1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp
Anirudh Prasad 46dd095887 [SystemZ] Adding extra extended mnemonics for SystemZ target
This patch consists of the addition of some common additional
extended mnemonics to the SystemZ target.

- These are jnop, jct, jctg, jas, jasl, jxh, jxhg, jxle,
  jxleg, bru, brul, br*, br*l.
- These mnemonics and the instructions they map to are
  defined here, Chapter 4 - Branching with extended
  mnemonic codes.
- Except for jnop (which is a variant of brc 0, label), every
  other mnemonic is marked as a MnemonicAlias since there is
  already a "defined" instruction with the same encoding
  and/or condition mask values.
- brc 0, label doesn't have a defined extended mnemonic, thus
  jnop is defined using as an InstAlias. Furthermore, the
  applyMnemonicAliases function is called in the overridden
  parseInstruction function in SystemZAsmParser.cpp to ensure
  any mnemonic aliases are applied before any further
  processing on the instruction is done.

Reviewed By: uweigand

Differential Revision: https://reviews.llvm.org/D92185
2020-12-02 08:25:31 -05:00

1577 lines
52 KiB
C++

//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SystemZInstPrinter.h"
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "TargetInfo/SystemZTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetRegistry.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
using namespace llvm;
// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return false;
}
namespace {
enum RegisterKind {
GR32Reg,
GRH32Reg,
GR64Reg,
GR128Reg,
FP32Reg,
FP64Reg,
FP128Reg,
VR32Reg,
VR64Reg,
VR128Reg,
AR32Reg,
CR64Reg,
};
enum MemoryKind {
BDMem,
BDXMem,
BDLMem,
BDRMem,
BDVMem
};
class SystemZOperand : public MCParsedAsmOperand {
private:
enum OperandKind {
KindInvalid,
KindToken,
KindReg,
KindImm,
KindImmTLS,
KindMem
};
OperandKind Kind;
SMLoc StartLoc, EndLoc;
// A string of length Length, starting at Data.
struct TokenOp {
const char *Data;
unsigned Length;
};
// LLVM register Num, which has kind Kind. In some ways it might be
// easier for this class to have a register bank (general, floating-point
// or access) and a raw register number (0-15). This would postpone the
// interpretation of the operand to the add*() methods and avoid the need
// for context-dependent parsing. However, we do things the current way
// because of the virtual getReg() method, which needs to distinguish
// between (say) %r0 used as a single register and %r0 used as a pair.
// Context-dependent parsing can also give us slightly better error
// messages when invalid pairs like %r1 are used.
struct RegOp {
RegisterKind Kind;
unsigned Num;
};
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
// MemKind says what type of memory this is and RegKind says what type
// the base register has (GR32Reg or GR64Reg). Length is the operand
// length for D(L,B)-style operands, otherwise it is null.
struct MemOp {
unsigned Base : 12;
unsigned Index : 12;
unsigned MemKind : 4;
unsigned RegKind : 4;
const MCExpr *Disp;
union {
const MCExpr *Imm;
unsigned Reg;
} Length;
};
// Imm is an immediate operand, and Sym is an optional TLS symbol
// for use with a __tls_get_offset marker relocation.
struct ImmTLSOp {
const MCExpr *Imm;
const MCExpr *Sym;
};
union {
TokenOp Token;
RegOp Reg;
const MCExpr *Imm;
ImmTLSOp ImmTLS;
MemOp Mem;
};
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
public:
SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
: Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
// Create particular kinds of operand.
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
SMLoc EndLoc) {
return std::make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
}
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
auto Op = std::make_unique<SystemZOperand>(KindToken, Loc, Loc);
Op->Token.Data = Str.data();
Op->Token.Length = Str.size();
return Op;
}
static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
Op->Reg.Kind = Kind;
Op->Reg.Num = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
Op->Imm = Expr;
return Op;
}
static std::unique_ptr<SystemZOperand>
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
const MCExpr *Disp, unsigned Index, const MCExpr *LengthImm,
unsigned LengthReg, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
Op->Mem.MemKind = MemKind;
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
if (MemKind == BDLMem)
Op->Mem.Length.Imm = LengthImm;
if (MemKind == BDRMem)
Op->Mem.Length.Reg = LengthReg;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
SMLoc StartLoc, SMLoc EndLoc) {
auto Op = std::make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
Op->ImmTLS.Imm = Imm;
Op->ImmTLS.Sym = Sym;
return Op;
}
// Token operands
bool isToken() const override {
return Kind == KindToken;
}
StringRef getToken() const {
assert(Kind == KindToken && "Not a token");
return StringRef(Token.Data, Token.Length);
}
// Register operands.
bool isReg() const override {
return Kind == KindReg;
}
bool isReg(RegisterKind RegKind) const {
return Kind == KindReg && Reg.Kind == RegKind;
}
unsigned getReg() const override {
assert(Kind == KindReg && "Not a register");
return Reg.Num;
}
// Immediate operands.
bool isImm() const override {
return Kind == KindImm;
}
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
}
const MCExpr *getImm() const {
assert(Kind == KindImm && "Not an immediate");
return Imm;
}
// Immediate operands with optional TLS symbol.
bool isImmTLS() const {
return Kind == KindImmTLS;
}
const ImmTLSOp getImmTLS() const {
assert(Kind == KindImmTLS && "Not a TLS immediate");
return ImmTLS;
}
// Memory operands.
bool isMem() const override {
return Kind == KindMem;
}
bool isMem(MemoryKind MemKind) const {
return (Kind == KindMem &&
(Mem.MemKind == MemKind ||
// A BDMem can be treated as a BDXMem in which the index
// register field is 0.
(Mem.MemKind == BDMem && MemKind == BDXMem)));
}
bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind) && Mem.RegKind == RegKind;
}
bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
}
bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
}
bool isMemDisp12Len4(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x10);
}
bool isMemDisp12Len8(RegisterKind RegKind) const {
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length.Imm, 1, 0x100);
}
const MemOp& getMem() const {
assert(Kind == KindMem && "Not a Mem operand");
return Mem;
}
// Override MCParsedAsmOperand.
SMLoc getStartLoc() const override { return StartLoc; }
SMLoc getEndLoc() const override { return EndLoc; }
void print(raw_ostream &OS) const override;
/// getLocRange - Get the range between the first and last token of this
/// operand.
SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
// Used by the TableGen code to add particular types of operand
// to an instruction.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
addExpr(Inst, getImm());
}
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(isMem(BDMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
}
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDXMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDLMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length.Imm);
}
void addBDRAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDRMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Length.Reg));
}
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(isMem(BDVMem) && "Invalid operand type");
Inst.addOperand(MCOperand::createReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::createReg(Mem.Index));
}
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindImmTLS && "Invalid operand type");
addExpr(Inst, ImmTLS.Imm);
if (ImmTLS.Sym)
addExpr(Inst, ImmTLS.Sym);
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
bool isGRH32() const { return isReg(GRH32Reg); }
bool isGRX32() const { return false; }
bool isGR64() const { return isReg(GR64Reg); }
bool isGR128() const { return isReg(GR128Reg); }
bool isADDR32() const { return isReg(GR32Reg); }
bool isADDR64() const { return isReg(GR64Reg); }
bool isADDR128() const { return false; }
bool isFP32() const { return isReg(FP32Reg); }
bool isFP64() const { return isReg(FP64Reg); }
bool isFP128() const { return isReg(FP128Reg); }
bool isVR32() const { return isReg(VR32Reg); }
bool isVR64() const { return isReg(VR64Reg); }
bool isVF128() const { return false; }
bool isVR128() const { return isReg(VR128Reg); }
bool isAR32() const { return isReg(AR32Reg); }
bool isCR64() const { return isReg(CR64Reg); }
bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, GR32Reg); }
bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, GR32Reg); }
bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, GR64Reg); }
bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, GR64Reg); }
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, GR64Reg); }
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, GR64Reg); }
bool isBDLAddr64Disp12Len4() const { return isMemDisp12Len4(GR64Reg); }
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(GR64Reg); }
bool isBDRAddr64Disp12() const { return isMemDisp12(BDRMem, GR64Reg); }
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, GR64Reg); }
bool isU1Imm() const { return isImm(0, 1); }
bool isU2Imm() const { return isImm(0, 3); }
bool isU3Imm() const { return isImm(0, 7); }
bool isU4Imm() const { return isImm(0, 15); }
bool isU6Imm() const { return isImm(0, 63); }
bool isU8Imm() const { return isImm(0, 255); }
bool isS8Imm() const { return isImm(-128, 127); }
bool isU12Imm() const { return isImm(0, 4095); }
bool isU16Imm() const { return isImm(0, 65535); }
bool isS16Imm() const { return isImm(-32768, 32767); }
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
};
class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"
private:
MCAsmParser &Parser;
enum RegisterGroup {
RegGR,
RegFP,
RegV,
RegAR,
RegCR
};
struct Register {
RegisterGroup Group;
unsigned Num;
SMLoc StartLoc, EndLoc;
};
bool parseRegister(Register &Reg, bool RestoreOnFailure = false);
bool parseIntegerRegister(Register &Reg, RegisterGroup Group);
OperandMatchResultTy parseRegister(OperandVector &Operands,
RegisterKind Kind);
OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
bool parseAddress(bool &HaveReg1, Register &Reg1, bool &HaveReg2,
Register &Reg2, const MCExpr *&Disp, const MCExpr *&Length,
bool HasLength = false, bool HasVectorIndex = false);
bool parseAddressRegister(Register &Reg);
bool ParseDirectiveInsn(SMLoc L);
OperandMatchResultTy parseAddress(OperandVector &Operands,
MemoryKind MemKind,
RegisterKind RegKind);
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(Options, sti, MII), Parser(parser) {
MCAsmParserExtension::Initialize(Parser);
// Alias the .word directive to .short.
parser.addAliasForDirective(".word", ".short");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
// Override MCTargetAsmParser.
bool ParseDirective(AsmToken DirectiveID) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc,
bool RestoreOnFailure);
OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
// Used by the TableGen code to parse particular operand types.
OperandMatchResultTy parseGR32(OperandVector &Operands) {
return parseRegister(Operands, GR32Reg);
}
OperandMatchResultTy parseGRH32(OperandVector &Operands) {
return parseRegister(Operands, GRH32Reg);
}
OperandMatchResultTy parseGRX32(OperandVector &Operands) {
llvm_unreachable("GRX32 should only be used for pseudo instructions");
}
OperandMatchResultTy parseGR64(OperandVector &Operands) {
return parseRegister(Operands, GR64Reg);
}
OperandMatchResultTy parseGR128(OperandVector &Operands) {
return parseRegister(Operands, GR128Reg);
}
OperandMatchResultTy parseADDR32(OperandVector &Operands) {
// For the AsmParser, we will accept %r0 for ADDR32 as well.
return parseRegister(Operands, GR32Reg);
}
OperandMatchResultTy parseADDR64(OperandVector &Operands) {
// For the AsmParser, we will accept %r0 for ADDR64 as well.
return parseRegister(Operands, GR64Reg);
}
OperandMatchResultTy parseADDR128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy parseFP32(OperandVector &Operands) {
return parseRegister(Operands, FP32Reg);
}
OperandMatchResultTy parseFP64(OperandVector &Operands) {
return parseRegister(Operands, FP64Reg);
}
OperandMatchResultTy parseFP128(OperandVector &Operands) {
return parseRegister(Operands, FP128Reg);
}
OperandMatchResultTy parseVR32(OperandVector &Operands) {
return parseRegister(Operands, VR32Reg);
}
OperandMatchResultTy parseVR64(OperandVector &Operands) {
return parseRegister(Operands, VR64Reg);
}
OperandMatchResultTy parseVF128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy parseVR128(OperandVector &Operands) {
return parseRegister(Operands, VR128Reg);
}
OperandMatchResultTy parseAR32(OperandVector &Operands) {
return parseRegister(Operands, AR32Reg);
}
OperandMatchResultTy parseCR64(OperandVector &Operands) {
return parseRegister(Operands, CR64Reg);
}
OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
return parseAnyRegister(Operands);
}
OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
return parseAddress(Operands, BDMem, GR32Reg);
}
OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDMem, GR64Reg);
}
OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDXMem, GR64Reg);
}
OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDLMem, GR64Reg);
}
OperandMatchResultTy parseBDRAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDRMem, GR64Reg);
}
OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
return parseAddress(Operands, BDVMem, GR64Reg);
}
OperandMatchResultTy parsePCRel12(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 12), (1LL << 12) - 1, false);
}
OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
}
OperandMatchResultTy parsePCRel24(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 24), (1LL << 24) - 1, false);
}
OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
}
OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
}
OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
}
};
} // end anonymous namespace
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "SystemZGenAsmMatcher.inc"
// Used for the .insn directives; contains information needed to parse the
// operands in the directive.
struct InsnMatchEntry {
StringRef Format;
uint64_t Opcode;
int32_t NumOperands;
MatchClassKind OperandKinds[7];
};
// For equal_range comparison.
struct CompareInsn {
bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
return LHS.Format < RHS;
}
bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
return LHS < RHS.Format;
}
bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
return LHS.Format < RHS.Format;
}
};
// Table initializing information for parsing the .insn directive.
static struct InsnMatchEntry InsnMatchTable[] = {
/* Format, Opcode, NumOperands, OperandKinds */
{ "e", SystemZ::InsnE, 1,
{ MCK_U16Imm } },
{ "ri", SystemZ::InsnRI, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
{ "rie", SystemZ::InsnRIE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "ril", SystemZ::InsnRIL, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
{ "rilu", SystemZ::InsnRILU, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
{ "ris", SystemZ::InsnRIS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rr", SystemZ::InsnRR, 3,
{ MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rre", SystemZ::InsnRRE, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
{ "rrf", SystemZ::InsnRRF, 5,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
{ "rrs", SystemZ::InsnRRS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
{ "rs", SystemZ::InsnRS, 4,
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rse", SystemZ::InsnRSE, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
{ "rsi", SystemZ::InsnRSI, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
{ "rsy", SystemZ::InsnRSY, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
{ "rx", SystemZ::InsnRX, 3,
{ MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxe", SystemZ::InsnRXE, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxf", SystemZ::InsnRXF, 4,
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
{ "rxy", SystemZ::InsnRXY, 3,
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
{ "s", SystemZ::InsnS, 2,
{ MCK_U32Imm, MCK_BDAddr64Disp12 } },
{ "si", SystemZ::InsnSI, 3,
{ MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
{ "sil", SystemZ::InsnSIL, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
{ "siy", SystemZ::InsnSIY, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
{ "ss", SystemZ::InsnSS, 4,
{ MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
{ "sse", SystemZ::InsnSSE, 3,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
{ "ssf", SystemZ::InsnSSF, 4,
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
{ "vri", SystemZ::InsnVRI, 6,
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_U12Imm, MCK_U4Imm, MCK_U4Imm } },
{ "vrr", SystemZ::InsnVRR, 7,
{ MCK_U48Imm, MCK_VR128, MCK_VR128, MCK_VR128, MCK_U4Imm, MCK_U4Imm,
MCK_U4Imm } },
{ "vrs", SystemZ::InsnVRS, 5,
{ MCK_U48Imm, MCK_AnyReg, MCK_VR128, MCK_BDAddr64Disp12, MCK_U4Imm } },
{ "vrv", SystemZ::InsnVRV, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDVAddr64Disp12, MCK_U4Imm } },
{ "vrx", SystemZ::InsnVRX, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDXAddr64Disp12, MCK_U4Imm } },
{ "vsi", SystemZ::InsnVSI, 4,
{ MCK_U48Imm, MCK_VR128, MCK_BDAddr64Disp12, MCK_U8Imm } }
};
static void printMCExpr(const MCExpr *E, raw_ostream &OS) {
if (!E)
return;
if (auto *CE = dyn_cast<MCConstantExpr>(E))
OS << *CE;
else if (auto *UE = dyn_cast<MCUnaryExpr>(E))
OS << *UE;
else if (auto *BE = dyn_cast<MCBinaryExpr>(E))
OS << *BE;
else if (auto *SRE = dyn_cast<MCSymbolRefExpr>(E))
OS << *SRE;
else
OS << *E;
}
void SystemZOperand::print(raw_ostream &OS) const {
switch (Kind) {
case KindToken:
OS << "Token:" << getToken();
break;
case KindReg:
OS << "Reg:" << SystemZInstPrinter::getRegisterName(getReg());
break;
case KindImm:
OS << "Imm:";
printMCExpr(getImm(), OS);
break;
case KindImmTLS:
OS << "ImmTLS:";
printMCExpr(getImmTLS().Imm, OS);
if (getImmTLS().Sym) {
OS << ", ";
printMCExpr(getImmTLS().Sym, OS);
}
break;
case KindMem: {
const MemOp &Op = getMem();
OS << "Mem:" << *cast<MCConstantExpr>(Op.Disp);
if (Op.Base) {
OS << "(";
if (Op.MemKind == BDLMem)
OS << *cast<MCConstantExpr>(Op.Length.Imm) << ",";
else if (Op.MemKind == BDRMem)
OS << SystemZInstPrinter::getRegisterName(Op.Length.Reg) << ",";
if (Op.Index)
OS << SystemZInstPrinter::getRegisterName(Op.Index) << ",";
OS << SystemZInstPrinter::getRegisterName(Op.Base);
OS << ")";
}
break;
}
case KindInvalid:
break;
}
}
// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg, bool RestoreOnFailure) {
Reg.StartLoc = Parser.getTok().getLoc();
// Eat the % prefix.
if (Parser.getTok().isNot(AsmToken::Percent))
return Error(Parser.getTok().getLoc(), "register expected");
const AsmToken &PercentTok = Parser.getTok();
Parser.Lex();
// Expect a register name.
if (Parser.getTok().isNot(AsmToken::Identifier)) {
if (RestoreOnFailure)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
// Check that there's a prefix.
StringRef Name = Parser.getTok().getString();
if (Name.size() < 2) {
if (RestoreOnFailure)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
char Prefix = Name[0];
// Treat the rest of the register name as a register number.
if (Name.substr(1).getAsInteger(10, Reg.Num)) {
if (RestoreOnFailure)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
// Look for valid combinations of prefix and number.
if (Prefix == 'r' && Reg.Num < 16)
Reg.Group = RegGR;
else if (Prefix == 'f' && Reg.Num < 16)
Reg.Group = RegFP;
else if (Prefix == 'v' && Reg.Num < 32)
Reg.Group = RegV;
else if (Prefix == 'a' && Reg.Num < 16)
Reg.Group = RegAR;
else if (Prefix == 'c' && Reg.Num < 16)
Reg.Group = RegCR;
else {
if (RestoreOnFailure)
getLexer().UnLex(PercentTok);
return Error(Reg.StartLoc, "invalid register");
}
Reg.EndLoc = Parser.getTok().getLoc();
Parser.Lex();
return false;
}
// Parse a register of kind Kind and add it to Operands.
OperandMatchResultTy
SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterKind Kind) {
Register Reg;
RegisterGroup Group;
switch (Kind) {
case GR32Reg:
case GRH32Reg:
case GR64Reg:
case GR128Reg:
Group = RegGR;
break;
case FP32Reg:
case FP64Reg:
case FP128Reg:
Group = RegFP;
break;
case VR32Reg:
case VR64Reg:
case VR128Reg:
Group = RegV;
break;
case AR32Reg:
Group = RegAR;
break;
case CR64Reg:
Group = RegCR;
break;
}
// Handle register names of the form %<prefix><number>
if (Parser.getTok().is(AsmToken::Percent)) {
if (parseRegister(Reg))
return MatchOperand_ParseFail;
// Check the parsed register group "Reg.Group" with the expected "Group"
// Have to error out if user specified wrong prefix.
switch (Group) {
case RegGR:
case RegFP:
case RegAR:
case RegCR:
if (Group != Reg.Group) {
Error(Reg.StartLoc, "invalid operand for instruction");
return MatchOperand_ParseFail;
}
break;
case RegV:
if (Reg.Group != RegV && Reg.Group != RegFP) {
Error(Reg.StartLoc, "invalid operand for instruction");
return MatchOperand_ParseFail;
}
break;
}
} else if (Parser.getTok().is(AsmToken::Integer)) {
if (parseIntegerRegister(Reg, Group))
return MatchOperand_ParseFail;
}
// Otherwise we didn't match a register operand.
else
return MatchOperand_NoMatch;
// Determine the LLVM register number according to Kind.
const unsigned *Regs;
switch (Kind) {
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
case GRH32Reg: Regs = SystemZMC::GRH32Regs; break;
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
case GR128Reg: Regs = SystemZMC::GR128Regs; break;
case FP32Reg: Regs = SystemZMC::FP32Regs; break;
case FP64Reg: Regs = SystemZMC::FP64Regs; break;
case FP128Reg: Regs = SystemZMC::FP128Regs; break;
case VR32Reg: Regs = SystemZMC::VR32Regs; break;
case VR64Reg: Regs = SystemZMC::VR64Regs; break;
case VR128Reg: Regs = SystemZMC::VR128Regs; break;
case AR32Reg: Regs = SystemZMC::AR32Regs; break;
case CR64Reg: Regs = SystemZMC::CR64Regs; break;
}
if (Regs[Reg.Num] == 0) {
Error(Reg.StartLoc, "invalid register pair");
return MatchOperand_ParseFail;
}
Operands.push_back(
SystemZOperand::createReg(Kind, Regs[Reg.Num], Reg.StartLoc, Reg.EndLoc));
return MatchOperand_Success;
}
// Parse any type of register (including integers) and add it to Operands.
OperandMatchResultTy
SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
SMLoc StartLoc = Parser.getTok().getLoc();
// Handle integer values.
if (Parser.getTok().is(AsmToken::Integer)) {
const MCExpr *Register;
if (Parser.parseExpression(Register))
return MatchOperand_ParseFail;
if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
int64_t Value = CE->getValue();
if (Value < 0 || Value > 15) {
Error(StartLoc, "invalid register");
return MatchOperand_ParseFail;
}
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
}
else {
Register Reg;
if (parseRegister(Reg))
return MatchOperand_ParseFail;
if (Reg.Num > 15) {
Error(StartLoc, "invalid register");
return MatchOperand_ParseFail;
}
// Map to the correct register kind.
RegisterKind Kind;
unsigned RegNo;
if (Reg.Group == RegGR) {
Kind = GR64Reg;
RegNo = SystemZMC::GR64Regs[Reg.Num];
}
else if (Reg.Group == RegFP) {
Kind = FP64Reg;
RegNo = SystemZMC::FP64Regs[Reg.Num];
}
else if (Reg.Group == RegV) {
Kind = VR128Reg;
RegNo = SystemZMC::VR128Regs[Reg.Num];
}
else if (Reg.Group == RegAR) {
Kind = AR32Reg;
RegNo = SystemZMC::AR32Regs[Reg.Num];
}
else if (Reg.Group == RegCR) {
Kind = CR64Reg;
RegNo = SystemZMC::CR64Regs[Reg.Num];
}
else {
return MatchOperand_ParseFail;
}
Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
Reg.StartLoc, Reg.EndLoc));
}
return MatchOperand_Success;
}
bool SystemZAsmParser::parseIntegerRegister(Register &Reg,
RegisterGroup Group) {
Reg.StartLoc = Parser.getTok().getLoc();
// We have an integer token
const MCExpr *Register;
if (Parser.parseExpression(Register))
return true;
const auto *CE = dyn_cast<MCConstantExpr>(Register);
if (!CE)
return true;
int64_t MaxRegNum = (Group == RegV) ? 31 : 15;
int64_t Value = CE->getValue();
if (Value < 0 || Value > MaxRegNum) {
Error(Parser.getTok().getLoc(), "invalid register");
return true;
}
// Assign the Register Number
Reg.Num = (unsigned)Value;
Reg.Group = Group;
Reg.EndLoc = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
// At this point, successfully parsed an integer register.
return false;
}
// Parse a memory operand into Reg1, Reg2, Disp, and Length.
bool SystemZAsmParser::parseAddress(bool &HaveReg1, Register &Reg1,
bool &HaveReg2, Register &Reg2,
const MCExpr *&Disp, const MCExpr *&Length,
bool HasLength, bool HasVectorIndex) {
// Parse the displacement, which must always be present.
if (getParser().parseExpression(Disp))
return true;
// Parse the optional base and index.
HaveReg1 = false;
HaveReg2 = false;
Length = nullptr;
// If we have a scenario as below:
// vgef %v0, 0(0), 0
// This is an example of a "BDVMem" instruction type.
//
// So when we parse this as an integer register, the register group
// needs to be tied to "RegV". Usually when the prefix is passed in
// as %<prefix><reg-number> its easy to check which group it should belong to
// However, if we're passing in just the integer there's no real way to
// "check" what register group it should belong to.
//
// When the user passes in the register as an integer, the user assumes that
// the compiler is responsible for substituting it as the right kind of
// register. Whereas, when the user specifies a "prefix", the onus is on
// the user to make sure they pass in the right kind of register.
//
// The restriction only applies to the first Register (i.e. Reg1). Reg2 is
// always a general register. Reg1 should be of group RegV if "HasVectorIndex"
// (i.e. insn is of type BDVMem) is true.
RegisterGroup RegGroup = HasVectorIndex ? RegV : RegGR;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
if (getLexer().is(AsmToken::Percent)) {
// Parse the first register.
HaveReg1 = true;
if (parseRegister(Reg1))
return true;
}
// So if we have an integer as the first token in ([tok1], ..), it could:
// 1. Refer to a "Register" (i.e X,R,V fields in BD[X|R|V]Mem type of
// instructions)
// 2. Refer to a "Length" field (i.e L field in BDLMem type of instructions)
else if (getLexer().is(AsmToken::Integer)) {
if (HasLength) {
// Instruction has a "Length" field, safe to parse the first token as
// the "Length" field
if (getParser().parseExpression(Length))
return true;
} else {
// Otherwise, if the instruction has no "Length" field, parse the
// token as a "Register". We don't have to worry about whether the
// instruction is invalid here, because the caller will take care of
// error reporting.
HaveReg1 = true;
if (parseIntegerRegister(Reg1, RegGroup))
return true;
}
} else {
// If its not an integer or a percent token, then if the instruction
// is reported to have a "Length" then, parse it as "Length".
if (HasLength) {
if (getParser().parseExpression(Length))
return true;
}
}
// Check whether there's a second register.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
HaveReg2 = true;
if (getLexer().is(AsmToken::Integer)) {
if (parseIntegerRegister(Reg2, RegGR))
return true;
} else {
if (parseRegister(Reg2))
return true;
}
}
// Consume the closing bracket.
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "unexpected token in address");
Parser.Lex();
}
return false;
}
// Verify that Reg is a valid address register (base or index).
bool
SystemZAsmParser::parseAddressRegister(Register &Reg) {
if (Reg.Group == RegV) {
Error(Reg.StartLoc, "invalid use of vector addressing");
return true;
} else if (Reg.Group != RegGR) {
Error(Reg.StartLoc, "invalid address register");
return true;
}
return false;
}
// Parse a memory operand and add it to Operands. The other arguments
// are as above.
OperandMatchResultTy
SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
RegisterKind RegKind) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base = 0, Index = 0, LengthReg = 0;
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Disp;
const MCExpr *Length;
bool HasLength = (MemKind == BDLMem) ? true : false;
bool HasVectorIndex = (MemKind == BDVMem) ? true : false;
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Disp, Length, HasLength,
HasVectorIndex))
return MatchOperand_ParseFail;
const unsigned *Regs;
switch (RegKind) {
case GR32Reg: Regs = SystemZMC::GR32Regs; break;
case GR64Reg: Regs = SystemZMC::GR64Regs; break;
default: llvm_unreachable("invalid RegKind");
}
switch (MemKind) {
case BDMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return MatchOperand_ParseFail;
Base = Regs[Reg1.Num];
}
// There must be no Reg2.
if (HaveReg2) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
break;
case BDXMem:
// If we have Reg1, it must be an address register.
if (HaveReg1) {
if (parseAddressRegister(Reg1))
return MatchOperand_ParseFail;
// If the are two registers, the first one is the index and the
// second is the base.
if (HaveReg2)
Index = Regs[Reg1.Num];
else
Base = Regs[Reg1.Num];
}
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
break;
case BDLMem:
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
// We cannot support base+index addressing.
if (HaveReg1 && HaveReg2) {
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
// We must have a length.
if (!Length) {
Error(StartLoc, "missing length in address");
return MatchOperand_ParseFail;
}
break;
case BDRMem:
// We must have Reg1, and it must be a GPR.
if (!HaveReg1 || Reg1.Group != RegGR) {
Error(StartLoc, "invalid operand for instruction");
return MatchOperand_ParseFail;
}
LengthReg = SystemZMC::GR64Regs[Reg1.Num];
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
break;
case BDVMem:
// We must have Reg1, and it must be a vector register.
if (!HaveReg1 || Reg1.Group != RegV) {
Error(StartLoc, "vector index required in address");
return MatchOperand_ParseFail;
}
Index = SystemZMC::VR128Regs[Reg1.Num];
// If we have Reg2, it must be an address register.
if (HaveReg2) {
if (parseAddressRegister(Reg2))
return MatchOperand_ParseFail;
Base = Regs[Reg2.Num];
}
break;
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
Index, Length, LengthReg,
StartLoc, EndLoc));
return MatchOperand_Success;
}
bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
StringRef IDVal = DirectiveID.getIdentifier();
if (IDVal == ".insn")
return ParseDirectiveInsn(DirectiveID.getLoc());
return true;
}
/// ParseDirectiveInsn
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
MCAsmParser &Parser = getParser();
// Expect instruction format as identifier.
StringRef Format;
SMLoc ErrorLoc = Parser.getTok().getLoc();
if (Parser.parseIdentifier(Format))
return Error(ErrorLoc, "expected instruction format");
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
// Find entry for this format in InsnMatchTable.
auto EntryRange =
std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
Format, CompareInsn());
// If first == second, couldn't find a match in the table.
if (EntryRange.first == EntryRange.second)
return Error(ErrorLoc, "unrecognized format");
struct InsnMatchEntry *Entry = EntryRange.first;
// Format should match from equal_range.
assert(Entry->Format == Format);
// Parse the following operands using the table's information.
for (int i = 0; i < Entry->NumOperands; i++) {
MatchClassKind Kind = Entry->OperandKinds[i];
SMLoc StartLoc = Parser.getTok().getLoc();
// Always expect commas as separators for operands.
if (getLexer().isNot(AsmToken::Comma))
return Error(StartLoc, "unexpected token in directive");
Lex();
// Parse operands.
OperandMatchResultTy ResTy;
if (Kind == MCK_AnyReg)
ResTy = parseAnyReg(Operands);
else if (Kind == MCK_VR128)
ResTy = parseVR128(Operands);
else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
ResTy = parseBDXAddr64(Operands);
else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
ResTy = parseBDAddr64(Operands);
else if (Kind == MCK_BDVAddr64Disp12)
ResTy = parseBDVAddr64(Operands);
else if (Kind == MCK_PCRel32)
ResTy = parsePCRel32(Operands);
else if (Kind == MCK_PCRel16)
ResTy = parsePCRel16(Operands);
else {
// Only remaining operand kind is an immediate.
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
// Expect immediate expression.
if (Parser.parseExpression(Expr))
return Error(StartLoc, "unexpected token in directive");
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
ResTy = MatchOperand_Success;
}
if (ResTy != MatchOperand_Success)
return true;
}
// Build the instruction with the parsed operands.
MCInst Inst = MCInstBuilder(Entry->Opcode);
for (size_t i = 0; i < Operands.size(); i++) {
MCParsedAsmOperand &Operand = *Operands[i];
MatchClassKind Kind = Entry->OperandKinds[i];
// Verify operand.
unsigned Res = validateOperandClass(Operand, Kind);
if (Res != Match_Success)
return Error(Operand.getStartLoc(), "unexpected operand type");
// Add operands to instruction.
SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
if (ZOperand.isReg())
ZOperand.addRegOperands(Inst, 1);
else if (ZOperand.isMem(BDMem))
ZOperand.addBDAddrOperands(Inst, 2);
else if (ZOperand.isMem(BDXMem))
ZOperand.addBDXAddrOperands(Inst, 3);
else if (ZOperand.isMem(BDVMem))
ZOperand.addBDVAddrOperands(Inst, 3);
else if (ZOperand.isImm())
ZOperand.addImmOperands(Inst, 1);
else
llvm_unreachable("unexpected operand type");
}
// Emit as a regular instruction.
Parser.getStreamer().emitInstruction(Inst, getSTI());
return false;
}
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc, bool RestoreOnFailure) {
Register Reg;
if (parseRegister(Reg, RestoreOnFailure))
return true;
if (Reg.Group == RegGR)
RegNo = SystemZMC::GR64Regs[Reg.Num];
else if (Reg.Group == RegFP)
RegNo = SystemZMC::FP64Regs[Reg.Num];
else if (Reg.Group == RegV)
RegNo = SystemZMC::VR128Regs[Reg.Num];
else if (Reg.Group == RegAR)
RegNo = SystemZMC::AR32Regs[Reg.Num];
else if (Reg.Group == RegCR)
RegNo = SystemZMC::CR64Regs[Reg.Num];
StartLoc = Reg.StartLoc;
EndLoc = Reg.EndLoc;
return false;
}
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
return ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/false);
}
OperandMatchResultTy SystemZAsmParser::tryParseRegister(unsigned &RegNo,
SMLoc &StartLoc,
SMLoc &EndLoc) {
bool Result =
ParseRegister(RegNo, StartLoc, EndLoc, /*RestoreOnFailure=*/true);
bool PendingErrors = getParser().hasPendingError();
getParser().clearPendingErrors();
if (PendingErrors)
return MatchOperand_ParseFail;
if (Result)
return MatchOperand_NoMatch;
return MatchOperand_Success;
}
bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
// Apply mnemonic aliases first, before doing anything else, in
// case the target uses it.
applyMnemonicAliases(Name, getAvailableFeatures(), 0 /*VariantID*/);
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
return true;
}
// Read any subsequent operands.
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (parseOperand(Operands, Name)) {
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
return Error(Loc, "unexpected token in argument list");
}
}
// Consume the EndOfStatement.
Parser.Lex();
return false;
}
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach. Force all
// features to be available during the operand check, or else we will fail to
// find the custom parser, and then we will later get an InvalidOperand error
// instead of a MissingFeature errror.
FeatureBitset AvailableFeatures = getAvailableFeatures();
FeatureBitset All;
All.set();
setAvailableFeatures(All);
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
setAvailableFeatures(AvailableFeatures);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Check for a register. All real register operands should have used
// a context-dependent parse routine, which gives the required register
// class. The code is here to mop up other cases, like those where
// the instruction isn't recognized.
if (Parser.getTok().is(AsmToken::Percent)) {
Register Reg;
if (parseRegister(Reg))
return true;
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
return false;
}
// The only other type of operand is an immediate or address. As above,
// real address operands should have used a context-dependent parse routine,
// so we treat any plain expression as an immediate.
SMLoc StartLoc = Parser.getTok().getLoc();
Register Reg1, Reg2;
bool HaveReg1, HaveReg2;
const MCExpr *Expr;
const MCExpr *Length;
if (parseAddress(HaveReg1, Reg1, HaveReg2, Reg2, Expr, Length,
/*HasLength*/ true, /*HasVectorIndex*/ true))
return true;
// If the register combination is not valid for any instruction, reject it.
// Otherwise, fall back to reporting an unrecognized instruction.
if (HaveReg1 && Reg1.Group != RegGR && Reg1.Group != RegV
&& parseAddressRegister(Reg1))
return true;
if (HaveReg2 && parseAddressRegister(Reg2))
return true;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (HaveReg1 || HaveReg2 || Length)
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return false;
}
static std::string SystemZMnemonicSpellCheck(StringRef S,
const FeatureBitset &FBS,
unsigned VariantID = 0);
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
FeatureBitset MissingFeatures;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MissingFeatures, MatchingInlineAsm);
switch (MatchResult) {
case Match_Success:
Inst.setLoc(IDLoc);
Out.emitInstruction(Inst, getSTI());
return false;
case Match_MissingFeature: {
assert(MissingFeatures.any() && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
for (unsigned I = 0, E = MissingFeatures.size(); I != E; ++I) {
if (MissingFeatures[I]) {
Msg += " ";
Msg += getSubtargetFeatureName(I);
}
}
return Error(IDLoc, Msg);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail: {
FeatureBitset FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
std::string Suggestion = SystemZMnemonicSpellCheck(
((SystemZOperand &)*Operands[0]).getToken(), FBS);
return Error(IDLoc, "invalid instruction" + Suggestion,
((SystemZOperand &)*Operands[0]).getLocRange());
}
}
llvm_unreachable("Unexpected match type");
}
OperandMatchResultTy
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal, bool AllowTLS) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_NoMatch;
auto isOutOfRangeConstant = [&](const MCExpr *E) -> bool {
if (auto *CE = dyn_cast<MCConstantExpr>(E)) {
int64_t Value = CE->getValue();
if ((Value & 1) || Value < MinVal || Value > MaxVal)
return true;
}
return false;
};
// For consistency with the GNU assembler, treat immediates as offsets
// from ".".
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
if (isOutOfRangeConstant(CE)) {
Error(StartLoc, "offset out of range");
return MatchOperand_ParseFail;
}
int64_t Value = CE->getValue();
MCSymbol *Sym = Ctx.createTempSymbol();
Out.emitLabel(Sym);
const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
Ctx);
Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
}
// For consistency with the GNU assembler, conservatively assume that a
// constant offset must by itself be within the given size range.
if (const auto *BE = dyn_cast<MCBinaryExpr>(Expr))
if (isOutOfRangeConstant(BE->getLHS()) ||
isOutOfRangeConstant(BE->getRHS())) {
Error(StartLoc, "offset out of range");
return MatchOperand_ParseFail;
}
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
const MCExpr *Sym = nullptr;
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
StringRef Name = Parser.getTok().getString();
if (Name == "tls_gdcall")
Kind = MCSymbolRefExpr::VK_TLSGD;
else if (Name == "tls_ldcall")
Kind = MCSymbolRefExpr::VK_TLSLDM;
else {
Error(Parser.getTok().getLoc(), "unknown TLS tag");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Colon)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
Parser.Lex();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(Parser.getTok().getLoc(), "unexpected token");
return MatchOperand_ParseFail;
}
StringRef Identifier = Parser.getTok().getString();
Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
Kind, Ctx);
Parser.Lex();
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (AllowTLS)
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return MatchOperand_Success;
}
// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZAsmParser() {
RegisterMCAsmParser<SystemZAsmParser> X(getTheSystemZTarget());
}