1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/lib/Transforms/Instrumentation/PGOInstrumentation.cpp
Roman Lebedev f948b65a66 Revert "clang-misexpect: Profile Guided Validation of Performance Annotations in LLVM"
See discussion in https://bugs.llvm.org/show_bug.cgi?id=45073 / https://reviews.llvm.org/D66324#2334485
the implementation is known-broken for certain inputs,
the bugreport was up for a significant amount of timer,
and there has been no activity to address it.
Therefore, just completely rip out all of misexpect handling.

I suspect, fixing it requires redesigning the internals of MD_misexpect.
Should anyone commit to fixing the implementation problem,
starting from clean slate may be better anyways.

This reverts commit 7bdad08429411e7d0ecd58cd696b1efe3cff309e,
and some of it's follow-ups, that don't stand on their own.
2020-11-14 13:12:38 +03:00

1943 lines
71 KiB
C++

//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements PGO instrumentation using a minimum spanning tree based
// on the following paper:
// [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
// for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
// Issue 3, pp 313-322
// The idea of the algorithm based on the fact that for each node (except for
// the entry and exit), the sum of incoming edge counts equals the sum of
// outgoing edge counts. The count of edge on spanning tree can be derived from
// those edges not on the spanning tree. Knuth proves this method instruments
// the minimum number of edges.
//
// The minimal spanning tree here is actually a maximum weight tree -- on-tree
// edges have higher frequencies (more likely to execute). The idea is to
// instrument those less frequently executed edges to reduce the runtime
// overhead of instrumented binaries.
//
// This file contains two passes:
// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
// count profile, and generates the instrumentation for indirect call
// profiling.
// (2) Pass PGOInstrumentationUse which reads the edge count profile and
// annotates the branch weights. It also reads the indirect call value
// profiling records and annotate the indirect call instructions.
//
// To get the precise counter information, These two passes need to invoke at
// the same compilation point (so they see the same IR). For pass
// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
// the profile is opened in module level and passed to each PGOUseFunc instance.
// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
// in class FuncPGOInstrumentation.
//
// Class PGOEdge represents a CFG edge and some auxiliary information. Class
// BBInfo contains auxiliary information for each BB. These two classes are used
// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
// class of PGOEdge and BBInfo, respectively. They contains extra data structure
// used in populating profile counters.
// The MST implementation is in Class CFGMST (CFGMST.h).
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "CFGMST.h"
#include "ValueProfileCollector.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <numeric>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
using ProfileCount = Function::ProfileCount;
using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
#define DEBUG_TYPE "pgo-instrumentation"
STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
STATISTIC(NumOfPGOEdge, "Number of edges.");
STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
STATISTIC(NumOfCSPGOSelectInsts,
"Number of select instruction instrumented in CSPGO.");
STATISTIC(NumOfCSPGOMemIntrinsics,
"Number of mem intrinsics instrumented in CSPGO.");
STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
STATISTIC(NumOfCSPGOFunc,
"Number of functions having valid profile counts in CSPGO.");
STATISTIC(NumOfCSPGOMismatch,
"Number of functions having mismatch profile in CSPGO.");
STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
// Command line option to specify the file to read profile from. This is
// mainly used for testing.
static cl::opt<std::string>
PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
cl::value_desc("filename"),
cl::desc("Specify the path of profile data file. This is"
"mainly for test purpose."));
static cl::opt<std::string> PGOTestProfileRemappingFile(
"pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
cl::value_desc("filename"),
cl::desc("Specify the path of profile remapping file. This is mainly for "
"test purpose."));
// Command line option to disable value profiling. The default is false:
// i.e. value profiling is enabled by default. This is for debug purpose.
static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
cl::Hidden,
cl::desc("Disable Value Profiling"));
// Command line option to set the maximum number of VP annotations to write to
// the metadata for a single indirect call callsite.
static cl::opt<unsigned> MaxNumAnnotations(
"icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore,
cl::desc("Max number of annotations for a single indirect "
"call callsite"));
// Command line option to set the maximum number of value annotations
// to write to the metadata for a single memop intrinsic.
static cl::opt<unsigned> MaxNumMemOPAnnotations(
"memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore,
cl::desc("Max number of preicise value annotations for a single memop"
"intrinsic"));
// Command line option to control appending FunctionHash to the name of a COMDAT
// function. This is to avoid the hash mismatch caused by the preinliner.
static cl::opt<bool> DoComdatRenaming(
"do-comdat-renaming", cl::init(false), cl::Hidden,
cl::desc("Append function hash to the name of COMDAT function to avoid "
"function hash mismatch due to the preinliner"));
// Command line option to enable/disable the warning about missing profile
// information.
static cl::opt<bool>
PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden,
cl::desc("Use this option to turn on/off "
"warnings about missing profile data for "
"functions."));
// Command line option to enable/disable the warning about a hash mismatch in
// the profile data.
static cl::opt<bool>
NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
cl::desc("Use this option to turn off/on "
"warnings about profile cfg mismatch."));
// Command line option to enable/disable the warning about a hash mismatch in
// the profile data for Comdat functions, which often turns out to be false
// positive due to the pre-instrumentation inline.
static cl::opt<bool>
NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true),
cl::Hidden,
cl::desc("The option is used to turn on/off "
"warnings about hash mismatch for comdat "
"functions."));
// Command line option to enable/disable select instruction instrumentation.
static cl::opt<bool>
PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
cl::desc("Use this option to turn on/off SELECT "
"instruction instrumentation. "));
// Command line option to turn on CFG dot or text dump of raw profile counts
static cl::opt<PGOViewCountsType> PGOViewRawCounts(
"pgo-view-raw-counts", cl::Hidden,
cl::desc("A boolean option to show CFG dag or text "
"with raw profile counts from "
"profile data. See also option "
"-pgo-view-counts. To limit graph "
"display to only one function, use "
"filtering option -view-bfi-func-name."),
cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
clEnumValN(PGOVCT_Text, "text", "show in text.")));
// Command line option to enable/disable memop intrinsic call.size profiling.
static cl::opt<bool>
PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
cl::desc("Use this option to turn on/off "
"memory intrinsic size profiling."));
// Emit branch probability as optimization remarks.
static cl::opt<bool>
EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
cl::desc("When this option is on, the annotated "
"branch probability will be emitted as "
"optimization remarks: -{Rpass|"
"pass-remarks}=pgo-instrumentation"));
static cl::opt<bool> PGOInstrumentEntry(
"pgo-instrument-entry", cl::init(false), cl::Hidden,
cl::desc("Force to instrument function entry basicblock."));
// Command line option to turn on CFG dot dump after profile annotation.
// Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
extern cl::opt<PGOViewCountsType> PGOViewCounts;
// Command line option to specify the name of the function for CFG dump
// Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
extern cl::opt<std::string> ViewBlockFreqFuncName;
static cl::opt<bool>
PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden,
cl::desc("Use the old CFG function hashing"));
// Return a string describing the branch condition that can be
// used in static branch probability heuristics:
static std::string getBranchCondString(Instruction *TI) {
BranchInst *BI = dyn_cast<BranchInst>(TI);
if (!BI || !BI->isConditional())
return std::string();
Value *Cond = BI->getCondition();
ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
if (!CI)
return std::string();
std::string result;
raw_string_ostream OS(result);
OS << CmpInst::getPredicateName(CI->getPredicate()) << "_";
CI->getOperand(0)->getType()->print(OS, true);
Value *RHS = CI->getOperand(1);
ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
if (CV) {
if (CV->isZero())
OS << "_Zero";
else if (CV->isOne())
OS << "_One";
else if (CV->isMinusOne())
OS << "_MinusOne";
else
OS << "_Const";
}
OS.flush();
return result;
}
static const char *ValueProfKindDescr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
#include "llvm/ProfileData/InstrProfData.inc"
};
namespace {
/// The select instruction visitor plays three roles specified
/// by the mode. In \c VM_counting mode, it simply counts the number of
/// select instructions. In \c VM_instrument mode, it inserts code to count
/// the number times TrueValue of select is taken. In \c VM_annotate mode,
/// it reads the profile data and annotate the select instruction with metadata.
enum VisitMode { VM_counting, VM_instrument, VM_annotate };
class PGOUseFunc;
/// Instruction Visitor class to visit select instructions.
struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
Function &F;
unsigned NSIs = 0; // Number of select instructions instrumented.
VisitMode Mode = VM_counting; // Visiting mode.
unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
unsigned TotalNumCtrs = 0; // Total number of counters
GlobalVariable *FuncNameVar = nullptr;
uint64_t FuncHash = 0;
PGOUseFunc *UseFunc = nullptr;
SelectInstVisitor(Function &Func) : F(Func) {}
void countSelects(Function &Func) {
NSIs = 0;
Mode = VM_counting;
visit(Func);
}
// Visit the IR stream and instrument all select instructions. \p
// Ind is a pointer to the counter index variable; \p TotalNC
// is the total number of counters; \p FNV is the pointer to the
// PGO function name var; \p FHash is the function hash.
void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC,
GlobalVariable *FNV, uint64_t FHash) {
Mode = VM_instrument;
CurCtrIdx = Ind;
TotalNumCtrs = TotalNC;
FuncHash = FHash;
FuncNameVar = FNV;
visit(Func);
}
// Visit the IR stream and annotate all select instructions.
void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) {
Mode = VM_annotate;
UseFunc = UF;
CurCtrIdx = Ind;
visit(Func);
}
void instrumentOneSelectInst(SelectInst &SI);
void annotateOneSelectInst(SelectInst &SI);
// Visit \p SI instruction and perform tasks according to visit mode.
void visitSelectInst(SelectInst &SI);
// Return the number of select instructions. This needs be called after
// countSelects().
unsigned getNumOfSelectInsts() const { return NSIs; }
};
class PGOInstrumentationGenLegacyPass : public ModulePass {
public:
static char ID;
PGOInstrumentationGenLegacyPass(bool IsCS = false)
: ModulePass(ID), IsCS(IsCS) {
initializePGOInstrumentationGenLegacyPassPass(
*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "PGOInstrumentationGenPass"; }
private:
// Is this is context-sensitive instrumentation.
bool IsCS;
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
class PGOInstrumentationUseLegacyPass : public ModulePass {
public:
static char ID;
// Provide the profile filename as the parameter.
PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false)
: ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) {
if (!PGOTestProfileFile.empty())
ProfileFileName = PGOTestProfileFile;
initializePGOInstrumentationUseLegacyPassPass(
*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "PGOInstrumentationUsePass"; }
private:
std::string ProfileFileName;
// Is this is context-sensitive instrumentation use.
bool IsCS;
bool runOnModule(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass {
public:
static char ID;
StringRef getPassName() const override {
return "PGOInstrumentationGenCreateVarPass";
}
PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "")
: ModulePass(ID), InstrProfileOutput(CSInstrName) {
initializePGOInstrumentationGenCreateVarLegacyPassPass(
*PassRegistry::getPassRegistry());
}
private:
bool runOnModule(Module &M) override {
createProfileFileNameVar(M, InstrProfileOutput);
createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry);
return false;
}
std::string InstrProfileOutput;
};
} // end anonymous namespace
char PGOInstrumentationGenLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
"PGO instrumentation.", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen",
"PGO instrumentation.", false, false)
ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) {
return new PGOInstrumentationGenLegacyPass(IsCS);
}
char PGOInstrumentationUseLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
"Read PGO instrumentation profile.", false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use",
"Read PGO instrumentation profile.", false, false)
ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename,
bool IsCS) {
return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS);
}
char PGOInstrumentationGenCreateVarLegacyPass::ID = 0;
INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass,
"pgo-instr-gen-create-var",
"Create PGO instrumentation version variable for CSPGO.", false,
false)
ModulePass *
llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) {
return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName));
}
namespace {
/// An MST based instrumentation for PGO
///
/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO
/// in the function level.
struct PGOEdge {
// This class implements the CFG edges. Note the CFG can be a multi-graph.
// So there might be multiple edges with same SrcBB and DestBB.
const BasicBlock *SrcBB;
const BasicBlock *DestBB;
uint64_t Weight;
bool InMST = false;
bool Removed = false;
bool IsCritical = false;
PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
: SrcBB(Src), DestBB(Dest), Weight(W) {}
// Return the information string of an edge.
const std::string infoString() const {
return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
(IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str();
}
};
// This class stores the auxiliary information for each BB.
struct BBInfo {
BBInfo *Group;
uint32_t Index;
uint32_t Rank = 0;
BBInfo(unsigned IX) : Group(this), Index(IX) {}
// Return the information string of this object.
const std::string infoString() const {
return (Twine("Index=") + Twine(Index)).str();
}
// Empty function -- only applicable to UseBBInfo.
void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
// Empty function -- only applicable to UseBBInfo.
void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {}
};
// This class implements the CFG edges. Note the CFG can be a multi-graph.
template <class Edge, class BBInfo> class FuncPGOInstrumentation {
private:
Function &F;
// Is this is context-sensitive instrumentation.
bool IsCS;
// If we instrument function entry BB by default.
bool InstrumentFuncEntry;
// A map that stores the Comdat group in function F.
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
ValueProfileCollector VPC;
void computeCFGHash();
void renameComdatFunction();
public:
std::vector<std::vector<VPCandidateInfo>> ValueSites;
SelectInstVisitor SIVisitor;
std::string FuncName;
GlobalVariable *FuncNameVar;
// CFG hash value for this function.
uint64_t FunctionHash = 0;
// The Minimum Spanning Tree of function CFG.
CFGMST<Edge, BBInfo> MST;
// Collect all the BBs that will be instrumented, and store them in
// InstrumentBBs.
void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
// Give an edge, find the BB that will be instrumented.
// Return nullptr if there is no BB to be instrumented.
BasicBlock *getInstrBB(Edge *E);
// Return the auxiliary BB information.
BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
// Return the auxiliary BB information if available.
BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
// Dump edges and BB information.
void dumpInfo(std::string Str = "") const {
MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " +
Twine(FunctionHash) + "\t" + Str);
}
FuncPGOInstrumentation(
Function &Func, TargetLibraryInfo &TLI,
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
bool InstrumentFuncEntry = true)
: F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
ValueSites(IPVK_Last + 1), SIVisitor(Func),
MST(F, InstrumentFuncEntry, BPI, BFI) {
// This should be done before CFG hash computation.
SIVisitor.countSelects(Func);
ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
if (!IsCS) {
NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
NumOfPGOBB += MST.BBInfos.size();
ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
} else {
NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
NumOfCSPGOBB += MST.BBInfos.size();
}
FuncName = getPGOFuncName(F);
computeCFGHash();
if (!ComdatMembers.empty())
renameComdatFunction();
LLVM_DEBUG(dumpInfo("after CFGMST"));
for (auto &E : MST.AllEdges) {
if (E->Removed)
continue;
IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
if (!E->InMST)
IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
}
if (CreateGlobalVar)
FuncNameVar = createPGOFuncNameVar(F, FuncName);
}
};
} // end anonymous namespace
// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
// value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
// of selects, indirect calls, mem ops and edges.
template <class Edge, class BBInfo>
void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
std::vector<uint8_t> Indexes;
JamCRC JC;
for (auto &BB : F) {
const Instruction *TI = BB.getTerminator();
for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
BasicBlock *Succ = TI->getSuccessor(I);
auto BI = findBBInfo(Succ);
if (BI == nullptr)
continue;
uint32_t Index = BI->Index;
for (int J = 0; J < 4; J++)
Indexes.push_back((uint8_t)(Index >> (J * 8)));
}
}
JC.update(Indexes);
JamCRC JCH;
if (PGOOldCFGHashing) {
// Hash format for context sensitive profile. Reserve 4 bits for other
// information.
FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
(uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
//(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
(uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
} else {
// The higher 32 bits.
auto updateJCH = [&JCH](uint64_t Num) {
uint8_t Data[8];
support::endian::write64le(Data, Num);
JCH.update(Data);
};
updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
updateJCH((uint64_t)MST.AllEdges.size());
// Hash format for context sensitive profile. Reserve 4 bits for other
// information.
FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
}
// Reserve bit 60-63 for other information purpose.
FunctionHash &= 0x0FFFFFFFFFFFFFFF;
if (IsCS)
NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
<< " CRC = " << JC.getCRC()
<< ", Selects = " << SIVisitor.getNumOfSelectInsts()
<< ", Edges = " << MST.AllEdges.size() << ", ICSites = "
<< ValueSites[IPVK_IndirectCallTarget].size());
if (!PGOOldCFGHashing) {
LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
<< ", High32 CRC = " << JCH.getCRC());
}
LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";);
}
// Check if we can safely rename this Comdat function.
static bool canRenameComdat(
Function &F,
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
return false;
// FIXME: Current only handle those Comdat groups that only containing one
// function.
// (1) For a Comdat group containing multiple functions, we need to have a
// unique postfix based on the hashes for each function. There is a
// non-trivial code refactoring to do this efficiently.
// (2) Variables can not be renamed, so we can not rename Comdat function in a
// group including global vars.
Comdat *C = F.getComdat();
for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
assert(!isa<GlobalAlias>(CM.second));
Function *FM = dyn_cast<Function>(CM.second);
if (FM != &F)
return false;
}
return true;
}
// Append the CFGHash to the Comdat function name.
template <class Edge, class BBInfo>
void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
if (!canRenameComdat(F, ComdatMembers))
return;
std::string OrigName = F.getName().str();
std::string NewFuncName =
Twine(F.getName() + "." + Twine(FunctionHash)).str();
F.setName(Twine(NewFuncName));
GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
Comdat *NewComdat;
Module *M = F.getParent();
// For AvailableExternallyLinkage functions, change the linkage to
// LinkOnceODR and put them into comdat. This is because after renaming, there
// is no backup external copy available for the function.
if (!F.hasComdat()) {
assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
F.setLinkage(GlobalValue::LinkOnceODRLinkage);
F.setComdat(NewComdat);
return;
}
// This function belongs to a single function Comdat group.
Comdat *OrigComdat = F.getComdat();
std::string NewComdatName =
Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
// Must be a function.
cast<Function>(CM.second)->setComdat(NewComdat);
}
}
// Collect all the BBs that will be instruments and return them in
// InstrumentBBs and setup InEdges/OutEdge for UseBBInfo.
template <class Edge, class BBInfo>
void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
std::vector<BasicBlock *> &InstrumentBBs) {
// Use a worklist as we will update the vector during the iteration.
std::vector<Edge *> EdgeList;
EdgeList.reserve(MST.AllEdges.size());
for (auto &E : MST.AllEdges)
EdgeList.push_back(E.get());
for (auto &E : EdgeList) {
BasicBlock *InstrBB = getInstrBB(E);
if (InstrBB)
InstrumentBBs.push_back(InstrBB);
}
// Set up InEdges/OutEdges for all BBs.
for (auto &E : MST.AllEdges) {
if (E->Removed)
continue;
const BasicBlock *SrcBB = E->SrcBB;
const BasicBlock *DestBB = E->DestBB;
BBInfo &SrcInfo = getBBInfo(SrcBB);
BBInfo &DestInfo = getBBInfo(DestBB);
SrcInfo.addOutEdge(E.get());
DestInfo.addInEdge(E.get());
}
}
// Given a CFG E to be instrumented, find which BB to place the instrumented
// code. The function will split the critical edge if necessary.
template <class Edge, class BBInfo>
BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
if (E->InMST || E->Removed)
return nullptr;
BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB);
BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB);
// For a fake edge, instrument the real BB.
if (SrcBB == nullptr)
return DestBB;
if (DestBB == nullptr)
return SrcBB;
auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
// There are basic blocks (such as catchswitch) cannot be instrumented.
// If the returned first insertion point is the end of BB, skip this BB.
if (BB->getFirstInsertionPt() == BB->end())
return nullptr;
return BB;
};
// Instrument the SrcBB if it has a single successor,
// otherwise, the DestBB if this is not a critical edge.
Instruction *TI = SrcBB->getTerminator();
if (TI->getNumSuccessors() <= 1)
return canInstrument(SrcBB);
if (!E->IsCritical)
return canInstrument(DestBB);
// Some IndirectBr critical edges cannot be split by the previous
// SplitIndirectBrCriticalEdges call. Bail out.
unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
BasicBlock *InstrBB =
isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
if (!InstrBB) {
LLVM_DEBUG(
dbgs() << "Fail to split critical edge: not instrument this edge.\n");
return nullptr;
}
// For a critical edge, we have to split. Instrument the newly
// created BB.
IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
<< " --> " << getBBInfo(DestBB).Index << "\n");
// Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
MST.addEdge(SrcBB, InstrBB, 0);
// Second one: Add new edge of InstrBB->DestBB.
Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
NewEdge1.InMST = true;
E->Removed = true;
return canInstrument(InstrBB);
}
// When generating value profiling calls on Windows routines that make use of
// handler funclets for exception processing an operand bundle needs to attached
// to the called function. This routine will set \p OpBundles to contain the
// funclet information, if any is needed, that should be placed on the generated
// value profiling call for the value profile candidate call.
static void
populateEHOperandBundle(VPCandidateInfo &Cand,
DenseMap<BasicBlock *, ColorVector> &BlockColors,
SmallVectorImpl<OperandBundleDef> &OpBundles) {
auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
if (OrigCall && !isa<IntrinsicInst>(OrigCall)) {
// The instrumentation call should belong to the same funclet as a
// non-intrinsic call, so just copy the operand bundle, if any exists.
Optional<OperandBundleUse> ParentFunclet =
OrigCall->getOperandBundle(LLVMContext::OB_funclet);
if (ParentFunclet)
OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
} else {
// Intrinsics or other instructions do not get funclet information from the
// front-end. Need to use the BlockColors that was computed by the routine
// colorEHFunclets to determine whether a funclet is needed.
if (!BlockColors.empty()) {
const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
assert(CV.size() == 1 && "non-unique color for block!");
Instruction *EHPad = CV.front()->getFirstNonPHI();
if (EHPad->isEHPad())
OpBundles.emplace_back("funclet", EHPad);
}
}
}
// Visit all edge and instrument the edges not in MST, and do value profiling.
// Critical edges will be split.
static void instrumentOneFunc(
Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
BlockFrequencyInfo *BFI,
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
bool IsCS) {
// Split indirectbr critical edges here before computing the MST rather than
// later in getInstrBB() to avoid invalidating it.
SplitIndirectBrCriticalEdges(F, BPI, BFI);
FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo(
F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry);
std::vector<BasicBlock *> InstrumentBBs;
FuncInfo.getInstrumentBBs(InstrumentBBs);
unsigned NumCounters =
InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
uint32_t I = 0;
Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
for (auto *InstrBB : InstrumentBBs) {
IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
assert(Builder.GetInsertPoint() != InstrBB->end() &&
"Cannot get the Instrumentation point");
Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment),
{ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters),
Builder.getInt32(I++)});
}
// Now instrument select instructions:
FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar,
FuncInfo.FunctionHash);
assert(I == NumCounters);
if (DisableValueProfiling)
return;
NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
// Intrinsic function calls do not have funclet operand bundles needed for
// Windows exception handling attached to them. However, if value profiling is
// inserted for one of these calls, then a funclet value will need to be set
// on the instrumentation call based on the funclet coloring.
DenseMap<BasicBlock *, ColorVector> BlockColors;
if (F.hasPersonalityFn() &&
isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
BlockColors = colorEHFunclets(F);
// For each VP Kind, walk the VP candidates and instrument each one.
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
unsigned SiteIndex = 0;
if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
continue;
for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
<< " site: CallSite Index = " << SiteIndex << "\n");
IRBuilder<> Builder(Cand.InsertPt);
assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
"Cannot get the Instrumentation point");
Value *ToProfile = nullptr;
if (Cand.V->getType()->isIntegerTy())
ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
else if (Cand.V->getType()->isPointerTy())
ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
assert(ToProfile && "value profiling Value is of unexpected type");
SmallVector<OperandBundleDef, 1> OpBundles;
populateEHOperandBundle(Cand, BlockColors, OpBundles);
Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
{ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
Builder.getInt64(FuncInfo.FunctionHash), ToProfile,
Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
OpBundles);
}
} // IPVK_First <= Kind <= IPVK_Last
}
namespace {
// This class represents a CFG edge in profile use compilation.
struct PGOUseEdge : public PGOEdge {
bool CountValid = false;
uint64_t CountValue = 0;
PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1)
: PGOEdge(Src, Dest, W) {}
// Set edge count value
void setEdgeCount(uint64_t Value) {
CountValue = Value;
CountValid = true;
}
// Return the information string for this object.
const std::string infoString() const {
if (!CountValid)
return PGOEdge::infoString();
return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
.str();
}
};
using DirectEdges = SmallVector<PGOUseEdge *, 2>;
// This class stores the auxiliary information for each BB.
struct UseBBInfo : public BBInfo {
uint64_t CountValue = 0;
bool CountValid;
int32_t UnknownCountInEdge = 0;
int32_t UnknownCountOutEdge = 0;
DirectEdges InEdges;
DirectEdges OutEdges;
UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {}
UseBBInfo(unsigned IX, uint64_t C)
: BBInfo(IX), CountValue(C), CountValid(true) {}
// Set the profile count value for this BB.
void setBBInfoCount(uint64_t Value) {
CountValue = Value;
CountValid = true;
}
// Return the information string of this object.
const std::string infoString() const {
if (!CountValid)
return BBInfo::infoString();
return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str();
}
// Add an OutEdge and update the edge count.
void addOutEdge(PGOUseEdge *E) {
OutEdges.push_back(E);
UnknownCountOutEdge++;
}
// Add an InEdge and update the edge count.
void addInEdge(PGOUseEdge *E) {
InEdges.push_back(E);
UnknownCountInEdge++;
}
};
} // end anonymous namespace
// Sum up the count values for all the edges.
static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
uint64_t Total = 0;
for (auto &E : Edges) {
if (E->Removed)
continue;
Total += E->CountValue;
}
return Total;
}
namespace {
class PGOUseFunc {
public:
PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry)
: F(Func), M(Modu), BFI(BFIin), PSI(PSI),
FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
InstrumentFuncEntry),
FreqAttr(FFA_Normal), IsCS(IsCS) {}
// Read counts for the instrumented BB from profile.
bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
bool &AllMinusOnes);
// Populate the counts for all BBs.
void populateCounters();
// Set the branch weights based on the count values.
void setBranchWeights();
// Annotate the value profile call sites for all value kind.
void annotateValueSites();
// Annotate the value profile call sites for one value kind.
void annotateValueSites(uint32_t Kind);
// Annotate the irreducible loop header weights.
void annotateIrrLoopHeaderWeights();
// The hotness of the function from the profile count.
enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
// Return the function hotness from the profile.
FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
// Return the function hash.
uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
// Return the profile record for this function;
InstrProfRecord &getProfileRecord() { return ProfileRecord; }
// Return the auxiliary BB information.
UseBBInfo &getBBInfo(const BasicBlock *BB) const {
return FuncInfo.getBBInfo(BB);
}
// Return the auxiliary BB information if available.
UseBBInfo *findBBInfo(const BasicBlock *BB) const {
return FuncInfo.findBBInfo(BB);
}
Function &getFunc() const { return F; }
void dumpInfo(std::string Str = "") const {
FuncInfo.dumpInfo(Str);
}
uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
private:
Function &F;
Module *M;
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;
// This member stores the shared information with class PGOGenFunc.
FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo;
// The maximum count value in the profile. This is only used in PGO use
// compilation.
uint64_t ProgramMaxCount;
// Position of counter that remains to be read.
uint32_t CountPosition = 0;
// Total size of the profile count for this function.
uint32_t ProfileCountSize = 0;
// ProfileRecord for this function.
InstrProfRecord ProfileRecord;
// Function hotness info derived from profile.
FuncFreqAttr FreqAttr;
// Is to use the context sensitive profile.
bool IsCS;
// Find the Instrumented BB and set the value. Return false on error.
bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
// Set the edge counter value for the unknown edge -- there should be only
// one unknown edge.
void setEdgeCount(DirectEdges &Edges, uint64_t Value);
// Return FuncName string;
const std::string getFuncName() const { return FuncInfo.FuncName; }
// Set the hot/cold inline hints based on the count values.
// FIXME: This function should be removed once the functionality in
// the inliner is implemented.
void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
if (PSI->isHotCount(EntryCount))
FreqAttr = FFA_Hot;
else if (PSI->isColdCount(MaxCount))
FreqAttr = FFA_Cold;
}
};
} // end anonymous namespace
// Visit all the edges and assign the count value for the instrumented
// edges and the BB. Return false on error.
bool PGOUseFunc::setInstrumentedCounts(
const std::vector<uint64_t> &CountFromProfile) {
std::vector<BasicBlock *> InstrumentBBs;
FuncInfo.getInstrumentBBs(InstrumentBBs);
unsigned NumCounters =
InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
// The number of counters here should match the number of counters
// in profile. Return if they mismatch.
if (NumCounters != CountFromProfile.size()) {
return false;
}
auto *FuncEntry = &*F.begin();
// Set the profile count to the Instrumented BBs.
uint32_t I = 0;
for (BasicBlock *InstrBB : InstrumentBBs) {
uint64_t CountValue = CountFromProfile[I++];
UseBBInfo &Info = getBBInfo(InstrBB);
// If we reach here, we know that we have some nonzero count
// values in this function. The entry count should not be 0.
// Fix it if necessary.
if (InstrBB == FuncEntry && CountValue == 0)
CountValue = 1;
Info.setBBInfoCount(CountValue);
}
ProfileCountSize = CountFromProfile.size();
CountPosition = I;
// Set the edge count and update the count of unknown edges for BBs.
auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
E->setEdgeCount(Value);
this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
this->getBBInfo(E->DestBB).UnknownCountInEdge--;
};
// Set the profile count the Instrumented edges. There are BBs that not in
// MST but not instrumented. Need to set the edge count value so that we can
// populate the profile counts later.
for (auto &E : FuncInfo.MST.AllEdges) {
if (E->Removed || E->InMST)
continue;
const BasicBlock *SrcBB = E->SrcBB;
UseBBInfo &SrcInfo = getBBInfo(SrcBB);
// If only one out-edge, the edge profile count should be the same as BB
// profile count.
if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
setEdgeCount(E.get(), SrcInfo.CountValue);
else {
const BasicBlock *DestBB = E->DestBB;
UseBBInfo &DestInfo = getBBInfo(DestBB);
// If only one in-edge, the edge profile count should be the same as BB
// profile count.
if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
setEdgeCount(E.get(), DestInfo.CountValue);
}
if (E->CountValid)
continue;
// E's count should have been set from profile. If not, this meenas E skips
// the instrumentation. We set the count to 0.
setEdgeCount(E.get(), 0);
}
return true;
}
// Set the count value for the unknown edge. There should be one and only one
// unknown edge in Edges vector.
void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
for (auto &E : Edges) {
if (E->CountValid)
continue;
E->setEdgeCount(Value);
getBBInfo(E->SrcBB).UnknownCountOutEdge--;
getBBInfo(E->DestBB).UnknownCountInEdge--;
return;
}
llvm_unreachable("Cannot find the unknown count edge");
}
// Read the profile from ProfileFileName and assign the value to the
// instrumented BB and the edges. This function also updates ProgramMaxCount.
// Return true if the profile are successfully read, and false on errors.
bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
bool &AllMinusOnes) {
auto &Ctx = M->getContext();
Expected<InstrProfRecord> Result =
PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash);
if (Error E = Result.takeError()) {
handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
auto Err = IPE.get();
bool SkipWarning = false;
LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
<< FuncInfo.FuncName << ": ");
if (Err == instrprof_error::unknown_function) {
IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
SkipWarning = !PGOWarnMissing;
LLVM_DEBUG(dbgs() << "unknown function");
} else if (Err == instrprof_error::hash_mismatch ||
Err == instrprof_error::malformed) {
IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
SkipWarning =
NoPGOWarnMismatch ||
(NoPGOWarnMismatchComdat &&
(F.hasComdat() ||
F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")");
}
LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
if (SkipWarning)
return;
std::string Msg = IPE.message() + std::string(" ") + F.getName().str() +
std::string(" Hash = ") +
std::to_string(FuncInfo.FunctionHash);
Ctx.diagnose(
DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
});
return false;
}
ProfileRecord = std::move(Result.get());
std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
AllMinusOnes = (CountFromProfile.size() > 0);
uint64_t ValueSum = 0;
for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
ValueSum += CountFromProfile[I];
if (CountFromProfile[I] != (uint64_t)-1)
AllMinusOnes = false;
}
AllZeros = (ValueSum == 0);
LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
getBBInfo(nullptr).UnknownCountOutEdge = 2;
getBBInfo(nullptr).UnknownCountInEdge = 2;
if (!setInstrumentedCounts(CountFromProfile)) {
LLVM_DEBUG(
dbgs() << "Inconsistent number of counts, skipping this function");
Ctx.diagnose(DiagnosticInfoPGOProfile(
M->getName().data(),
Twine("Inconsistent number of counts in ") + F.getName().str()
+ Twine(": the profile may be stale or there is a function name collision."),
DS_Warning));
return false;
}
ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
return true;
}
// Populate the counters from instrumented BBs to all BBs.
// In the end of this operation, all BBs should have a valid count value.
void PGOUseFunc::populateCounters() {
bool Changes = true;
unsigned NumPasses = 0;
while (Changes) {
NumPasses++;
Changes = false;
// For efficient traversal, it's better to start from the end as most
// of the instrumented edges are at the end.
for (auto &BB : reverse(F)) {
UseBBInfo *Count = findBBInfo(&BB);
if (Count == nullptr)
continue;
if (!Count->CountValid) {
if (Count->UnknownCountOutEdge == 0) {
Count->CountValue = sumEdgeCount(Count->OutEdges);
Count->CountValid = true;
Changes = true;
} else if (Count->UnknownCountInEdge == 0) {
Count->CountValue = sumEdgeCount(Count->InEdges);
Count->CountValid = true;
Changes = true;
}
}
if (Count->CountValid) {
if (Count->UnknownCountOutEdge == 1) {
uint64_t Total = 0;
uint64_t OutSum = sumEdgeCount(Count->OutEdges);
// If the one of the successor block can early terminate (no-return),
// we can end up with situation where out edge sum count is larger as
// the source BB's count is collected by a post-dominated block.
if (Count->CountValue > OutSum)
Total = Count->CountValue - OutSum;
setEdgeCount(Count->OutEdges, Total);
Changes = true;
}
if (Count->UnknownCountInEdge == 1) {
uint64_t Total = 0;
uint64_t InSum = sumEdgeCount(Count->InEdges);
if (Count->CountValue > InSum)
Total = Count->CountValue - InSum;
setEdgeCount(Count->InEdges, Total);
Changes = true;
}
}
}
}
LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
#ifndef NDEBUG
// Assert every BB has a valid counter.
for (auto &BB : F) {
auto BI = findBBInfo(&BB);
if (BI == nullptr)
continue;
assert(BI->CountValid && "BB count is not valid");
}
#endif
uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
uint64_t FuncMaxCount = FuncEntryCount;
for (auto &BB : F) {
auto BI = findBBInfo(&BB);
if (BI == nullptr)
continue;
FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
}
// Fix the obviously inconsistent entry count.
if (FuncMaxCount > 0 && FuncEntryCount == 0)
FuncEntryCount = 1;
F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
markFunctionAttributes(FuncEntryCount, FuncMaxCount);
// Now annotate select instructions
FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition);
assert(CountPosition == ProfileCountSize);
LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
}
// Assign the scaled count values to the BB with multiple out edges.
void PGOUseFunc::setBranchWeights() {
// Generate MD_prof metadata for every branch instruction.
LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
<< " IsCS=" << IsCS << "\n");
for (auto &BB : F) {
Instruction *TI = BB.getTerminator();
if (TI->getNumSuccessors() < 2)
continue;
if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI)))
continue;
if (getBBInfo(&BB).CountValue == 0)
continue;
// We have a non-zero Branch BB.
const UseBBInfo &BBCountInfo = getBBInfo(&BB);
unsigned Size = BBCountInfo.OutEdges.size();
SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
uint64_t MaxCount = 0;
for (unsigned s = 0; s < Size; s++) {
const PGOUseEdge *E = BBCountInfo.OutEdges[s];
const BasicBlock *SrcBB = E->SrcBB;
const BasicBlock *DestBB = E->DestBB;
if (DestBB == nullptr)
continue;
unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
uint64_t EdgeCount = E->CountValue;
if (EdgeCount > MaxCount)
MaxCount = EdgeCount;
EdgeCounts[SuccNum] = EdgeCount;
}
setProfMetadata(M, TI, EdgeCounts, MaxCount);
}
}
static bool isIndirectBrTarget(BasicBlock *BB) {
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
if (isa<IndirectBrInst>((*PI)->getTerminator()))
return true;
}
return false;
}
void PGOUseFunc::annotateIrrLoopHeaderWeights() {
LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
// Find irr loop headers
for (auto &BB : F) {
// As a heuristic also annotate indrectbr targets as they have a high chance
// to become an irreducible loop header after the indirectbr tail
// duplication.
if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
Instruction *TI = BB.getTerminator();
const UseBBInfo &BBCountInfo = getBBInfo(&BB);
setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
}
}
}
void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
Module *M = F.getParent();
IRBuilder<> Builder(&SI);
Type *Int64Ty = Builder.getInt64Ty();
Type *I8PtrTy = Builder.getInt8PtrTy();
auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
Builder.CreateCall(
Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
{ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
Builder.getInt32(*CurCtrIdx), Step});
++(*CurCtrIdx);
}
void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
assert(*CurCtrIdx < CountFromProfile.size() &&
"Out of bound access of counters");
uint64_t SCounts[2];
SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
++(*CurCtrIdx);
uint64_t TotalCount = 0;
auto BI = UseFunc->findBBInfo(SI.getParent());
if (BI != nullptr)
TotalCount = BI->CountValue;
// False Count
SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
if (MaxCount)
setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
}
void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
if (!PGOInstrSelect)
return;
// FIXME: do not handle this yet.
if (SI.getCondition()->getType()->isVectorTy())
return;
switch (Mode) {
case VM_counting:
NSIs++;
return;
case VM_instrument:
instrumentOneSelectInst(SI);
return;
case VM_annotate:
annotateOneSelectInst(SI);
return;
}
llvm_unreachable("Unknown visiting mode");
}
// Traverse all valuesites and annotate the instructions for all value kind.
void PGOUseFunc::annotateValueSites() {
if (DisableValueProfiling)
return;
// Create the PGOFuncName meta data.
createPGOFuncNameMetadata(F, FuncInfo.FuncName);
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
annotateValueSites(Kind);
}
// Annotate the instructions for a specific value kind.
void PGOUseFunc::annotateValueSites(uint32_t Kind) {
assert(Kind <= IPVK_Last);
unsigned ValueSiteIndex = 0;
auto &ValueSites = FuncInfo.ValueSites[Kind];
unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
if (NumValueSites != ValueSites.size()) {
auto &Ctx = M->getContext();
Ctx.diagnose(DiagnosticInfoPGOProfile(
M->getName().data(),
Twine("Inconsistent number of value sites for ") +
Twine(ValueProfKindDescr[Kind]) +
Twine(" profiling in \"") + F.getName().str() +
Twine("\", possibly due to the use of a stale profile."),
DS_Warning));
return;
}
for (VPCandidateInfo &I : ValueSites) {
LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
<< "): Index = " << ValueSiteIndex << " out of "
<< NumValueSites << "\n");
annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
: MaxNumAnnotations);
ValueSiteIndex++;
}
}
// Collect the set of members for each Comdat in module M and store
// in ComdatMembers.
static void collectComdatMembers(
Module &M,
std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
if (!DoComdatRenaming)
return;
for (Function &F : M)
if (Comdat *C = F.getComdat())
ComdatMembers.insert(std::make_pair(C, &F));
for (GlobalVariable &GV : M.globals())
if (Comdat *C = GV.getComdat())
ComdatMembers.insert(std::make_pair(C, &GV));
for (GlobalAlias &GA : M.aliases())
if (Comdat *C = GA.getComdat())
ComdatMembers.insert(std::make_pair(C, &GA));
}
static bool InstrumentAllFunctions(
Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
// For the context-sensitve instrumentation, we should have a separated pass
// (before LTO/ThinLTO linking) to create these variables.
if (!IsCS)
createIRLevelProfileFlagVar(M, /* IsCS */ false, PGOInstrumentEntry);
std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
collectComdatMembers(M, ComdatMembers);
for (auto &F : M) {
if (F.isDeclaration())
continue;
auto &TLI = LookupTLI(F);
auto *BPI = LookupBPI(F);
auto *BFI = LookupBFI(F);
instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
}
return true;
}
PreservedAnalyses
PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) {
createProfileFileNameVar(M, CSInstrName);
createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry);
return PreservedAnalyses::all();
}
bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & {
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS);
}
PreservedAnalyses PGOInstrumentationGen::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
static bool annotateAllFunctions(
Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
ProfileSummaryInfo *PSI, bool IsCS) {
LLVM_DEBUG(dbgs() << "Read in profile counters: ");
auto &Ctx = M.getContext();
// Read the counter array from file.
auto ReaderOrErr =
IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName);
if (Error E = ReaderOrErr.takeError()) {
handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
Ctx.diagnose(
DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
});
return false;
}
std::unique_ptr<IndexedInstrProfReader> PGOReader =
std::move(ReaderOrErr.get());
if (!PGOReader) {
Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
StringRef("Cannot get PGOReader")));
return false;
}
if (!PGOReader->hasCSIRLevelProfile() && IsCS)
return false;
// TODO: might need to change the warning once the clang option is finalized.
if (!PGOReader->isIRLevelProfile()) {
Ctx.diagnose(DiagnosticInfoPGOProfile(
ProfileFileName.data(), "Not an IR level instrumentation profile"));
return false;
}
// Add the profile summary (read from the header of the indexed summary) here
// so that we can use it below when reading counters (which checks if the
// function should be marked with a cold or inlinehint attribute).
M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
IsCS ? ProfileSummary::PSK_CSInstr
: ProfileSummary::PSK_Instr);
PSI->refresh();
std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
collectComdatMembers(M, ComdatMembers);
std::vector<Function *> HotFunctions;
std::vector<Function *> ColdFunctions;
// If the profile marked as always instrument the entry BB, do the
// same. Note this can be overwritten by the internal option in CFGMST.h
bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
if (PGOInstrumentEntry.getNumOccurrences() > 0)
InstrumentFuncEntry = PGOInstrumentEntry;
for (auto &F : M) {
if (F.isDeclaration())
continue;
auto &TLI = LookupTLI(F);
auto *BPI = LookupBPI(F);
auto *BFI = LookupBFI(F);
// Split indirectbr critical edges here before computing the MST rather than
// later in getInstrBB() to avoid invalidating it.
SplitIndirectBrCriticalEdges(F, BPI, BFI);
PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
InstrumentFuncEntry);
// When AllMinusOnes is true, it means the profile for the function
// is unrepresentative and this function is actually hot. Set the
// entry count of the function to be multiple times of hot threshold
// and drop all its internal counters.
bool AllMinusOnes = false;
bool AllZeros = false;
if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes))
continue;
if (AllZeros) {
F.setEntryCount(ProfileCount(0, Function::PCT_Real));
if (Func.getProgramMaxCount() != 0)
ColdFunctions.push_back(&F);
continue;
}
const unsigned MultiplyFactor = 3;
if (AllMinusOnes) {
uint64_t HotThreshold = PSI->getHotCountThreshold();
if (HotThreshold)
F.setEntryCount(
ProfileCount(HotThreshold * MultiplyFactor, Function::PCT_Real));
HotFunctions.push_back(&F);
continue;
}
Func.populateCounters();
Func.setBranchWeights();
Func.annotateValueSites();
Func.annotateIrrLoopHeaderWeights();
PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
if (FreqAttr == PGOUseFunc::FFA_Cold)
ColdFunctions.push_back(&F);
else if (FreqAttr == PGOUseFunc::FFA_Hot)
HotFunctions.push_back(&F);
if (PGOViewCounts != PGOVCT_None &&
(ViewBlockFreqFuncName.empty() ||
F.getName().equals(ViewBlockFreqFuncName))) {
LoopInfo LI{DominatorTree(F)};
std::unique_ptr<BranchProbabilityInfo> NewBPI =
std::make_unique<BranchProbabilityInfo>(F, LI);
std::unique_ptr<BlockFrequencyInfo> NewBFI =
std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
if (PGOViewCounts == PGOVCT_Graph)
NewBFI->view();
else if (PGOViewCounts == PGOVCT_Text) {
dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
NewBFI->print(dbgs());
}
}
if (PGOViewRawCounts != PGOVCT_None &&
(ViewBlockFreqFuncName.empty() ||
F.getName().equals(ViewBlockFreqFuncName))) {
if (PGOViewRawCounts == PGOVCT_Graph)
if (ViewBlockFreqFuncName.empty())
WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
else
ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
else if (PGOViewRawCounts == PGOVCT_Text) {
dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
Func.dumpInfo();
}
}
}
// Set function hotness attribute from the profile.
// We have to apply these attributes at the end because their presence
// can affect the BranchProbabilityInfo of any callers, resulting in an
// inconsistent MST between prof-gen and prof-use.
for (auto &F : HotFunctions) {
F->addFnAttr(Attribute::InlineHint);
LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
<< "\n");
}
for (auto &F : ColdFunctions) {
F->addFnAttr(Attribute::Cold);
LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
<< "\n");
}
return true;
}
PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename,
std::string RemappingFilename,
bool IsCS)
: ProfileFileName(std::move(Filename)),
ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) {
if (!PGOTestProfileFile.empty())
ProfileFileName = PGOTestProfileFile;
if (!PGOTestProfileRemappingFile.empty())
ProfileRemappingFileName = PGOTestProfileRemappingFile;
}
PreservedAnalyses PGOInstrumentationUse::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
auto LookupBPI = [&FAM](Function &F) {
return &FAM.getResult<BranchProbabilityAnalysis>(F);
};
auto LookupBFI = [&FAM](Function &F) {
return &FAM.getResult<BlockFrequencyAnalysis>(F);
};
auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName,
LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) {
if (skipModule(M))
return false;
auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & {
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
};
auto LookupBPI = [this](Function &F) {
return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI();
};
auto LookupBFI = [this](Function &F) {
return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
};
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI,
LookupBFI, PSI, IsCS);
}
static std::string getSimpleNodeName(const BasicBlock *Node) {
if (!Node->getName().empty())
return std::string(Node->getName());
std::string SimpleNodeName;
raw_string_ostream OS(SimpleNodeName);
Node->printAsOperand(OS, false);
return OS.str();
}
void llvm::setProfMetadata(Module *M, Instruction *TI,
ArrayRef<uint64_t> EdgeCounts,
uint64_t MaxCount) {
MDBuilder MDB(M->getContext());
assert(MaxCount > 0 && "Bad max count");
uint64_t Scale = calculateCountScale(MaxCount);
SmallVector<unsigned, 4> Weights;
for (const auto &ECI : EdgeCounts)
Weights.push_back(scaleBranchCount(ECI, Scale));
LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
: Weights) {
dbgs() << W << " ";
} dbgs() << "\n";);
TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
if (EmitBranchProbability) {
std::string BrCondStr = getBranchCondString(TI);
if (BrCondStr.empty())
return;
uint64_t WSum =
std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
[](uint64_t w1, uint64_t w2) { return w1 + w2; });
uint64_t TotalCount =
std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
[](uint64_t c1, uint64_t c2) { return c1 + c2; });
Scale = calculateCountScale(WSum);
BranchProbability BP(scaleBranchCount(Weights[0], Scale),
scaleBranchCount(WSum, Scale));
std::string BranchProbStr;
raw_string_ostream OS(BranchProbStr);
OS << BP;
OS << " (total count : " << TotalCount << ")";
OS.flush();
Function *F = TI->getParent()->getParent();
OptimizationRemarkEmitter ORE(F);
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
<< BrCondStr << " is true with probability : " << BranchProbStr;
});
}
}
namespace llvm {
void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
MDBuilder MDB(M->getContext());
TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
MDB.createIrrLoopHeaderWeight(Count));
}
template <> struct GraphTraits<PGOUseFunc *> {
using NodeRef = const BasicBlock *;
using ChildIteratorType = const_succ_iterator;
using nodes_iterator = pointer_iterator<Function::const_iterator>;
static NodeRef getEntryNode(const PGOUseFunc *G) {
return &G->getFunc().front();
}
static ChildIteratorType child_begin(const NodeRef N) {
return succ_begin(N);
}
static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
static nodes_iterator nodes_begin(const PGOUseFunc *G) {
return nodes_iterator(G->getFunc().begin());
}
static nodes_iterator nodes_end(const PGOUseFunc *G) {
return nodes_iterator(G->getFunc().end());
}
};
template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
explicit DOTGraphTraits(bool isSimple = false)
: DefaultDOTGraphTraits(isSimple) {}
static std::string getGraphName(const PGOUseFunc *G) {
return std::string(G->getFunc().getName());
}
std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
std::string Result;
raw_string_ostream OS(Result);
OS << getSimpleNodeName(Node) << ":\\l";
UseBBInfo *BI = Graph->findBBInfo(Node);
OS << "Count : ";
if (BI && BI->CountValid)
OS << BI->CountValue << "\\l";
else
OS << "Unknown\\l";
if (!PGOInstrSelect)
return Result;
for (auto BI = Node->begin(); BI != Node->end(); ++BI) {
auto *I = &*BI;
if (!isa<SelectInst>(I))
continue;
// Display scaled counts for SELECT instruction:
OS << "SELECT : { T = ";
uint64_t TC, FC;
bool HasProf = I->extractProfMetadata(TC, FC);
if (!HasProf)
OS << "Unknown, F = Unknown }\\l";
else
OS << TC << ", F = " << FC << " }\\l";
}
return Result;
}
};
} // end namespace llvm