mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
504ced25f2
It's generic for the 'development mode', not specific to the inliner case. Differential Revision: https://reviews.llvm.org/D91751
274 lines
8.9 KiB
C++
274 lines
8.9 KiB
C++
//===- TFUtilsTest.cpp - test for TFUtils ---------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Testing/Support/SupportHelpers.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
extern const char *TestMainArgv0;
|
|
|
|
// NOTE! This test model is currently also used by test/Transforms/Inline/ML tests
|
|
//- relevant if updating this model.
|
|
static std::string getModelPath() {
|
|
SmallString<128> InputsDir = unittest::getInputFileDirectory(TestMainArgv0);
|
|
llvm::sys::path::append(InputsDir, "ir2native_x86_64_model");
|
|
return std::string(InputsDir);
|
|
}
|
|
|
|
// Test observable behavior when no model is provided.
|
|
TEST(TFUtilsTest, NoModel) {
|
|
TFModelEvaluator Evaluator("", {}, {});
|
|
EXPECT_FALSE(Evaluator.isValid());
|
|
}
|
|
|
|
// Test we can correctly load a savedmodel and evaluate it.
|
|
TEST(TFUtilsTest, LoadAndExecuteTest) {
|
|
// We use the ir2native model for test. We know it has one feature of
|
|
// dimension (1, 214)
|
|
const static int64_t KnownSize = 214;
|
|
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
|
|
"serving_default_input_1", {1, KnownSize})};
|
|
std::vector<TensorSpec> OutputSpecs{
|
|
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
|
|
|
|
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
|
|
EXPECT_TRUE(Evaluator.isValid());
|
|
|
|
int32_t *V = Evaluator.getInput<int32_t>(0);
|
|
// Fill it up with 1's, we know the output.
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
V[I] = 1;
|
|
}
|
|
{
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_TRUE(ER.hasValue());
|
|
float Ret = *ER->getTensorValue<float>(0);
|
|
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
|
|
EXPECT_EQ(ER->getUntypedTensorValue(0),
|
|
reinterpret_cast<const void *>(ER->getTensorValue<float>(0)));
|
|
}
|
|
// The input vector should be unchanged
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
EXPECT_EQ(V[I], 1);
|
|
}
|
|
// Zero-out the unused position '0' of the instruction histogram, which is
|
|
// after the first 9 calculated values. Should the the same result.
|
|
V[9] = 0;
|
|
{
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_TRUE(ER.hasValue());
|
|
float Ret = *ER->getTensorValue<float>(0);
|
|
EXPECT_EQ(static_cast<int64_t>(Ret), 80);
|
|
}
|
|
}
|
|
|
|
// Test incorrect input setup
|
|
TEST(TFUtilsTest, EvalError) {
|
|
// We use the ir2native model for test. We know it has one feature of
|
|
// dimension (1, 214)
|
|
const static int64_t KnownSize = 213;
|
|
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
|
|
"serving_default_input_1", {1, KnownSize})};
|
|
std::vector<TensorSpec> OutputSpecs{
|
|
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
|
|
|
|
TFModelEvaluator Evaluator(getModelPath(), InputSpecs, OutputSpecs);
|
|
EXPECT_TRUE(Evaluator.isValid());
|
|
|
|
int32_t *V = Evaluator.getInput<int32_t>(0);
|
|
// Fill it up with 1's, we know the output.
|
|
for (auto I = 0; I < KnownSize; ++I) {
|
|
V[I] = 1;
|
|
}
|
|
auto ER = Evaluator.evaluate();
|
|
EXPECT_FALSE(ER.hasValue());
|
|
EXPECT_FALSE(Evaluator.isValid());
|
|
}
|
|
|
|
TEST(TFUtilsTest, JSONParsing) {
|
|
auto Value = json::parse(
|
|
R"({"name": "tensor_name",
|
|
"port": 2,
|
|
"type": "int32_t",
|
|
"shape":[1,4]
|
|
})");
|
|
EXPECT_TRUE(!!Value);
|
|
LLVMContext Ctx;
|
|
Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
|
|
EXPECT_TRUE(Spec.hasValue());
|
|
EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
|
|
}
|
|
|
|
TEST(TFUtilsTest, JSONParsingInvalidTensorType) {
|
|
auto Value = json::parse(
|
|
R"(
|
|
{"name": "tensor_name",
|
|
"port": 2,
|
|
"type": "no such type",
|
|
"shape":[1,4]
|
|
}
|
|
)");
|
|
EXPECT_TRUE(!!Value);
|
|
LLVMContext Ctx;
|
|
auto Spec = getTensorSpecFromJSON(Ctx, *Value);
|
|
EXPECT_FALSE(Spec.hasValue());
|
|
}
|
|
|
|
TEST(TFUtilsTest, TensorSpecSizesAndTypes) {
|
|
auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
|
|
auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
|
|
auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
|
|
auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
|
|
EXPECT_TRUE(Spec1D.isElementType<int16_t>());
|
|
EXPECT_FALSE(Spec3DLarge.isElementType<double>());
|
|
EXPECT_EQ(Spec1D.getElementCount(), 1U);
|
|
EXPECT_EQ(Spec2D.getElementCount(), 1U);
|
|
EXPECT_EQ(Spec1DLarge.getElementCount(), 10U);
|
|
EXPECT_EQ(Spec3DLarge.getElementCount(), 80U);
|
|
EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
|
|
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
|
|
}
|
|
|
|
TEST(TFUtilsTest, Logger) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back(
|
|
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
|
|
std::string("alternate_name")});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, true);
|
|
float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
|
int64_t F01[]{2, 3};
|
|
|
|
L.logTensorValue(0, F00, 6);
|
|
L.logTensorValue(1, F01, 2);
|
|
L.logReward<float>(3.4);
|
|
float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
|
int64_t F11[]{-2, -3};
|
|
L.logTensorValue(0, F10, 6);
|
|
L.logTensorValue(1, F11, 2);
|
|
L.logReward<float>(-3.0);
|
|
const auto *Expected = R"(feature_lists: {
|
|
feature_list: {
|
|
key: "the_float" value: {
|
|
feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } }
|
|
feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } }
|
|
}
|
|
}
|
|
feature_list: {
|
|
key: "alternate_name" value: {
|
|
feature: { int64_list: { value: [2, 3] } }
|
|
feature: { int64_list: { value: [-2, -3] } }
|
|
}
|
|
}
|
|
feature_list: {
|
|
key: "reward" value: {
|
|
feature: { float_list: { value: [3.400000e+00] } }
|
|
feature: { float_list: { value: [-3.000000e+00] } }
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.print(OS);
|
|
EXPECT_EQ(Result, Expected);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerNoReward) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back(
|
|
{TensorSpec::createSpec<float>("the_float", {2, 3}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {2}),
|
|
std::string("alternate_name")});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, false);
|
|
float F00[]{0.0, 0.1, 0.2, 0.3, 0.4, 0.5};
|
|
int64_t F01[]{2, 3};
|
|
|
|
L.logTensorValue(0, F00, 6);
|
|
L.logTensorValue(1, F01, 2);
|
|
float F10[]{0.0, 1.0, 2.0, 3.0, 4.0, 5.0};
|
|
int64_t F11[]{-2, -3};
|
|
L.logTensorValue(0, F10, 6);
|
|
L.logTensorValue(1, F11, 2);
|
|
const auto *Expected = R"(feature_lists: {
|
|
feature_list: {
|
|
key: "the_float" value: {
|
|
feature: { float_list: { value: [0.000000e+00, 1.000000e-01, 2.000000e-01, 3.000000e-01, 4.000000e-01, 5.000000e-01] } }
|
|
feature: { float_list: { value: [0.000000e+00, 1.000000e+00, 2.000000e+00, 3.000000e+00, 4.000000e+00, 5.000000e+00] } }
|
|
}
|
|
}
|
|
feature_list: {
|
|
key: "alternate_name" value: {
|
|
feature: { int64_list: { value: [2, 3] } }
|
|
feature: { int64_list: { value: [-2, -3] } }
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.print(OS);
|
|
EXPECT_EQ(Result, Expected);
|
|
}
|
|
|
|
TEST(TFUtilsTest, LoggerFinalReward) {
|
|
std::vector<LoggedFeatureSpec> Features;
|
|
Features.push_back({TensorSpec::createSpec<float>("the_float", {1}), None});
|
|
Features.push_back({TensorSpec::createSpec<int64_t>("the_int", {1}), None});
|
|
|
|
auto Rewards = TensorSpec::createSpec<float>("reward", {1});
|
|
Logger L(Features, Rewards, true);
|
|
for (size_t I = 0; I < 3; ++I) {
|
|
float F = static_cast<float>(I);
|
|
L.logTensorValue(0, &F);
|
|
L.logTensorValue(1, &I);
|
|
}
|
|
L.logFinalReward<float>(3.14);
|
|
const auto *Expected = R"(feature_lists: {
|
|
feature_list: {
|
|
key: "the_float" value: {
|
|
feature: { float_list: { value: [0.000000e+00] } }
|
|
feature: { float_list: { value: [1.000000e+00] } }
|
|
feature: { float_list: { value: [2.000000e+00] } }
|
|
}
|
|
}
|
|
feature_list: {
|
|
key: "the_int" value: {
|
|
feature: { int64_list: { value: [0] } }
|
|
feature: { int64_list: { value: [1] } }
|
|
feature: { int64_list: { value: [2] } }
|
|
}
|
|
}
|
|
feature_list: {
|
|
key: "reward" value: {
|
|
feature: { float_list: { value: [0.000000e+00] } }
|
|
feature: { float_list: { value: [0.000000e+00] } }
|
|
feature: { float_list: { value: [3.140000e+00] } }
|
|
}
|
|
}
|
|
}
|
|
)";
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
L.print(OS);
|
|
EXPECT_EQ(Result, Expected);
|
|
}
|