1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/lib/Transforms/Scalar/SpeculativeExecution.cpp
Kristof Beyls 7bee5ceb02 Mark that SpeculativeExecution preserves Globals Alias Analysis.
A few benchmarks with lots of accesses to global variables in the hot
loops regressed a lot since r266399, which added the
SpeculativeExecution pass to the default pipeline. The problem is that
this pass doesn't mark Globals Alias Analysis as preserved. Globals
Alias Analysis is computed in a module pass, whereas
SpeculativeExecution is a function pass, and a lot of passes dependent
on the Globals Alias Analysis to optimize these benchmarks are also
function passes. As such, the Globals Alias Analysis information cannot
be recomputed between SpeculativeExecution and the following function
passes needing that information.

SpeculativeExecution doesn't invalidate Globals Alias Analysis, so mark
it as such to fix those performance regressions.

Differential Revision: http://reviews.llvm.org/D19806

llvm-svn: 268370
2016-05-03 08:33:26 +00:00

284 lines
9.5 KiB
C++

//===- SpeculativeExecution.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass hoists instructions to enable speculative execution on
// targets where branches are expensive. This is aimed at GPUs. It
// currently works on simple if-then and if-then-else
// patterns.
//
// Removing branches is not the only motivation for this
// pass. E.g. consider this code and assume that there is no
// addressing mode for multiplying by sizeof(*a):
//
// if (b > 0)
// c = a[i + 1]
// if (d > 0)
// e = a[i + 2]
//
// turns into
//
// p = &a[i + 1];
// if (b > 0)
// c = *p;
// q = &a[i + 2];
// if (d > 0)
// e = *q;
//
// which could later be optimized to
//
// r = &a[i];
// if (b > 0)
// c = r[1];
// if (d > 0)
// e = r[2];
//
// Later passes sink back much of the speculated code that did not enable
// further optimization.
//
// This pass is more aggressive than the function SpeculativeyExecuteBB in
// SimplifyCFG. SimplifyCFG will not speculate if no selects are introduced and
// it will speculate at most one instruction. It also will not speculate if
// there is a value defined in the if-block that is only used in the then-block.
// These restrictions make sense since the speculation in SimplifyCFG seems
// aimed at introducing cheap selects, while this pass is intended to do more
// aggressive speculation while counting on later passes to either capitalize on
// that or clean it up.
//
// If the pass was created by calling
// createSpeculativeExecutionIfHasBranchDivergencePass or the
// -spec-exec-only-if-divergent-target option is present, this pass only has an
// effect on targets where TargetTransformInfo::hasBranchDivergence() is true;
// on other targets, it is a nop.
//
// This lets you include this pass unconditionally in the IR pass pipeline, but
// only enable it for relevant targets.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "speculative-execution"
// The risk that speculation will not pay off increases with the
// number of instructions speculated, so we put a limit on that.
static cl::opt<unsigned> SpecExecMaxSpeculationCost(
"spec-exec-max-speculation-cost", cl::init(7), cl::Hidden,
cl::desc("Speculative execution is not applied to basic blocks where "
"the cost of the instructions to speculatively execute "
"exceeds this limit."));
// Speculating just a few instructions from a larger block tends not
// to be profitable and this limit prevents that. A reason for that is
// that small basic blocks are more likely to be candidates for
// further optimization.
static cl::opt<unsigned> SpecExecMaxNotHoisted(
"spec-exec-max-not-hoisted", cl::init(5), cl::Hidden,
cl::desc("Speculative execution is not applied to basic blocks where the "
"number of instructions that would not be speculatively executed "
"exceeds this limit."));
static cl::opt<bool> SpecExecOnlyIfDivergentTarget(
"spec-exec-only-if-divergent-target", cl::init(false), cl::Hidden,
cl::desc("Speculative execution is applied only to targets with divergent "
"branches, even if the pass was configured to apply only to all "
"targets."));
namespace {
class SpeculativeExecution : public FunctionPass {
public:
static char ID;
explicit SpeculativeExecution(bool OnlyIfDivergentTarget = false)
: FunctionPass(ID),
OnlyIfDivergentTarget(OnlyIfDivergentTarget ||
SpecExecOnlyIfDivergentTarget) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnFunction(Function &F) override;
const char *getPassName() const override {
if (OnlyIfDivergentTarget)
return "Speculatively execute instructions if target has divergent "
"branches";
return "Speculatively execute instructions";
}
private:
bool runOnBasicBlock(BasicBlock &B);
bool considerHoistingFromTo(BasicBlock &FromBlock, BasicBlock &ToBlock);
// If true, this pass is a nop unless the target architecture has branch
// divergence.
const bool OnlyIfDivergentTarget;
const TargetTransformInfo *TTI = nullptr;
};
} // namespace
char SpeculativeExecution::ID = 0;
INITIALIZE_PASS_BEGIN(SpeculativeExecution, "speculative-execution",
"Speculatively execute instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(SpeculativeExecution, "speculative-execution",
"Speculatively execute instructions", false, false)
void SpeculativeExecution::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
bool SpeculativeExecution::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
if (OnlyIfDivergentTarget && !TTI->hasBranchDivergence()) {
DEBUG(dbgs() << "Not running SpeculativeExecution because "
"TTI->hasBranchDivergence() is false.\n");
return false;
}
bool Changed = false;
for (auto& B : F) {
Changed |= runOnBasicBlock(B);
}
return Changed;
}
bool SpeculativeExecution::runOnBasicBlock(BasicBlock &B) {
BranchInst *BI = dyn_cast<BranchInst>(B.getTerminator());
if (BI == nullptr)
return false;
if (BI->getNumSuccessors() != 2)
return false;
BasicBlock &Succ0 = *BI->getSuccessor(0);
BasicBlock &Succ1 = *BI->getSuccessor(1);
if (&B == &Succ0 || &B == &Succ1 || &Succ0 == &Succ1) {
return false;
}
// Hoist from if-then (triangle).
if (Succ0.getSinglePredecessor() != nullptr &&
Succ0.getSingleSuccessor() == &Succ1) {
return considerHoistingFromTo(Succ0, B);
}
// Hoist from if-else (triangle).
if (Succ1.getSinglePredecessor() != nullptr &&
Succ1.getSingleSuccessor() == &Succ0) {
return considerHoistingFromTo(Succ1, B);
}
// Hoist from if-then-else (diamond), but only if it is equivalent to
// an if-else or if-then due to one of the branches doing nothing.
if (Succ0.getSinglePredecessor() != nullptr &&
Succ1.getSinglePredecessor() != nullptr &&
Succ1.getSingleSuccessor() != nullptr &&
Succ1.getSingleSuccessor() != &B &&
Succ1.getSingleSuccessor() == Succ0.getSingleSuccessor()) {
// If a block has only one instruction, then that is a terminator
// instruction so that the block does nothing. This does happen.
if (Succ1.size() == 1) // equivalent to if-then
return considerHoistingFromTo(Succ0, B);
if (Succ0.size() == 1) // equivalent to if-else
return considerHoistingFromTo(Succ1, B);
}
return false;
}
static unsigned ComputeSpeculationCost(const Instruction *I,
const TargetTransformInfo &TTI) {
switch (Operator::getOpcode(I)) {
case Instruction::GetElementPtr:
case Instruction::Add:
case Instruction::Mul:
case Instruction::And:
case Instruction::Or:
case Instruction::Select:
case Instruction::Shl:
case Instruction::Sub:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Xor:
case Instruction::ZExt:
case Instruction::SExt:
return TTI.getUserCost(I);
default:
return UINT_MAX; // Disallow anything not whitelisted.
}
}
bool SpeculativeExecution::considerHoistingFromTo(BasicBlock &FromBlock,
BasicBlock &ToBlock) {
SmallSet<const Instruction *, 8> NotHoisted;
const auto AllPrecedingUsesFromBlockHoisted = [&NotHoisted](User *U) {
for (Value* V : U->operand_values()) {
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (NotHoisted.count(I) > 0)
return false;
}
}
return true;
};
unsigned TotalSpeculationCost = 0;
for (auto& I : FromBlock) {
const unsigned Cost = ComputeSpeculationCost(&I, *TTI);
if (Cost != UINT_MAX && isSafeToSpeculativelyExecute(&I) &&
AllPrecedingUsesFromBlockHoisted(&I)) {
TotalSpeculationCost += Cost;
if (TotalSpeculationCost > SpecExecMaxSpeculationCost)
return false; // too much to hoist
} else {
NotHoisted.insert(&I);
if (NotHoisted.size() > SpecExecMaxNotHoisted)
return false; // too much left behind
}
}
if (TotalSpeculationCost == 0)
return false; // nothing to hoist
for (auto I = FromBlock.begin(); I != FromBlock.end();) {
// We have to increment I before moving Current as moving Current
// changes the list that I is iterating through.
auto Current = I;
++I;
if (!NotHoisted.count(&*Current)) {
Current->moveBefore(ToBlock.getTerminator());
}
}
return true;
}
namespace llvm {
FunctionPass *createSpeculativeExecutionPass() {
return new SpeculativeExecution();
}
FunctionPass *createSpeculativeExecutionIfHasBranchDivergencePass() {
return new SpeculativeExecution(/* OnlyIfDivergentTarget = */ true);
}
} // namespace llvm