1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/test/Transforms/CalledValuePropagation/simple-arguments.ll
Matthew Simpson 05237a905d Add CalledValuePropagation pass
This patch adds a new pass for attaching !callees metadata to indirect call
sites. The pass propagates values to call sites by performing an IPSCCP-like
analysis using the generic sparse propagation solver. For indirect call sites
having a small set of possible callees, the attached metadata indicates what
those callees are. The metadata can be used to facilitate optimizations like
intersecting the function attributes of the possible callees, refining the call
graph, performing indirect call promotion, etc.

Differential Revision: https://reviews.llvm.org/D37355

llvm-svn: 316576
2017-10-25 13:40:08 +00:00

84 lines
2.3 KiB
LLVM

; RUN: opt -called-value-propagation -S < %s | FileCheck %s
target triple = "aarch64-unknown-linux-gnueabi"
; This test checks that we propagate the functions through arguments and attach
; !callees metadata to the call. Such metadata can enable optimizations of this
; code sequence.
;
; For example, the code below a illustrates a contrived sort-like algorithm
; that accepts a pointer to a comparison function. Since the indirect call to
; the comparison function has only two targets, the call can be promoted to two
; direct calls using an if-then-else. The loop can then be unswitched and the
; called functions inlined. This essentially produces two loops, once
; specialized for each comparison.
;
; CHECK: %tmp3 = call i1 %cmp(i64* %tmp1, i64* %tmp2), !callees ![[MD:[0-9]+]]
; CHECK: ![[MD]] = !{i1 (i64*, i64*)* @ugt, i1 (i64*, i64*)* @ule}
;
define void @test_argument(i64* %x, i64 %n, i1 %flag) {
entry:
%tmp0 = sub i64 %n, 1
br i1 %flag, label %then, label %else
then:
call void @arrange_data(i64* %x, i64 %tmp0, i1 (i64*, i64*)* @ugt)
br label %merge
else:
call void @arrange_data(i64* %x, i64 %tmp0, i1 (i64*, i64*)* @ule)
br label %merge
merge:
ret void
}
define internal void @arrange_data(i64* %x, i64 %n, i1 (i64*, i64*)* %cmp) {
entry:
%tmp0 = icmp eq i64 %n, 1
br i1 %tmp0, label %merge, label %for.body
for.body:
%i = phi i64 [ 0, %entry ], [ %i.next, %cmp.false ]
%i.next = add nuw nsw i64 %i, 1
%tmp1 = getelementptr inbounds i64, i64* %x, i64 %i
%tmp2 = getelementptr inbounds i64, i64* %x, i64 %i.next
%tmp3 = call i1 %cmp(i64* %tmp1, i64* %tmp2)
br i1 %tmp3, label %cmp.true, label %cmp.false
cmp.true:
call void @swap(i64* %tmp1, i64* %tmp2)
br label %cmp.false
cmp.false:
%cond = icmp slt i64 %i.next, %n
br i1 %cond, label %for.body, label %for.end
for.end:
%tmp4 = sub i64 %n, 1
call void @arrange_data(i64* %x, i64 %tmp4, i1 (i64*, i64*)* %cmp)
br label %merge
merge:
ret void
}
define internal i1 @ugt(i64* %a, i64* %b) {
entry:
%tmp0 = load i64, i64* %a
%tmp1 = load i64, i64* %b
%tmp2 = icmp ugt i64 %tmp0, %tmp1
ret i1 %tmp2
}
define internal i1 @ule(i64* %a, i64* %b) {
entry:
%tmp0 = load i64, i64* %a
%tmp1 = load i64, i64* %b
%tmp2 = icmp ule i64 %tmp0, %tmp1
ret i1 %tmp2
}
declare void @swap(i64*, i64*)