1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/include/llvm/ProfileData/SampleProfReader.h
Hongtao Yu 9b80fe63e4 [CSSPGO] Support of CS profiles in extended binary format.
This change brings up support of context-sensitive profiles in the format of extended binary. Existing sample profile reader/writer/merger code is being tweaked to reflect the fact of bracketed input contexts, like (`[...]`). The paired brackets are also needed in extbinary profiles because we don't yet have an otherwise good way to tell calling contexts apart from regular function names since the context delimiter `@` can somehow serve as a part of the C++ mangled names.

Reviewed By: wmi, wenlei

Differential Revision: https://reviews.llvm.org/D95547
2021-01-27 21:29:46 -08:00

819 lines
32 KiB
C++

//===- SampleProfReader.h - Read LLVM sample profile data -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions needed for reading sample profiles.
//
// NOTE: If you are making changes to this file format, please remember
// to document them in the Clang documentation at
// tools/clang/docs/UsersManual.rst.
//
// Text format
// -----------
//
// Sample profiles are written as ASCII text. The file is divided into
// sections, which correspond to each of the functions executed at runtime.
// Each section has the following format
//
// function1:total_samples:total_head_samples
// offset1[.discriminator]: number_of_samples [fn1:num fn2:num ... ]
// offset2[.discriminator]: number_of_samples [fn3:num fn4:num ... ]
// ...
// offsetN[.discriminator]: number_of_samples [fn5:num fn6:num ... ]
// offsetA[.discriminator]: fnA:num_of_total_samples
// offsetA1[.discriminator]: number_of_samples [fn7:num fn8:num ... ]
// ...
// !CFGChecksum: num
//
// This is a nested tree in which the indentation represents the nesting level
// of the inline stack. There are no blank lines in the file. And the spacing
// within a single line is fixed. Additional spaces will result in an error
// while reading the file.
//
// Any line starting with the '#' character is completely ignored.
//
// Inlined calls are represented with indentation. The Inline stack is a
// stack of source locations in which the top of the stack represents the
// leaf function, and the bottom of the stack represents the actual
// symbol to which the instruction belongs.
//
// Function names must be mangled in order for the profile loader to
// match them in the current translation unit. The two numbers in the
// function header specify how many total samples were accumulated in the
// function (first number), and the total number of samples accumulated
// in the prologue of the function (second number). This head sample
// count provides an indicator of how frequently the function is invoked.
//
// There are three types of lines in the function body.
//
// * Sampled line represents the profile information of a source location.
// * Callsite line represents the profile information of a callsite.
// * Metadata line represents extra metadata of the function.
//
// Each sampled line may contain several items. Some are optional (marked
// below):
//
// a. Source line offset. This number represents the line number
// in the function where the sample was collected. The line number is
// always relative to the line where symbol of the function is
// defined. So, if the function has its header at line 280, the offset
// 13 is at line 293 in the file.
//
// Note that this offset should never be a negative number. This could
// happen in cases like macros. The debug machinery will register the
// line number at the point of macro expansion. So, if the macro was
// expanded in a line before the start of the function, the profile
// converter should emit a 0 as the offset (this means that the optimizers
// will not be able to associate a meaningful weight to the instructions
// in the macro).
//
// b. [OPTIONAL] Discriminator. This is used if the sampled program
// was compiled with DWARF discriminator support
// (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators).
// DWARF discriminators are unsigned integer values that allow the
// compiler to distinguish between multiple execution paths on the
// same source line location.
//
// For example, consider the line of code ``if (cond) foo(); else bar();``.
// If the predicate ``cond`` is true 80% of the time, then the edge
// into function ``foo`` should be considered to be taken most of the
// time. But both calls to ``foo`` and ``bar`` are at the same source
// line, so a sample count at that line is not sufficient. The
// compiler needs to know which part of that line is taken more
// frequently.
//
// This is what discriminators provide. In this case, the calls to
// ``foo`` and ``bar`` will be at the same line, but will have
// different discriminator values. This allows the compiler to correctly
// set edge weights into ``foo`` and ``bar``.
//
// c. Number of samples. This is an integer quantity representing the
// number of samples collected by the profiler at this source
// location.
//
// d. [OPTIONAL] Potential call targets and samples. If present, this
// line contains a call instruction. This models both direct and
// number of samples. For example,
//
// 130: 7 foo:3 bar:2 baz:7
//
// The above means that at relative line offset 130 there is a call
// instruction that calls one of ``foo()``, ``bar()`` and ``baz()``,
// with ``baz()`` being the relatively more frequently called target.
//
// Each callsite line may contain several items. Some are optional.
//
// a. Source line offset. This number represents the line number of the
// callsite that is inlined in the profiled binary.
//
// b. [OPTIONAL] Discriminator. Same as the discriminator for sampled line.
//
// c. Number of samples. This is an integer quantity representing the
// total number of samples collected for the inlined instance at this
// callsite
//
// Metadata line can occur in lines with one indent only, containing extra
// information for the top-level function. Furthermore, metadata can only
// occur after all the body samples and callsite samples.
// Each metadata line may contain a particular type of metadata, marked by
// the starting characters annotated with !. We process each metadata line
// independently, hence each metadata line has to form an independent piece
// of information that does not require cross-line reference.
// We support the following types of metadata:
//
// a. CFG Checksum (a.k.a. function hash):
// !CFGChecksum: 12345
//
//
// Binary format
// -------------
//
// This is a more compact encoding. Numbers are encoded as ULEB128 values
// and all strings are encoded in a name table. The file is organized in
// the following sections:
//
// MAGIC (uint64_t)
// File identifier computed by function SPMagic() (0x5350524f463432ff)
//
// VERSION (uint32_t)
// File format version number computed by SPVersion()
//
// SUMMARY
// TOTAL_COUNT (uint64_t)
// Total number of samples in the profile.
// MAX_COUNT (uint64_t)
// Maximum value of samples on a line.
// MAX_FUNCTION_COUNT (uint64_t)
// Maximum number of samples at function entry (head samples).
// NUM_COUNTS (uint64_t)
// Number of lines with samples.
// NUM_FUNCTIONS (uint64_t)
// Number of functions with samples.
// NUM_DETAILED_SUMMARY_ENTRIES (size_t)
// Number of entries in detailed summary
// DETAILED_SUMMARY
// A list of detailed summary entry. Each entry consists of
// CUTOFF (uint32_t)
// Required percentile of total sample count expressed as a fraction
// multiplied by 1000000.
// MIN_COUNT (uint64_t)
// The minimum number of samples required to reach the target
// CUTOFF.
// NUM_COUNTS (uint64_t)
// Number of samples to get to the desrired percentile.
//
// NAME TABLE
// SIZE (uint32_t)
// Number of entries in the name table.
// NAMES
// A NUL-separated list of SIZE strings.
//
// FUNCTION BODY (one for each uninlined function body present in the profile)
// HEAD_SAMPLES (uint64_t) [only for top-level functions]
// Total number of samples collected at the head (prologue) of the
// function.
// NOTE: This field should only be present for top-level functions
// (i.e., not inlined into any caller). Inlined function calls
// have no prologue, so they don't need this.
// NAME_IDX (uint32_t)
// Index into the name table indicating the function name.
// SAMPLES (uint64_t)
// Total number of samples collected in this function.
// NRECS (uint32_t)
// Total number of sampling records this function's profile.
// BODY RECORDS
// A list of NRECS entries. Each entry contains:
// OFFSET (uint32_t)
// Line offset from the start of the function.
// DISCRIMINATOR (uint32_t)
// Discriminator value (see description of discriminators
// in the text format documentation above).
// SAMPLES (uint64_t)
// Number of samples collected at this location.
// NUM_CALLS (uint32_t)
// Number of non-inlined function calls made at this location. In the
// case of direct calls, this number will always be 1. For indirect
// calls (virtual functions and function pointers) this will
// represent all the actual functions called at runtime.
// CALL_TARGETS
// A list of NUM_CALLS entries for each called function:
// NAME_IDX (uint32_t)
// Index into the name table with the callee name.
// SAMPLES (uint64_t)
// Number of samples collected at the call site.
// NUM_INLINED_FUNCTIONS (uint32_t)
// Number of callees inlined into this function.
// INLINED FUNCTION RECORDS
// A list of NUM_INLINED_FUNCTIONS entries describing each of the inlined
// callees.
// OFFSET (uint32_t)
// Line offset from the start of the function.
// DISCRIMINATOR (uint32_t)
// Discriminator value (see description of discriminators
// in the text format documentation above).
// FUNCTION BODY
// A FUNCTION BODY entry describing the inlined function.
//===----------------------------------------------------------------------===//
#ifndef LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#define LLVM_PROFILEDATA_SAMPLEPROFREADER_H
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/GCOV.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SymbolRemappingReader.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include <system_error>
#include <vector>
namespace llvm {
class raw_ostream;
class Twine;
namespace sampleprof {
class SampleProfileReader;
/// SampleProfileReaderItaniumRemapper remaps the profile data from a
/// sample profile data reader, by applying a provided set of equivalences
/// between components of the symbol names in the profile.
class SampleProfileReaderItaniumRemapper {
public:
SampleProfileReaderItaniumRemapper(std::unique_ptr<MemoryBuffer> B,
std::unique_ptr<SymbolRemappingReader> SRR,
SampleProfileReader &R)
: Buffer(std::move(B)), Remappings(std::move(SRR)), Reader(R) {
assert(Remappings && "Remappings cannot be nullptr");
}
/// Create a remapper from the given remapping file. The remapper will
/// be used for profile read in by Reader.
static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
create(const std::string Filename, SampleProfileReader &Reader,
LLVMContext &C);
/// Create a remapper from the given Buffer. The remapper will
/// be used for profile read in by Reader.
static ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
create(std::unique_ptr<MemoryBuffer> &B, SampleProfileReader &Reader,
LLVMContext &C);
/// Apply remappings to the profile read by Reader.
void applyRemapping(LLVMContext &Ctx);
bool hasApplied() { return RemappingApplied; }
/// Insert function name into remapper.
void insert(StringRef FunctionName) { Remappings->insert(FunctionName); }
/// Query whether there is equivalent in the remapper which has been
/// inserted.
bool exist(StringRef FunctionName) {
return Remappings->lookup(FunctionName);
}
/// Return the equivalent name in the profile for \p FunctionName if
/// it exists.
Optional<StringRef> lookUpNameInProfile(StringRef FunctionName);
private:
// The buffer holding the content read from remapping file.
std::unique_ptr<MemoryBuffer> Buffer;
std::unique_ptr<SymbolRemappingReader> Remappings;
// Map remapping key to the name in the profile. By looking up the
// key in the remapper, a given new name can be mapped to the
// cannonical name using the NameMap.
DenseMap<SymbolRemappingReader::Key, StringRef> NameMap;
// The Reader the remapper is servicing.
SampleProfileReader &Reader;
// Indicate whether remapping has been applied to the profile read
// by Reader -- by calling applyRemapping.
bool RemappingApplied = false;
};
/// Sample-based profile reader.
///
/// Each profile contains sample counts for all the functions
/// executed. Inside each function, statements are annotated with the
/// collected samples on all the instructions associated with that
/// statement.
///
/// For this to produce meaningful data, the program needs to be
/// compiled with some debug information (at minimum, line numbers:
/// -gline-tables-only). Otherwise, it will be impossible to match IR
/// instructions to the line numbers collected by the profiler.
///
/// From the profile file, we are interested in collecting the
/// following information:
///
/// * A list of functions included in the profile (mangled names).
///
/// * For each function F:
/// 1. The total number of samples collected in F.
///
/// 2. The samples collected at each line in F. To provide some
/// protection against source code shuffling, line numbers should
/// be relative to the start of the function.
///
/// The reader supports two file formats: text and binary. The text format
/// is useful for debugging and testing, while the binary format is more
/// compact and I/O efficient. They can both be used interchangeably.
class SampleProfileReader {
public:
SampleProfileReader(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
SampleProfileFormat Format = SPF_None)
: Profiles(0), Ctx(C), Buffer(std::move(B)), Format(Format) {}
virtual ~SampleProfileReader() = default;
/// Read and validate the file header.
virtual std::error_code readHeader() = 0;
/// The interface to read sample profiles from the associated file.
std::error_code read() {
if (std::error_code EC = readImpl())
return EC;
if (Remapper)
Remapper->applyRemapping(Ctx);
FunctionSamples::UseMD5 = useMD5();
return sampleprof_error::success;
}
/// The implementaion to read sample profiles from the associated file.
virtual std::error_code readImpl() = 0;
/// Print the profile for \p FName on stream \p OS.
void dumpFunctionProfile(StringRef FName, raw_ostream &OS = dbgs());
virtual void collectFuncsFrom(const Module &M) {}
/// Print all the profiles on stream \p OS.
void dump(raw_ostream &OS = dbgs());
/// Return the samples collected for function \p F.
FunctionSamples *getSamplesFor(const Function &F) {
// The function name may have been updated by adding suffix. Call
// a helper to (optionally) strip off suffixes so that we can
// match against the original function name in the profile.
StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
return getSamplesFor(CanonName);
}
/// Return the samples collected for function \p F, create empty
/// FunctionSamples if it doesn't exist.
FunctionSamples *getOrCreateSamplesFor(const Function &F) {
std::string FGUID;
StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
CanonName = getRepInFormat(CanonName, useMD5(), FGUID);
return &Profiles[CanonName];
}
/// Return the samples collected for function \p F.
virtual FunctionSamples *getSamplesFor(StringRef Fname) {
std::string FGUID;
Fname = getRepInFormat(Fname, useMD5(), FGUID);
auto It = Profiles.find(Fname);
if (It != Profiles.end())
return &It->second;
if (Remapper) {
if (auto NameInProfile = Remapper->lookUpNameInProfile(Fname)) {
auto It = Profiles.find(*NameInProfile);
if (It != Profiles.end())
return &It->second;
}
}
return nullptr;
}
/// Return all the profiles.
StringMap<FunctionSamples> &getProfiles() { return Profiles; }
/// Report a parse error message.
void reportError(int64_t LineNumber, const Twine &Msg) const {
Ctx.diagnose(DiagnosticInfoSampleProfile(Buffer->getBufferIdentifier(),
LineNumber, Msg));
}
/// Create a sample profile reader appropriate to the file format.
/// Create a remapper underlying if RemapFilename is not empty.
static ErrorOr<std::unique_ptr<SampleProfileReader>>
create(const std::string Filename, LLVMContext &C,
const std::string RemapFilename = "");
/// Create a sample profile reader from the supplied memory buffer.
/// Create a remapper underlying if RemapFilename is not empty.
static ErrorOr<std::unique_ptr<SampleProfileReader>>
create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
const std::string RemapFilename = "");
/// Return the profile summary.
ProfileSummary &getSummary() const { return *(Summary.get()); }
MemoryBuffer *getBuffer() const { return Buffer.get(); }
/// \brief Return the profile format.
SampleProfileFormat getFormat() const { return Format; }
/// Whether input profile is based on pseudo probes.
bool profileIsProbeBased() const { return ProfileIsProbeBased; }
/// Whether input profile is fully context-sensitive
bool profileIsCS() const { return ProfileIsCS; }
virtual std::unique_ptr<ProfileSymbolList> getProfileSymbolList() {
return nullptr;
};
/// It includes all the names that have samples either in outline instance
/// or inline instance.
virtual std::vector<StringRef> *getNameTable() { return nullptr; }
virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) { return false; };
/// Return whether names in the profile are all MD5 numbers.
virtual bool useMD5() { return false; }
/// Don't read profile without context if the flag is set. This is only meaningful
/// for ExtBinary format.
virtual void setSkipFlatProf(bool Skip) {}
SampleProfileReaderItaniumRemapper *getRemapper() { return Remapper.get(); }
protected:
/// Map every function to its associated profile.
///
/// The profile of every function executed at runtime is collected
/// in the structure FunctionSamples. This maps function objects
/// to their corresponding profiles.
StringMap<FunctionSamples> Profiles;
/// LLVM context used to emit diagnostics.
LLVMContext &Ctx;
/// Memory buffer holding the profile file.
std::unique_ptr<MemoryBuffer> Buffer;
/// Profile summary information.
std::unique_ptr<ProfileSummary> Summary;
/// Take ownership of the summary of this reader.
static std::unique_ptr<ProfileSummary>
takeSummary(SampleProfileReader &Reader) {
return std::move(Reader.Summary);
}
/// Compute summary for this profile.
void computeSummary();
std::unique_ptr<SampleProfileReaderItaniumRemapper> Remapper;
/// \brief Whether samples are collected based on pseudo probes.
bool ProfileIsProbeBased = false;
/// Whether function profiles are context-sensitive.
bool ProfileIsCS = false;
/// Number of context-sensitive profiles.
uint32_t CSProfileCount = 0;
/// \brief The format of sample.
SampleProfileFormat Format = SPF_None;
};
class SampleProfileReaderText : public SampleProfileReader {
public:
SampleProfileReaderText(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: SampleProfileReader(std::move(B), C, SPF_Text) {}
/// Read and validate the file header.
std::error_code readHeader() override { return sampleprof_error::success; }
/// Read sample profiles from the associated file.
std::error_code readImpl() override;
/// Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
};
class SampleProfileReaderBinary : public SampleProfileReader {
public:
SampleProfileReaderBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
SampleProfileFormat Format = SPF_None)
: SampleProfileReader(std::move(B), C, Format) {}
/// Read and validate the file header.
virtual std::error_code readHeader() override;
/// Read sample profiles from the associated file.
std::error_code readImpl() override;
/// It includes all the names that have samples either in outline instance
/// or inline instance.
virtual std::vector<StringRef> *getNameTable() override { return &NameTable; }
protected:
/// Read a numeric value of type T from the profile.
///
/// If an error occurs during decoding, a diagnostic message is emitted and
/// EC is set.
///
/// \returns the read value.
template <typename T> ErrorOr<T> readNumber();
/// Read a numeric value of type T from the profile. The value is saved
/// without encoded.
template <typename T> ErrorOr<T> readUnencodedNumber();
/// Read a string from the profile.
///
/// If an error occurs during decoding, a diagnostic message is emitted and
/// EC is set.
///
/// \returns the read value.
ErrorOr<StringRef> readString();
/// Read the string index and check whether it overflows the table.
template <typename T> inline ErrorOr<uint32_t> readStringIndex(T &Table);
/// Return true if we've reached the end of file.
bool at_eof() const { return Data >= End; }
/// Read the next function profile instance.
std::error_code readFuncProfile(const uint8_t *Start);
/// Read the contents of the given profile instance.
std::error_code readProfile(FunctionSamples &FProfile);
/// Read the contents of Magic number and Version number.
std::error_code readMagicIdent();
/// Read profile summary.
std::error_code readSummary();
/// Read the whole name table.
virtual std::error_code readNameTable();
/// Points to the current location in the buffer.
const uint8_t *Data = nullptr;
/// Points to the end of the buffer.
const uint8_t *End = nullptr;
/// Function name table.
std::vector<StringRef> NameTable;
/// Read a string indirectly via the name table.
virtual ErrorOr<StringRef> readStringFromTable();
private:
std::error_code readSummaryEntry(std::vector<ProfileSummaryEntry> &Entries);
virtual std::error_code verifySPMagic(uint64_t Magic) = 0;
};
class SampleProfileReaderRawBinary : public SampleProfileReaderBinary {
private:
virtual std::error_code verifySPMagic(uint64_t Magic) override;
public:
SampleProfileReaderRawBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
SampleProfileFormat Format = SPF_Binary)
: SampleProfileReaderBinary(std::move(B), C, Format) {}
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
};
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase defines
/// the basic structure of the extensible binary format.
/// The format is organized in sections except the magic and version number
/// at the beginning. There is a section table before all the sections, and
/// each entry in the table describes the entry type, start, size and
/// attributes. The format in each section is defined by the section itself.
///
/// It is easy to add a new section while maintaining the backward
/// compatibility of the profile. Nothing extra needs to be done. If we want
/// to extend an existing section, like add cache misses information in
/// addition to the sample count in the profile body, we can add a new section
/// with the extension and retire the existing section, and we could choose
/// to keep the parser of the old section if we want the reader to be able
/// to read both new and old format profile.
///
/// SampleProfileReaderExtBinary/SampleProfileWriterExtBinary define the
/// commonly used sections of a profile in extensible binary format. It is
/// possible to define other types of profile inherited from
/// SampleProfileReaderExtBinaryBase/SampleProfileWriterExtBinaryBase.
class SampleProfileReaderExtBinaryBase : public SampleProfileReaderBinary {
private:
std::error_code decompressSection(const uint8_t *SecStart,
const uint64_t SecSize,
const uint8_t *&DecompressBuf,
uint64_t &DecompressBufSize);
BumpPtrAllocator Allocator;
protected:
std::vector<SecHdrTableEntry> SecHdrTable;
std::error_code readSecHdrTableEntry(uint32_t Idx);
std::error_code readSecHdrTable();
std::error_code readFuncMetadata();
std::error_code readFuncOffsetTable();
std::error_code readFuncProfiles();
std::error_code readMD5NameTable();
std::error_code readNameTableSec(bool IsMD5);
std::error_code readProfileSymbolList();
virtual std::error_code readHeader() override;
virtual std::error_code verifySPMagic(uint64_t Magic) override = 0;
virtual std::error_code readOneSection(const uint8_t *Start, uint64_t Size,
const SecHdrTableEntry &Entry);
// placeholder for subclasses to dispatch their own section readers.
virtual std::error_code readCustomSection(const SecHdrTableEntry &Entry) = 0;
virtual ErrorOr<StringRef> readStringFromTable() override;
std::unique_ptr<ProfileSymbolList> ProfSymList;
/// The table mapping from function name to the offset of its FunctionSample
/// towards file start.
DenseMap<StringRef, uint64_t> FuncOffsetTable;
/// The set containing the functions to use when compiling a module.
DenseSet<StringRef> FuncsToUse;
/// Use all functions from the input profile.
bool UseAllFuncs = true;
/// Use fixed length MD5 instead of ULEB128 encoding so NameTable doesn't
/// need to be read in up front and can be directly accessed using index.
bool FixedLengthMD5 = false;
/// The starting address of NameTable containing fixed length MD5.
const uint8_t *MD5NameMemStart = nullptr;
/// If MD5 is used in NameTable section, the section saves uint64_t data.
/// The uint64_t data has to be converted to a string and then the string
/// will be used to initialize StringRef in NameTable.
/// Note NameTable contains StringRef so it needs another buffer to own
/// the string data. MD5StringBuf serves as the string buffer that is
/// referenced by NameTable (vector of StringRef). We make sure
/// the lifetime of MD5StringBuf is not shorter than that of NameTable.
std::unique_ptr<std::vector<std::string>> MD5StringBuf;
/// If SkipFlatProf is true, skip the sections with
/// SecFlagFlat flag.
bool SkipFlatProf = false;
public:
SampleProfileReaderExtBinaryBase(std::unique_ptr<MemoryBuffer> B,
LLVMContext &C, SampleProfileFormat Format)
: SampleProfileReaderBinary(std::move(B), C, Format) {}
/// Read sample profiles in extensible format from the associated file.
std::error_code readImpl() override;
/// Get the total size of all \p Type sections.
uint64_t getSectionSize(SecType Type);
/// Get the total size of header and all sections.
uint64_t getFileSize();
virtual bool dumpSectionInfo(raw_ostream &OS = dbgs()) override;
/// Collect functions with definitions in Module \p M.
void collectFuncsFrom(const Module &M) override;
/// Return whether names in the profile are all MD5 numbers.
virtual bool useMD5() override { return MD5StringBuf.get(); }
virtual std::unique_ptr<ProfileSymbolList> getProfileSymbolList() override {
return std::move(ProfSymList);
};
virtual void setSkipFlatProf(bool Skip) override { SkipFlatProf = Skip; }
};
class SampleProfileReaderExtBinary : public SampleProfileReaderExtBinaryBase {
private:
virtual std::error_code verifySPMagic(uint64_t Magic) override;
virtual std::error_code
readCustomSection(const SecHdrTableEntry &Entry) override {
return sampleprof_error::success;
};
public:
SampleProfileReaderExtBinary(std::unique_ptr<MemoryBuffer> B, LLVMContext &C,
SampleProfileFormat Format = SPF_Ext_Binary)
: SampleProfileReaderExtBinaryBase(std::move(B), C, Format) {}
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
};
class SampleProfileReaderCompactBinary : public SampleProfileReaderBinary {
private:
/// Function name table.
std::vector<std::string> NameTable;
/// The table mapping from function name to the offset of its FunctionSample
/// towards file start.
DenseMap<StringRef, uint64_t> FuncOffsetTable;
/// The set containing the functions to use when compiling a module.
DenseSet<StringRef> FuncsToUse;
/// Use all functions from the input profile.
bool UseAllFuncs = true;
virtual std::error_code verifySPMagic(uint64_t Magic) override;
virtual std::error_code readNameTable() override;
/// Read a string indirectly via the name table.
virtual ErrorOr<StringRef> readStringFromTable() override;
virtual std::error_code readHeader() override;
std::error_code readFuncOffsetTable();
public:
SampleProfileReaderCompactBinary(std::unique_ptr<MemoryBuffer> B,
LLVMContext &C)
: SampleProfileReaderBinary(std::move(B), C, SPF_Compact_Binary) {}
/// \brief Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
/// Read samples only for functions to use.
std::error_code readImpl() override;
/// Collect functions to be used when compiling Module \p M.
void collectFuncsFrom(const Module &M) override;
/// Return whether names in the profile are all MD5 numbers.
virtual bool useMD5() override { return true; }
};
using InlineCallStack = SmallVector<FunctionSamples *, 10>;
// Supported histogram types in GCC. Currently, we only need support for
// call target histograms.
enum HistType {
HIST_TYPE_INTERVAL,
HIST_TYPE_POW2,
HIST_TYPE_SINGLE_VALUE,
HIST_TYPE_CONST_DELTA,
HIST_TYPE_INDIR_CALL,
HIST_TYPE_AVERAGE,
HIST_TYPE_IOR,
HIST_TYPE_INDIR_CALL_TOPN
};
class SampleProfileReaderGCC : public SampleProfileReader {
public:
SampleProfileReaderGCC(std::unique_ptr<MemoryBuffer> B, LLVMContext &C)
: SampleProfileReader(std::move(B), C, SPF_GCC),
GcovBuffer(Buffer.get()) {}
/// Read and validate the file header.
std::error_code readHeader() override;
/// Read sample profiles from the associated file.
std::error_code readImpl() override;
/// Return true if \p Buffer is in the format supported by this class.
static bool hasFormat(const MemoryBuffer &Buffer);
protected:
std::error_code readNameTable();
std::error_code readOneFunctionProfile(const InlineCallStack &InlineStack,
bool Update, uint32_t Offset);
std::error_code readFunctionProfiles();
std::error_code skipNextWord();
template <typename T> ErrorOr<T> readNumber();
ErrorOr<StringRef> readString();
/// Read the section tag and check that it's the same as \p Expected.
std::error_code readSectionTag(uint32_t Expected);
/// GCOV buffer containing the profile.
GCOVBuffer GcovBuffer;
/// Function names in this profile.
std::vector<std::string> Names;
/// GCOV tags used to separate sections in the profile file.
static const uint32_t GCOVTagAFDOFileNames = 0xaa000000;
static const uint32_t GCOVTagAFDOFunction = 0xac000000;
};
} // end namespace sampleprof
} // end namespace llvm
#endif // LLVM_PROFILEDATA_SAMPLEPROFREADER_H