Roots.push_back(&F.getEntryBlock());
|
|
calculate(F);
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DominanceFrontier Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
char DominanceFrontier::ID = 0;
|
|
static RegisterPass<DominanceFrontier>
|
|
G("domfrontier", "Dominance Frontier Construction", true);
|
|
|
|
// NewBB is split and now it has one successor. Update dominace frontier to
|
|
// reflect this change.
|
|
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
|
|
assert(NewBB->getTerminator()->getNumSuccessors() == 1
|
|
&& "NewBB should have a single successor!");
|
|
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
|
|
|
|
std::vector<BasicBlock*> PredBlocks;
|
|
for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
|
|
PI != PE; ++PI)
|
|
PredBlocks.push_back(*PI);
|
|
|
|
if (PredBlocks.empty())
|
|
// If NewBB does not have any predecessors then it is a entry block.
|
|
// In this case, NewBB and its successor NewBBSucc dominates all
|
|
// other blocks.
|
|
return;
|
|
|
|
// NewBBSucc inherits original NewBB frontier.
|
|
DominanceFrontier::iterator NewBBI = find(NewBB);
|
|
if (NewBBI != end()) {
|
|
DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
|
|
DominanceFrontier::DomSetType NewBBSuccSet;
|
|
NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
|
|
addBasicBlock(NewBBSucc, NewBBSuccSet);
|
|
}
|
|
|
|
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
|
|
// DF(PredBlocks[0]) without the stuff that the new block does not dominate
|
|
// a predecessor of.
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
if (DT.dominates(NewBB, NewBBSucc)) {
|
|
DominanceFrontier::iterator DFI = find(PredBlocks[0]);
|
|
if (DFI != end()) {
|
|
DominanceFrontier::DomSetType Set = DFI->second;
|
|
// Filter out stuff in Set that we do not dominate a predecessor of.
|
|
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
|
|
E = Set.end(); SetI != E;) {
|
|
bool DominatesPred = false;
|
|
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
|
|
PI != E; ++PI)
|
|
if (DT.dominates(NewBB, *PI))
|
|
DominatesPred = true;
|
|
if (!DominatesPred)
|
|
Set.erase(SetI++);
|
|
else
|
|
++SetI;
|
|
}
|
|
|
|
if (NewBBI != end()) {
|
|
DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
|
|
NewBBSet.insert(Set.begin(), Set.end());
|
|
} else
|
|
addBasicBlock(NewBB, Set);
|
|
}
|
|
|
|
} else {
|
|
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
|
|
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
|
|
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
|
|
DominanceFrontier::DomSetType NewDFSet;
|
|
NewDFSet.insert(NewBBSucc);
|
|
addBasicBlock(NewBB, NewDFSet);
|
|
}
|
|
|
|
// Now we must loop over all of the dominance frontiers in the function,
|
|
// replacing occurrences of NewBBSucc with NewBB in some cases. All
|
|
// blocks that dominate a block in PredBlocks and contained NewBBSucc in
|
|
// their dominance frontier must be updated to contain NewBB instead.
|
|
//
|
|
for (Function::iterator FI = NewBB->getParent()->begin(),
|
|
FE = NewBB->getParent()->end(); FI != FE; ++FI) {
|
|
DominanceFrontier::iterator DFI = find(FI);
|
|
if (DFI == end()) continue; // unreachable block.
|
|
|
|
// Only consider nodes that have NewBBSucc in their dominator frontier.
|
|
if (!DFI->second.count(NewBBSucc)) continue;
|
|
|
|
// Verify whether this block dominates a block in predblocks. If not, do
|
|
// not update it.
|
|
bool BlockDominatesAny = false;
|
|
for (std::vector<BasicBlock*>::const_iterator BI = PredBlocks.begin(),
|
|
BE = PredBlocks.end(); BI != BE; ++BI) {
|
|
if (DT.dominates(FI, *BI)) {
|
|
BlockDominatesAny = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!BlockDominatesAny)
|
|
continue;
|
|
|
|
// If NewBBSucc should not stay in our dominator frontier, remove it.
|
|
// We remove it unless there is a predecessor of NewBBSucc that we
|
|
// dominate, but we don't strictly dominate NewBBSucc.
|
|
bool ShouldRemove = true;
|
|
if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
|
|
// Okay, we know that PredDom does not strictly dominate NewBBSucc.
|
|
// Check to see if it dominates any predecessors of NewBBSucc.
|
|
for (pred_iterator PI = pred_begin(NewBBSucc),
|
|
E = pred_end(NewBBSucc); PI != E; ++PI)
|
|
if (DT.dominates(FI, *PI)) {
|
|
ShouldRemove = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ShouldRemove)
|
|
removeFromFrontier(DFI, NewBBSucc);
|
|
addToFrontier(DFI, NewBB);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
class DFCalculateWorkObject {
|
|
public:
|
|
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
|
|
const DomTreeNode *N,
|
|
const DomTreeNode *PN)
|
|
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
|
|
BasicBlock *currentBB;
|
|
BasicBlock *parentBB;
|
|
const DomTreeNode *Node;
|
|
const DomTreeNode *parentNode;
|
|
};
|
|
}
|
|
|
|
const DominanceFrontier::DomSetType &
|
|
DominanceFrontier::calculate(const DominatorTree &DT,
|
|
const DomTreeNode *Node) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
DomSetType *Result = NULL;
|
|
|
|
std::vector<DFCalculateWorkObject> workList;
|
|
SmallPtrSet<BasicBlock *, 32> visited;
|
|
|
|
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
|
|
do {
|
|
DFCalculateWorkObject *currentW = &workList.back();
|
|
assert (currentW && "Missing work object.");
|
|
|
|
BasicBlock *currentBB = currentW->currentBB;
|
|
BasicBlock *parentBB = currentW->parentBB;
|
|
const DomTreeNode *currentNode = currentW->Node;
|
|
const DomTreeNode *parentNode = currentW->parentNode;
|
|
assert (currentBB && "Invalid work object. Missing current Basic Block");
|
|
assert (currentNode && "Invalid work object. Missing current Node");
|
|
DomSetType &S = Frontiers[currentBB];
|
|
|
|
// Visit each block only once.
|
|
if (visited.count(currentBB) == 0) {
|
|
visited.insert(currentBB);
|
|
|
|
// Loop over CFG successors to calculate DFlocal[currentNode]
|
|
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
|
|
SI != SE; ++SI) {
|
|
// Does Node immediately dominate this successor?
|
|
if (DT[*SI]->getIDom() != currentNode)
|
|
S.insert(*SI);
|
|
}
|
|
}
|
|
|
|
// At this point, S is DFlocal. Now we union in DFup's of our children...
|
|
// Loop through and visit the nodes that Node immediately dominates (Node's
|
|
// children in the IDomTree)
|
|
bool visitChild = false;
|
|
for (DomTreeNode::const_iterator NI = currentNode->begin(),
|
|
NE = currentNode->end(); NI != NE; ++NI) {
|
|
DomTreeNode *IDominee = *NI;
|
|
BasicBlock *childBB = IDominee->getBlock();
|
|
if (visited.count(childBB) == 0) {
|
|
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
|
|
IDominee, currentNode));
|
|
visitChild = true;
|
|
}
|
|
}
|
|
|
|
// If all children are visited or there is any child then pop this block
|
|
// from the workList.
|
|
if (!visitChild) {
|
|
|
|
if (!parentBB) {
|
|
Result = &S;
|
|
break;
|
|
}
|
|
|
|
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
|
|
DomSetType &parentSet = Frontiers[parentBB];
|
|
for (; CDFI != CDFE; ++CDFI) {
|
|
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
|
|
parentSet.insert(*CDFI);
|
|
}
|
|
workList.pop_back();
|
|
}
|
|
|
|
} while (!workList.empty());
|
|
|
|
return *Result;
|
|
}
|
|
|
|
void DominanceFrontierBase::print(std::ostream &o, const Module* ) const {
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
o << " DomFrontier for BB";
|
|
if (I->first)
|
|
WriteAsOperand(o, I->first, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
o << " is:\t" << I->second << "\n";
|
|
}
|
|
}
|
|
|
|
void DominanceFrontierBase::dump() {
|
|
print (llvm::cerr);
|
|
}
|