1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/include/llvm/IR/IntrinsicInst.h
Craig Topper 22fc6f8fbe [VP] Make getMaskParamPos/getVectorLengthParamPos return unsigned. Lowercase function names.
Parameter positions seem like they should be unsigned.

While there, make function names lowercase per coding standards.

Reviewed By: frasercrmck

Differential Revision: https://reviews.llvm.org/D103224
2021-05-28 11:28:47 -07:00

1291 lines
40 KiB
C++

//===-- llvm/IntrinsicInst.h - Intrinsic Instruction Wrappers ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines classes that make it really easy to deal with intrinsic
// functions with the isa/dyncast family of functions. In particular, this
// allows you to do things like:
//
// if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(Inst))
// ... MCI->getDest() ... MCI->getSource() ...
//
// All intrinsic function calls are instances of the call instruction, so these
// are all subclasses of the CallInst class. Note that none of these classes
// has state or virtual methods, which is an important part of this gross/neat
// hack working.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INTRINSICINST_H
#define LLVM_IR_INTRINSICINST_H
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/FPEnv.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstdint>
namespace llvm {
/// A wrapper class for inspecting calls to intrinsic functions.
/// This allows the standard isa/dyncast/cast functionality to work with calls
/// to intrinsic functions.
class IntrinsicInst : public CallInst {
public:
IntrinsicInst() = delete;
IntrinsicInst(const IntrinsicInst &) = delete;
IntrinsicInst &operator=(const IntrinsicInst &) = delete;
/// Return the intrinsic ID of this intrinsic.
Intrinsic::ID getIntrinsicID() const {
return getCalledFunction()->getIntrinsicID();
}
/// Return true if swapping the first two arguments to the intrinsic produces
/// the same result.
bool isCommutative() const {
switch (getIntrinsicID()) {
case Intrinsic::maxnum:
case Intrinsic::minnum:
case Intrinsic::maximum:
case Intrinsic::minimum:
case Intrinsic::smax:
case Intrinsic::smin:
case Intrinsic::umax:
case Intrinsic::umin:
case Intrinsic::sadd_sat:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_fix:
case Intrinsic::umul_fix:
case Intrinsic::smul_fix_sat:
case Intrinsic::umul_fix_sat:
case Intrinsic::fma:
case Intrinsic::fmuladd:
return true;
default:
return false;
}
}
// Checks if the intrinsic is an annotation.
bool isAssumeLikeIntrinsic() const {
switch (getIntrinsicID()) {
default: break;
case Intrinsic::assume:
case Intrinsic::sideeffect:
case Intrinsic::pseudoprobe:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_label:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::experimental_noalias_scope_decl:
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
return true;
}
return false;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const CallInst *I) {
if (const Function *CF = I->getCalledFunction())
return CF->isIntrinsic();
return false;
}
static bool classof(const Value *V) {
return isa<CallInst>(V) && classof(cast<CallInst>(V));
}
};
/// Check if \p ID corresponds to a debug info intrinsic.
static inline bool isDbgInfoIntrinsic(Intrinsic::ID ID) {
switch (ID) {
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_addr:
case Intrinsic::dbg_label:
return true;
default:
return false;
}
}
/// This is the common base class for debug info intrinsics.
class DbgInfoIntrinsic : public IntrinsicInst {
public:
/// \name Casting methods
/// @{
static bool classof(const IntrinsicInst *I) {
return isDbgInfoIntrinsic(I->getIntrinsicID());
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// @}
};
/// This is the common base class for debug info intrinsics for variables.
class DbgVariableIntrinsic : public DbgInfoIntrinsic {
public:
// Iterator for ValueAsMetadata that internally uses direct pointer iteration
// over either a ValueAsMetadata* or a ValueAsMetadata**, dereferencing to the
// ValueAsMetadata .
class location_op_iterator
: public iterator_facade_base<location_op_iterator,
std::bidirectional_iterator_tag, Value *> {
PointerUnion<ValueAsMetadata *, ValueAsMetadata **> I;
public:
location_op_iterator(ValueAsMetadata *SingleIter) : I(SingleIter) {}
location_op_iterator(ValueAsMetadata **MultiIter) : I(MultiIter) {}
location_op_iterator(const location_op_iterator &R) : I(R.I) {}
location_op_iterator &operator=(const location_op_iterator &R) {
I = R.I;
return *this;
}
bool operator==(const location_op_iterator &RHS) const {
return I == RHS.I;
}
const Value *operator*() const {
ValueAsMetadata *VAM = I.is<ValueAsMetadata *>()
? I.get<ValueAsMetadata *>()
: *I.get<ValueAsMetadata **>();
return VAM->getValue();
};
Value *operator*() {
ValueAsMetadata *VAM = I.is<ValueAsMetadata *>()
? I.get<ValueAsMetadata *>()
: *I.get<ValueAsMetadata **>();
return VAM->getValue();
}
location_op_iterator &operator++() {
if (I.is<ValueAsMetadata *>())
I = I.get<ValueAsMetadata *>() + 1;
else
I = I.get<ValueAsMetadata **>() + 1;
return *this;
}
location_op_iterator &operator--() {
if (I.is<ValueAsMetadata *>())
I = I.get<ValueAsMetadata *>() - 1;
else
I = I.get<ValueAsMetadata **>() - 1;
return *this;
}
};
/// Get the locations corresponding to the variable referenced by the debug
/// info intrinsic. Depending on the intrinsic, this could be the
/// variable's value or its address.
iterator_range<location_op_iterator> location_ops() const;
Value *getVariableLocationOp(unsigned OpIdx) const;
void replaceVariableLocationOp(Value *OldValue, Value *NewValue);
void replaceVariableLocationOp(unsigned OpIdx, Value *NewValue);
/// Adding a new location operand will always result in this intrinsic using
/// an ArgList, and must always be accompanied by a new expression that uses
/// the new operand.
void addVariableLocationOps(ArrayRef<Value *> NewValues,
DIExpression *NewExpr);
void setVariable(DILocalVariable *NewVar) {
setArgOperand(1, MetadataAsValue::get(NewVar->getContext(), NewVar));
}
void setExpression(DIExpression *NewExpr) {
setArgOperand(2, MetadataAsValue::get(NewExpr->getContext(), NewExpr));
}
unsigned getNumVariableLocationOps() const {
if (hasArgList())
return cast<DIArgList>(getRawLocation())->getArgs().size();
return 1;
}
bool hasArgList() const { return isa<DIArgList>(getRawLocation()); }
/// Does this describe the address of a local variable. True for dbg.addr
/// and dbg.declare, but not dbg.value, which describes its value.
bool isAddressOfVariable() const {
return getIntrinsicID() != Intrinsic::dbg_value;
}
void setUndef() {
// TODO: When/if we remove duplicate values from DIArgLists, we don't need
// this set anymore.
SmallPtrSet<Value *, 4> RemovedValues;
for (Value *OldValue : location_ops()) {
if (!RemovedValues.insert(OldValue).second)
continue;
Value *Undef = UndefValue::get(OldValue->getType());
replaceVariableLocationOp(OldValue, Undef);
}
}
bool isUndef() const {
return (getNumVariableLocationOps() == 0 &&
!getExpression()->isComplex()) ||
any_of(location_ops(), [](Value *V) { return isa<UndefValue>(V); });
}
DILocalVariable *getVariable() const {
return cast<DILocalVariable>(getRawVariable());
}
DIExpression *getExpression() const {
return cast<DIExpression>(getRawExpression());
}
Metadata *getRawLocation() const {
return cast<MetadataAsValue>(getArgOperand(0))->getMetadata();
}
Metadata *getRawVariable() const {
return cast<MetadataAsValue>(getArgOperand(1))->getMetadata();
}
Metadata *getRawExpression() const {
return cast<MetadataAsValue>(getArgOperand(2))->getMetadata();
}
/// Use of this should generally be avoided; instead,
/// replaceVariableLocationOp and addVariableLocationOps should be used where
/// possible to avoid creating invalid state.
void setRawLocation(Metadata *Location) {
return setArgOperand(0, MetadataAsValue::get(getContext(), Location));
}
/// Get the size (in bits) of the variable, or fragment of the variable that
/// is described.
Optional<uint64_t> getFragmentSizeInBits() const;
/// \name Casting methods
/// @{
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_addr:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// @}
private:
void setArgOperand(unsigned i, Value *v) {
DbgInfoIntrinsic::setArgOperand(i, v);
}
void setOperand(unsigned i, Value *v) { DbgInfoIntrinsic::setOperand(i, v); }
};
/// This represents the llvm.dbg.declare instruction.
class DbgDeclareInst : public DbgVariableIntrinsic {
public:
Value *getAddress() const {
assert(getNumVariableLocationOps() == 1 &&
"dbg.declare must have exactly 1 location operand.");
return getVariableLocationOp(0);
}
/// \name Casting methods
/// @{
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::dbg_declare;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// @}
};
/// This represents the llvm.dbg.addr instruction.
class DbgAddrIntrinsic : public DbgVariableIntrinsic {
public:
Value *getAddress() const {
assert(getNumVariableLocationOps() == 1 &&
"dbg.addr must have exactly 1 location operand.");
return getVariableLocationOp(0);
}
/// \name Casting methods
/// @{
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::dbg_addr;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This represents the llvm.dbg.value instruction.
class DbgValueInst : public DbgVariableIntrinsic {
public:
// The default argument should only be used in ISel, and the default option
// should be removed once ISel support for multiple location ops is complete.
Value *getValue(unsigned OpIdx = 0) const {
return getVariableLocationOp(OpIdx);
}
iterator_range<location_op_iterator> getValues() const {
return location_ops();
}
/// \name Casting methods
/// @{
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::dbg_value;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// @}
};
/// This represents the llvm.dbg.label instruction.
class DbgLabelInst : public DbgInfoIntrinsic {
public:
DILabel *getLabel() const { return cast<DILabel>(getRawLabel()); }
Metadata *getRawLabel() const {
return cast<MetadataAsValue>(getArgOperand(0))->getMetadata();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast:
/// @{
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::dbg_label;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// @}
};
/// This is the common base class for vector predication intrinsics.
class VPIntrinsic : public IntrinsicInst {
public:
static Optional<unsigned> getMaskParamPos(Intrinsic::ID IntrinsicID);
static Optional<unsigned> getVectorLengthParamPos(Intrinsic::ID IntrinsicID);
/// The llvm.vp.* intrinsics for this instruction Opcode
static Intrinsic::ID getForOpcode(unsigned OC);
// Whether \p ID is a VP intrinsic ID.
static bool isVPIntrinsic(Intrinsic::ID);
/// \return the mask parameter or nullptr.
Value *getMaskParam() const;
void setMaskParam(Value *);
/// \return the vector length parameter or nullptr.
Value *getVectorLengthParam() const;
void setVectorLengthParam(Value *);
/// \return whether the vector length param can be ignored.
bool canIgnoreVectorLengthParam() const;
/// \return the static element count (vector number of elements) the vector
/// length parameter applies to.
ElementCount getStaticVectorLength() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
return isVPIntrinsic(I->getIntrinsicID());
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
// Equivalent non-predicated opcode
Optional<unsigned> getFunctionalOpcode() const {
return getFunctionalOpcodeForVP(getIntrinsicID());
}
// Equivalent non-predicated opcode
static Optional<unsigned> getFunctionalOpcodeForVP(Intrinsic::ID ID);
};
/// This is the common base class for constrained floating point intrinsics.
class ConstrainedFPIntrinsic : public IntrinsicInst {
public:
bool isUnaryOp() const;
bool isTernaryOp() const;
Optional<RoundingMode> getRoundingMode() const;
Optional<fp::ExceptionBehavior> getExceptionBehavior() const;
bool isDefaultFPEnvironment() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I);
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// Constrained floating point compare intrinsics.
class ConstrainedFPCmpIntrinsic : public ConstrainedFPIntrinsic {
public:
FCmpInst::Predicate getPredicate() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::experimental_constrained_fcmp:
case Intrinsic::experimental_constrained_fcmps:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents min/max intrinsics.
class MinMaxIntrinsic : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
Value *getLHS() const { return const_cast<Value *>(getArgOperand(0)); }
Value *getRHS() const { return const_cast<Value *>(getArgOperand(1)); }
/// Returns the comparison predicate underlying the intrinsic.
ICmpInst::Predicate getPredicate() const {
switch (getIntrinsicID()) {
case Intrinsic::umin:
return ICmpInst::Predicate::ICMP_ULT;
case Intrinsic::umax:
return ICmpInst::Predicate::ICMP_UGT;
case Intrinsic::smin:
return ICmpInst::Predicate::ICMP_SLT;
case Intrinsic::smax:
return ICmpInst::Predicate::ICMP_SGT;
default:
llvm_unreachable("Invalid intrinsic");
}
}
/// Whether the intrinsic is signed or unsigned.
bool isSigned() const { return ICmpInst::isSigned(getPredicate()); };
};
/// This class represents an intrinsic that is based on a binary operation.
/// This includes op.with.overflow and saturating add/sub intrinsics.
class BinaryOpIntrinsic : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
Value *getLHS() const { return const_cast<Value *>(getArgOperand(0)); }
Value *getRHS() const { return const_cast<Value *>(getArgOperand(1)); }
/// Returns the binary operation underlying the intrinsic.
Instruction::BinaryOps getBinaryOp() const;
/// Whether the intrinsic is signed or unsigned.
bool isSigned() const;
/// Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
unsigned getNoWrapKind() const;
};
/// Represents an op.with.overflow intrinsic.
class WithOverflowInst : public BinaryOpIntrinsic {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// Represents a saturating add/sub intrinsic.
class SaturatingInst : public BinaryOpIntrinsic {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::uadd_sat:
case Intrinsic::sadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::ssub_sat:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// Common base class for all memory intrinsics. Simply provides
/// common methods.
/// Written as CRTP to avoid a common base class amongst the
/// three atomicity hierarchies.
template <typename Derived> class MemIntrinsicBase : public IntrinsicInst {
private:
enum { ARG_DEST = 0, ARG_LENGTH = 2 };
public:
Value *getRawDest() const {
return const_cast<Value *>(getArgOperand(ARG_DEST));
}
const Use &getRawDestUse() const { return getArgOperandUse(ARG_DEST); }
Use &getRawDestUse() { return getArgOperandUse(ARG_DEST); }
Value *getLength() const {
return const_cast<Value *>(getArgOperand(ARG_LENGTH));
}
const Use &getLengthUse() const { return getArgOperandUse(ARG_LENGTH); }
Use &getLengthUse() { return getArgOperandUse(ARG_LENGTH); }
/// This is just like getRawDest, but it strips off any cast
/// instructions (including addrspacecast) that feed it, giving the
/// original input. The returned value is guaranteed to be a pointer.
Value *getDest() const { return getRawDest()->stripPointerCasts(); }
unsigned getDestAddressSpace() const {
return cast<PointerType>(getRawDest()->getType())->getAddressSpace();
}
/// FIXME: Remove this function once transition to Align is over.
/// Use getDestAlign() instead.
unsigned getDestAlignment() const {
if (auto MA = getParamAlign(ARG_DEST))
return MA->value();
return 0;
}
MaybeAlign getDestAlign() const { return getParamAlign(ARG_DEST); }
/// Set the specified arguments of the instruction.
void setDest(Value *Ptr) {
assert(getRawDest()->getType() == Ptr->getType() &&
"setDest called with pointer of wrong type!");
setArgOperand(ARG_DEST, Ptr);
}
/// FIXME: Remove this function once transition to Align is over.
/// Use the version that takes MaybeAlign instead of this one.
void setDestAlignment(unsigned Alignment) {
setDestAlignment(MaybeAlign(Alignment));
}
void setDestAlignment(MaybeAlign Alignment) {
removeParamAttr(ARG_DEST, Attribute::Alignment);
if (Alignment)
addParamAttr(ARG_DEST,
Attribute::getWithAlignment(getContext(), *Alignment));
}
void setDestAlignment(Align Alignment) {
removeParamAttr(ARG_DEST, Attribute::Alignment);
addParamAttr(ARG_DEST,
Attribute::getWithAlignment(getContext(), Alignment));
}
void setLength(Value *L) {
assert(getLength()->getType() == L->getType() &&
"setLength called with value of wrong type!");
setArgOperand(ARG_LENGTH, L);
}
};
/// Common base class for all memory transfer intrinsics. Simply provides
/// common methods.
template <class BaseCL> class MemTransferBase : public BaseCL {
private:
enum { ARG_SOURCE = 1 };
public:
/// Return the arguments to the instruction.
Value *getRawSource() const {
return const_cast<Value *>(BaseCL::getArgOperand(ARG_SOURCE));
}
const Use &getRawSourceUse() const {
return BaseCL::getArgOperandUse(ARG_SOURCE);
}
Use &getRawSourceUse() { return BaseCL::getArgOperandUse(ARG_SOURCE); }
/// This is just like getRawSource, but it strips off any cast
/// instructions that feed it, giving the original input. The returned
/// value is guaranteed to be a pointer.
Value *getSource() const { return getRawSource()->stripPointerCasts(); }
unsigned getSourceAddressSpace() const {
return cast<PointerType>(getRawSource()->getType())->getAddressSpace();
}
/// FIXME: Remove this function once transition to Align is over.
/// Use getSourceAlign() instead.
unsigned getSourceAlignment() const {
if (auto MA = BaseCL::getParamAlign(ARG_SOURCE))
return MA->value();
return 0;
}
MaybeAlign getSourceAlign() const {
return BaseCL::getParamAlign(ARG_SOURCE);
}
void setSource(Value *Ptr) {
assert(getRawSource()->getType() == Ptr->getType() &&
"setSource called with pointer of wrong type!");
BaseCL::setArgOperand(ARG_SOURCE, Ptr);
}
/// FIXME: Remove this function once transition to Align is over.
/// Use the version that takes MaybeAlign instead of this one.
void setSourceAlignment(unsigned Alignment) {
setSourceAlignment(MaybeAlign(Alignment));
}
void setSourceAlignment(MaybeAlign Alignment) {
BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment);
if (Alignment)
BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment(
BaseCL::getContext(), *Alignment));
}
void setSourceAlignment(Align Alignment) {
BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment);
BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment(
BaseCL::getContext(), Alignment));
}
};
/// Common base class for all memset intrinsics. Simply provides
/// common methods.
template <class BaseCL> class MemSetBase : public BaseCL {
private:
enum { ARG_VALUE = 1 };
public:
Value *getValue() const {
return const_cast<Value *>(BaseCL::getArgOperand(ARG_VALUE));
}
const Use &getValueUse() const { return BaseCL::getArgOperandUse(ARG_VALUE); }
Use &getValueUse() { return BaseCL::getArgOperandUse(ARG_VALUE); }
void setValue(Value *Val) {
assert(getValue()->getType() == Val->getType() &&
"setValue called with value of wrong type!");
BaseCL::setArgOperand(ARG_VALUE, Val);
}
};
// The common base class for the atomic memset/memmove/memcpy intrinsics
// i.e. llvm.element.unordered.atomic.memset/memcpy/memmove
class AtomicMemIntrinsic : public MemIntrinsicBase<AtomicMemIntrinsic> {
private:
enum { ARG_ELEMENTSIZE = 3 };
public:
Value *getRawElementSizeInBytes() const {
return const_cast<Value *>(getArgOperand(ARG_ELEMENTSIZE));
}
ConstantInt *getElementSizeInBytesCst() const {
return cast<ConstantInt>(getRawElementSizeInBytes());
}
uint32_t getElementSizeInBytes() const {
return getElementSizeInBytesCst()->getZExtValue();
}
void setElementSizeInBytes(Constant *V) {
assert(V->getType() == Type::getInt8Ty(getContext()) &&
"setElementSizeInBytes called with value of wrong type!");
setArgOperand(ARG_ELEMENTSIZE, V);
}
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents atomic memset intrinsic
// i.e. llvm.element.unordered.atomic.memset
class AtomicMemSetInst : public MemSetBase<AtomicMemIntrinsic> {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memset_element_unordered_atomic;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
// This class wraps the atomic memcpy/memmove intrinsics
// i.e. llvm.element.unordered.atomic.memcpy/memmove
class AtomicMemTransferInst : public MemTransferBase<AtomicMemIntrinsic> {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents the atomic memcpy intrinsic
/// i.e. llvm.element.unordered.atomic.memcpy
class AtomicMemCpyInst : public AtomicMemTransferInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memcpy_element_unordered_atomic;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents the atomic memmove intrinsic
/// i.e. llvm.element.unordered.atomic.memmove
class AtomicMemMoveInst : public AtomicMemTransferInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memmove_element_unordered_atomic;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This is the common base class for memset/memcpy/memmove.
class MemIntrinsic : public MemIntrinsicBase<MemIntrinsic> {
private:
enum { ARG_VOLATILE = 3 };
public:
ConstantInt *getVolatileCst() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(ARG_VOLATILE)));
}
bool isVolatile() const { return !getVolatileCst()->isZero(); }
void setVolatile(Constant *V) { setArgOperand(ARG_VOLATILE, V); }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::memcpy_inline:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class wraps the llvm.memset intrinsic.
class MemSetInst : public MemSetBase<MemIntrinsic> {
public:
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memset;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class wraps the llvm.memcpy/memmove intrinsics.
class MemTransferInst : public MemTransferBase<MemIntrinsic> {
public:
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memcpy_inline:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class wraps the llvm.memcpy intrinsic.
class MemCpyInst : public MemTransferInst {
public:
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memcpy;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class wraps the llvm.memmove intrinsic.
class MemMoveInst : public MemTransferInst {
public:
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memmove;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class wraps the llvm.memcpy.inline intrinsic.
class MemCpyInlineInst : public MemTransferInst {
public:
ConstantInt *getLength() const {
return cast<ConstantInt>(MemTransferInst::getLength());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::memcpy_inline;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
// The common base class for any memset/memmove/memcpy intrinsics;
// whether they be atomic or non-atomic.
// i.e. llvm.element.unordered.atomic.memset/memcpy/memmove
// and llvm.memset/memcpy/memmove
class AnyMemIntrinsic : public MemIntrinsicBase<AnyMemIntrinsic> {
public:
bool isVolatile() const {
// Only the non-atomic intrinsics can be volatile
if (auto *MI = dyn_cast<MemIntrinsic>(this))
return MI->isVolatile();
return false;
}
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
case Intrinsic::memset_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents any memset intrinsic
// i.e. llvm.element.unordered.atomic.memset
// and llvm.memset
class AnyMemSetInst : public MemSetBase<AnyMemIntrinsic> {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memset:
case Intrinsic::memset_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
// This class wraps any memcpy/memmove intrinsics
// i.e. llvm.element.unordered.atomic.memcpy/memmove
// and llvm.memcpy/memmove
class AnyMemTransferInst : public MemTransferBase<AnyMemIntrinsic> {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memcpy_element_unordered_atomic:
case Intrinsic::memmove_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents any memcpy intrinsic
/// i.e. llvm.element.unordered.atomic.memcpy
/// and llvm.memcpy
class AnyMemCpyInst : public AnyMemTransferInst {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memcpy_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This class represents any memmove intrinsic
/// i.e. llvm.element.unordered.atomic.memmove
/// and llvm.memmove
class AnyMemMoveInst : public AnyMemTransferInst {
public:
static bool classof(const IntrinsicInst *I) {
switch (I->getIntrinsicID()) {
case Intrinsic::memmove:
case Intrinsic::memmove_element_unordered_atomic:
return true;
default:
return false;
}
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This represents the llvm.va_start intrinsic.
class VAStartInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::vastart;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
Value *getArgList() const { return const_cast<Value *>(getArgOperand(0)); }
};
/// This represents the llvm.va_end intrinsic.
class VAEndInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::vaend;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
Value *getArgList() const { return const_cast<Value *>(getArgOperand(0)); }
};
/// This represents the llvm.va_copy intrinsic.
class VACopyInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::vacopy;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
Value *getDest() const { return const_cast<Value *>(getArgOperand(0)); }
Value *getSrc() const { return const_cast<Value *>(getArgOperand(1)); }
};
/// This represents the llvm.instrprof_increment intrinsic.
class InstrProfIncrementInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::instrprof_increment;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
GlobalVariable *getName() const {
return cast<GlobalVariable>(
const_cast<Value *>(getArgOperand(0))->stripPointerCasts());
}
ConstantInt *getHash() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
}
ConstantInt *getNumCounters() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(2)));
}
ConstantInt *getIndex() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
}
Value *getStep() const;
};
class InstrProfIncrementInstStep : public InstrProfIncrementInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::instrprof_increment_step;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This represents the llvm.instrprof_value_profile intrinsic.
class InstrProfValueProfileInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::instrprof_value_profile;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
GlobalVariable *getName() const {
return cast<GlobalVariable>(
const_cast<Value *>(getArgOperand(0))->stripPointerCasts());
}
ConstantInt *getHash() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
}
Value *getTargetValue() const {
return cast<Value>(const_cast<Value *>(getArgOperand(2)));
}
ConstantInt *getValueKind() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
}
// Returns the value site index.
ConstantInt *getIndex() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(4)));
}
};
class PseudoProbeInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::pseudoprobe;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
ConstantInt *getFuncGuid() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(0)));
}
ConstantInt *getIndex() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
}
ConstantInt *getAttributes() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(2)));
}
ConstantInt *getFactor() const {
return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
}
};
class NoAliasScopeDeclInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
MDNode *getScopeList() const {
auto *MV =
cast<MetadataAsValue>(getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
return cast<MDNode>(MV->getMetadata());
}
void setScopeList(MDNode *ScopeList) {
setOperand(Intrinsic::NoAliasScopeDeclScopeArg,
MetadataAsValue::get(getContext(), ScopeList));
}
};
// Defined in Statepoint.h -- NOT a subclass of IntrinsicInst
class GCStatepointInst;
/// Common base class for representing values projected from a statepoint.
/// Currently, the only projections available are gc.result and gc.relocate.
class GCProjectionInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate ||
I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// Return true if this relocate is tied to the invoke statepoint.
/// This includes relocates which are on the unwinding path.
bool isTiedToInvoke() const {
const Value *Token = getArgOperand(0);
return isa<LandingPadInst>(Token) || isa<InvokeInst>(Token);
}
/// The statepoint with which this gc.relocate is associated.
const GCStatepointInst *getStatepoint() const;
};
/// Represents calls to the gc.relocate intrinsic.
class GCRelocateInst : public GCProjectionInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
/// The index into the associate statepoint's argument list
/// which contains the base pointer of the pointer whose
/// relocation this gc.relocate describes.
unsigned getBasePtrIndex() const {
return cast<ConstantInt>(getArgOperand(1))->getZExtValue();
}
/// The index into the associate statepoint's argument list which
/// contains the pointer whose relocation this gc.relocate describes.
unsigned getDerivedPtrIndex() const {
return cast<ConstantInt>(getArgOperand(2))->getZExtValue();
}
Value *getBasePtr() const;
Value *getDerivedPtr() const;
};
/// Represents calls to the gc.result intrinsic.
class GCResultInst : public GCProjectionInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::experimental_gc_result;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
/// This represents the llvm.assume intrinsic.
class AssumeInst : public IntrinsicInst {
public:
static bool classof(const IntrinsicInst *I) {
return I->getIntrinsicID() == Intrinsic::assume;
}
static bool classof(const Value *V) {
return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
}
};
} // end namespace llvm
#endif // LLVM_IR_INTRINSICINST_H