1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/unittests/Analysis/UnrollAnalyzerTest.cpp
Philip Reames 88bae72814 [unroll] Use value domain for symbolic execution based cost model
The current full unroll cost model does a symbolic evaluation of the loop up to a fixed limit. That symbolic evaluation currently simplifies to constants, but we can generalize to arbitrary Values using the InstructionSimplify infrastructure at very low cost.

By itself, this enables some simplifications, but it's mainly useful when combined with the branch simplification over in D102928.

Differential Revision: https://reviews.llvm.org/D102934
2021-05-26 08:41:25 -07:00

332 lines
12 KiB
C++

//===- UnrollAnalyzerTest.cpp - UnrollAnalyzer unit tests -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopUnrollAnalyzer.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace llvm {
void initializeUnrollAnalyzerTestPass(PassRegistry &);
static SmallVector<DenseMap<Value *, Value *>, 16> SimplifiedValuesVector;
static unsigned TripCount = 0;
namespace {
struct UnrollAnalyzerTest : public FunctionPass {
static char ID;
bool runOnFunction(Function &F) override {
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Function::iterator FI = F.begin();
FI++; // First basic block is entry - skip it.
BasicBlock *Header = &*FI++;
Loop *L = LI->getLoopFor(Header);
BasicBlock *Exiting = L->getExitingBlock();
SimplifiedValuesVector.clear();
TripCount = SE->getSmallConstantTripCount(L, Exiting);
for (unsigned Iteration = 0; Iteration < TripCount; Iteration++) {
DenseMap<Value *, Value *> SimplifiedValues;
UnrolledInstAnalyzer Analyzer(Iteration, SimplifiedValues, *SE, L);
for (auto *BB : L->getBlocks())
for (Instruction &I : *BB)
Analyzer.visit(I);
SimplifiedValuesVector.push_back(SimplifiedValues);
}
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.setPreservesAll();
}
UnrollAnalyzerTest() : FunctionPass(ID) {
initializeUnrollAnalyzerTestPass(*PassRegistry::getPassRegistry());
}
};
}
char UnrollAnalyzerTest::ID = 0;
std::unique_ptr<Module> makeLLVMModule(LLVMContext &Context,
const char *ModuleStr) {
SMDiagnostic Err;
return parseAssemblyString(ModuleStr, Err, Context);
}
TEST(UnrollAnalyzerTest, BasicSimplifications) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define i64 @propagate_loop_phis() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %iv = phi i64 [ 0, %entry ], [ %inc, %loop ]\n"
" %x0 = phi i64 [ 0, %entry ], [ %x2, %loop ]\n"
" %x1 = or i64 %x0, 1\n"
" %x2 = or i64 %x1, 2\n"
" %inc = add nuw nsw i64 %iv, 1\n"
" %cond = icmp sge i64 %inc, 8\n"
" br i1 %cond, label %loop.end, label %loop\n"
"loop.end:\n"
" %x.lcssa = phi i64 [ %x2, %loop ]\n"
" ret i64 %x.lcssa\n"
"}\n";
UnrollAnalyzerTest *P = new UnrollAnalyzerTest();
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
// Perform checks
Module::iterator MI = M->begin();
Function *F = &*MI++;
Function::iterator FI = F->begin();
FI++; // First basic block is entry - skip it.
BasicBlock *Header = &*FI++;
BasicBlock::iterator BBI = Header->begin();
std::advance(BBI, 4);
Instruction *Y1 = &*BBI++;
Instruction *Y2 = &*BBI++;
// Check simplification expected on the 1st iteration.
// Check that "%inc = add nuw nsw i64 %iv, 1" is simplified to 1
auto I1 = SimplifiedValuesVector[0].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[0].end());
EXPECT_EQ(cast<ConstantInt>((*I1).second)->getZExtValue(), 1U);
// Check that "%cond = icmp sge i64 %inc, 10" is simplified to false
auto I2 = SimplifiedValuesVector[0].find(Y2);
EXPECT_TRUE(I2 != SimplifiedValuesVector[0].end());
EXPECT_FALSE(cast<ConstantInt>((*I2).second)->getZExtValue());
// Check simplification expected on the last iteration.
// Check that "%inc = add nuw nsw i64 %iv, 1" is simplified to 8
I1 = SimplifiedValuesVector[TripCount - 1].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[TripCount - 1].end());
EXPECT_EQ(cast<ConstantInt>((*I1).second)->getZExtValue(), TripCount);
// Check that "%cond = icmp sge i64 %inc, 10" is simplified to false
I2 = SimplifiedValuesVector[TripCount - 1].find(Y2);
EXPECT_TRUE(I2 != SimplifiedValuesVector[TripCount - 1].end());
EXPECT_TRUE(cast<ConstantInt>((*I2).second)->getZExtValue());
}
TEST(UnrollAnalyzerTest, OuterLoopSimplification) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define void @foo() {\n"
"entry:\n"
" br label %outer.loop\n"
"outer.loop:\n"
" %iv.outer = phi i64 [ 0, %entry ], [ %iv.outer.next, %outer.loop.latch ]\n"
" %iv.outer.next = add nuw nsw i64 %iv.outer, 1\n"
" br label %inner.loop\n"
"inner.loop:\n"
" %iv.inner = phi i64 [ 0, %outer.loop ], [ %iv.inner.next, %inner.loop ]\n"
" %iv.inner.next = add nuw nsw i64 %iv.inner, 1\n"
" %exitcond.inner = icmp eq i64 %iv.inner.next, 1000\n"
" br i1 %exitcond.inner, label %outer.loop.latch, label %inner.loop\n"
"outer.loop.latch:\n"
" %exitcond.outer = icmp eq i64 %iv.outer.next, 40\n"
" br i1 %exitcond.outer, label %exit, label %outer.loop\n"
"exit:\n"
" ret void\n"
"}\n";
UnrollAnalyzerTest *P = new UnrollAnalyzerTest();
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
Module::iterator MI = M->begin();
Function *F = &*MI++;
Function::iterator FI = F->begin();
FI++;
BasicBlock *Header = &*FI++;
BasicBlock *InnerBody = &*FI++;
BasicBlock::iterator BBI = Header->begin();
BBI++;
Instruction *Y1 = &*BBI;
BBI = InnerBody->begin();
BBI++;
Instruction *Y2 = &*BBI;
// Check that we can simplify IV of the outer loop, but can't simplify the IV
// of the inner loop if we only know the iteration number of the outer loop.
//
// Y1 is %iv.outer.next, Y2 is %iv.inner.next
auto I1 = SimplifiedValuesVector[0].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[0].end());
auto I2 = SimplifiedValuesVector[0].find(Y2);
EXPECT_TRUE(I2 == SimplifiedValuesVector[0].end());
}
TEST(UnrollAnalyzerTest, CmpSimplifications) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define void @branch_iv_trunc() {\n"
"entry:\n"
" br label %for.body\n"
"for.body:\n"
" %indvars.iv = phi i64 [ 0, %entry ], [ %tmp3, %for.body ]\n"
" %tmp2 = trunc i64 %indvars.iv to i32\n"
" %cmp3 = icmp eq i32 %tmp2, 5\n"
" %tmp3 = add nuw nsw i64 %indvars.iv, 1\n"
" %exitcond = icmp eq i64 %tmp3, 10\n"
" br i1 %exitcond, label %for.end, label %for.body\n"
"for.end:\n"
" ret void\n"
"}\n";
UnrollAnalyzerTest *P = new UnrollAnalyzerTest();
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
// Perform checks
Module::iterator MI = M->begin();
Function *F = &*MI++;
Function::iterator FI = F->begin();
FI++; // First basic block is entry - skip it.
BasicBlock *Header = &*FI++;
BasicBlock::iterator BBI = Header->begin();
BBI++;
Instruction *Y1 = &*BBI++;
Instruction *Y2 = &*BBI++;
// Check simplification expected on the 5th iteration.
// Check that "%tmp2 = trunc i64 %indvars.iv to i32" is simplified to 5
// and "%cmp3 = icmp eq i32 %tmp2, 5" is simplified to 1 (i.e. true).
auto I1 = SimplifiedValuesVector[5].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I1).second)->getZExtValue(), 5U);
auto I2 = SimplifiedValuesVector[5].find(Y2);
EXPECT_TRUE(I2 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I2).second)->getZExtValue(), 1U);
}
TEST(UnrollAnalyzerTest, PtrCmpSimplifications) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"define void @ptr_cmp(i8 *%a) {\n"
"entry:\n"
" %limit = getelementptr i8, i8* %a, i64 40\n"
" %start.iv2 = getelementptr i8, i8* %a, i64 7\n"
" br label %loop.body\n"
"loop.body:\n"
" %iv.0 = phi i8* [ %a, %entry ], [ %iv.1, %loop.body ]\n"
" %iv2.0 = phi i8* [ %start.iv2, %entry ], [ %iv2.1, %loop.body ]\n"
" %cmp = icmp eq i8* %iv2.0, %iv.0\n"
" %iv.1 = getelementptr inbounds i8, i8* %iv.0, i64 1\n"
" %iv2.1 = getelementptr inbounds i8, i8* %iv2.0, i64 1\n"
" %exitcond = icmp ne i8* %iv.1, %limit\n"
" br i1 %exitcond, label %loop.body, label %loop.exit\n"
"loop.exit:\n"
" ret void\n"
"}\n";
UnrollAnalyzerTest *P = new UnrollAnalyzerTest();
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
// Perform checks
Module::iterator MI = M->begin();
Function *F = &*MI++;
Function::iterator FI = F->begin();
FI++; // First basic block is entry - skip it.
BasicBlock *Header = &*FI;
BasicBlock::iterator BBI = Header->begin();
std::advance(BBI, 2);
Instruction *Y1 = &*BBI;
// Check simplification expected on the 5th iteration.
// Check that "%cmp = icmp eq i8* %iv2.0, %iv.0" is simplified to 0.
auto I1 = SimplifiedValuesVector[5].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I1).second)->getZExtValue(), 0U);
}
TEST(UnrollAnalyzerTest, CastSimplifications) {
const char *ModuleStr =
"target datalayout = \"e-m:o-i64:64-f80:128-n8:16:32:64-S128\"\n"
"@known_constant = internal unnamed_addr constant [10 x i32] [i32 0, i32 1, i32 0, i32 1, i32 0, i32 259, i32 0, i32 1, i32 0, i32 1], align 16\n"
"define void @const_load_cast() {\n"
"entry:\n"
" br label %loop\n"
"\n"
"loop:\n"
" %iv = phi i64 [ 0, %entry ], [ %inc, %loop ]\n"
" %array_const_idx = getelementptr inbounds [10 x i32], [10 x i32]* @known_constant, i64 0, i64 %iv\n"
" %const_array_element = load i32, i32* %array_const_idx, align 4\n"
" %se = sext i32 %const_array_element to i64\n"
" %ze = zext i32 %const_array_element to i64\n"
" %tr = trunc i32 %const_array_element to i8\n"
" %inc = add nuw nsw i64 %iv, 1\n"
" %exitcond86.i = icmp eq i64 %inc, 10\n"
" br i1 %exitcond86.i, label %loop.end, label %loop\n"
"\n"
"loop.end:\n"
" ret void\n"
"}\n";
UnrollAnalyzerTest *P = new UnrollAnalyzerTest();
LLVMContext Context;
std::unique_ptr<Module> M = makeLLVMModule(Context, ModuleStr);
legacy::PassManager Passes;
Passes.add(P);
Passes.run(*M);
// Perform checks
Module::iterator MI = M->begin();
Function *F = &*MI++;
Function::iterator FI = F->begin();
FI++; // First basic block is entry - skip it.
BasicBlock *Header = &*FI++;
BasicBlock::iterator BBI = Header->begin();
std::advance(BBI, 3);
Instruction *Y1 = &*BBI++;
Instruction *Y2 = &*BBI++;
Instruction *Y3 = &*BBI++;
// Check simplification expected on the 5th iteration.
// "%se = sext i32 %const_array_element to i64" should be simplified to 259,
// "%ze = zext i32 %const_array_element to i64" should be simplified to 259,
// "%tr = trunc i32 %const_array_element to i8" should be simplified to 3.
auto I1 = SimplifiedValuesVector[5].find(Y1);
EXPECT_TRUE(I1 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I1).second)->getZExtValue(), 259U);
auto I2 = SimplifiedValuesVector[5].find(Y2);
EXPECT_TRUE(I2 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I2).second)->getZExtValue(), 259U);
auto I3 = SimplifiedValuesVector[5].find(Y3);
EXPECT_TRUE(I3 != SimplifiedValuesVector[5].end());
EXPECT_EQ(cast<ConstantInt>((*I3).second)->getZExtValue(), 3U);
}
} // end namespace llvm
INITIALIZE_PASS_BEGIN(UnrollAnalyzerTest, "unrollanalyzertestpass",
"unrollanalyzertestpass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(UnrollAnalyzerTest, "unrollanalyzertestpass",
"unrollanalyzertestpass", false, false)