1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/utils/TableGen/DAGISelEmitter.h
Chris Lattner b018f20c7b Make tblgen emit:
tblgen: In ZAPNOTi: Cannot use 'IZAPX' in an input pattern!
for a bad pattern, instead of an ugly assertion.

llvm-svn: 23854
2005-10-21 01:19:59 +00:00

429 lines
16 KiB
C++

//===- DAGISelEmitter.h - Generate an instruction selector ------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#ifndef DAGISEL_EMITTER_H
#define DAGISEL_EMITTER_H
#include "TableGenBackend.h"
#include "CodeGenTarget.h"
namespace llvm {
class Record;
struct Init;
class ListInit;
class DagInit;
class SDNodeInfo;
class TreePattern;
class TreePatternNode;
class DAGISelEmitter;
/// MVT::DAGISelGenValueType - These are some extended forms of MVT::ValueType
/// that we use as lattice values during type inferrence.
namespace MVT {
enum DAGISelGenValueType {
isFP = MVT::LAST_VALUETYPE,
isInt,
isUnknown
};
}
/// SDTypeConstraint - This is a discriminated union of constraints,
/// corresponding to the SDTypeConstraint tablegen class in Target.td.
struct SDTypeConstraint {
SDTypeConstraint(Record *R);
unsigned OperandNo; // The operand # this constraint applies to.
enum {
SDTCisVT, SDTCisInt, SDTCisFP, SDTCisSameAs, SDTCisVTSmallerThanOp,
SDTCisOpSmallerThanOp
} ConstraintType;
union { // The discriminated union.
struct {
MVT::ValueType VT;
} SDTCisVT_Info;
struct {
unsigned OtherOperandNum;
} SDTCisSameAs_Info;
struct {
unsigned OtherOperandNum;
} SDTCisVTSmallerThanOp_Info;
struct {
unsigned BigOperandNum;
} SDTCisOpSmallerThanOp_Info;
} x;
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
TreePattern &TP) const;
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
unsigned NumResults) const;
};
/// SDNodeInfo - One of these records is created for each SDNode instance in
/// the target .td file. This represents the various dag nodes we will be
/// processing.
class SDNodeInfo {
Record *Def;
std::string EnumName;
std::string SDClassName;
unsigned Properties;
unsigned NumResults;
int NumOperands;
std::vector<SDTypeConstraint> TypeConstraints;
public:
SDNodeInfo(Record *R); // Parse the specified record.
unsigned getNumResults() const { return NumResults; }
int getNumOperands() const { return NumOperands; }
Record *getRecord() const { return Def; }
const std::string &getEnumName() const { return EnumName; }
const std::string &getSDClassName() const { return SDClassName; }
const std::vector<SDTypeConstraint> &getTypeConstraints() const {
return TypeConstraints;
}
// SelectionDAG node properties.
enum SDNP { SDNPCommutative, SDNPAssociative };
/// hasProperty - Return true if this node has the specified property.
///
bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
/// ApplyTypeConstraints - Given a node in a pattern, apply the type
/// constraints for this node to the operands of the node. This returns
/// true if it makes a change, false otherwise. If a type contradiction is
/// found, throw an exception.
bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const {
bool MadeChange = false;
for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
return MadeChange;
}
};
/// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped
/// patterns), and as such should be ref counted. We currently just leak all
/// TreePatternNode objects!
class TreePatternNode {
/// The inferred type for this node, or MVT::LAST_VALUETYPE if it hasn't
/// been determined yet.
unsigned char Ty;
/// Operator - The Record for the operator if this is an interior node (not
/// a leaf).
Record *Operator;
/// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
///
Init *Val;
/// Name - The name given to this node with the :$foo notation.
///
std::string Name;
/// PredicateFn - The predicate function to execute on this node to check
/// for a match. If this string is empty, no predicate is involved.
std::string PredicateFn;
/// TransformFn - The transformation function to execute on this node before
/// it can be substituted into the resulting instruction on a pattern match.
Record *TransformFn;
std::vector<TreePatternNode*> Children;
public:
TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch)
: Ty(MVT::isUnknown), Operator(Op), Val(0), TransformFn(0),
Children(Ch) {}
TreePatternNode(Init *val) // leaf ctor
: Ty(MVT::isUnknown), Operator(0), Val(val), TransformFn(0) {}
~TreePatternNode();
const std::string &getName() const { return Name; }
void setName(const std::string &N) { Name = N; }
bool isLeaf() const { return Val != 0; }
bool hasTypeSet() const { return Ty < MVT::LAST_VALUETYPE; }
bool isTypeCompletelyUnknown() const {
return Ty == MVT::isUnknown;
}
MVT::ValueType getType() const {
assert(hasTypeSet() && "Doesn't have a type yet!");
return (MVT::ValueType)Ty;
}
unsigned char getExtType() const { return Ty; }
void setType(unsigned char VT) { Ty = VT; }
Init *getLeafValue() const { assert(isLeaf()); return Val; }
Record *getOperator() const { assert(!isLeaf()); return Operator; }
unsigned getNumChildren() const { return Children.size(); }
TreePatternNode *getChild(unsigned N) const { return Children[N]; }
void setChild(unsigned i, TreePatternNode *N) {
Children[i] = N;
}
const std::string &getPredicateFn() const { return PredicateFn; }
void setPredicateFn(const std::string &Fn) { PredicateFn = Fn; }
Record *getTransformFn() const { return TransformFn; }
void setTransformFn(Record *Fn) { TransformFn = Fn; }
void print(std::ostream &OS) const;
void dump() const;
public: // Higher level manipulation routines.
/// clone - Return a new copy of this tree.
///
TreePatternNode *clone() const;
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool isIsomorphicTo(const TreePatternNode *N) const;
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void SubstituteFormalArguments(std::map<std::string,
TreePatternNode*> &ArgMap);
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *InlinePatternFragments(TreePattern &TP);
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then throw an
/// exception. This returns true if any information was updated.
///
bool UpdateNodeType(unsigned char EVT, TreePattern &TP);
/// ContainsUnresolvedType - Return true if this tree contains any
/// unresolved types.
bool ContainsUnresolvedType() const {
if (!hasTypeSet()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (getChild(i)->ContainsUnresolvedType()) return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true.
bool canPatternMatch(std::string &Reason, DAGISelEmitter &ISE);
};
/// TreePattern - Represent a pattern, used for instructions, pattern
/// fragments, etc.
///
class TreePattern {
/// Trees - The list of pattern trees which corresponds to this pattern.
/// Note that PatFrag's only have a single tree.
///
std::vector<TreePatternNode*> Trees;
/// TheRecord - The actual TableGen record corresponding to this pattern.
///
Record *TheRecord;
/// Args - This is a list of all of the arguments to this pattern (for
/// PatFrag patterns), which are the 'node' markers in this pattern.
std::vector<std::string> Args;
/// ISE - the DAG isel emitter coordinating this madness.
///
DAGISelEmitter &ISE;
/// isInputPattern - True if this is an input pattern, something to match.
/// False if this is an output pattern, something to emit.
bool isInputPattern;
public:
/// TreePattern constructor - Parse the specified DagInits into the
/// current record.
TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
DAGISelEmitter &ise);
TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
DAGISelEmitter &ise);
TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
DAGISelEmitter &ise);
/// getTrees - Return the tree patterns which corresponds to this pattern.
///
const std::vector<TreePatternNode*> &getTrees() const { return Trees; }
unsigned getNumTrees() const { return Trees.size(); }
TreePatternNode *getTree(unsigned i) const { return Trees[i]; }
TreePatternNode *getOnlyTree() const {
assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
return Trees[0];
}
/// getRecord - Return the actual TableGen record corresponding to this
/// pattern.
///
Record *getRecord() const { return TheRecord; }
unsigned getNumArgs() const { return Args.size(); }
const std::string &getArgName(unsigned i) const {
assert(i < Args.size() && "Argument reference out of range!");
return Args[i];
}
std::vector<std::string> &getArgList() { return Args; }
DAGISelEmitter &getDAGISelEmitter() const { return ISE; }
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
void InlinePatternFragments() {
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
Trees[i] = Trees[i]->InlinePatternFragments(*this);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are infered, false
/// otherwise. Throw an exception if a type contradiction is found.
bool InferAllTypes();
/// error - Throw an exception, prefixing it with information about this
/// pattern.
void error(const std::string &Msg) const;
void print(std::ostream &OS) const;
void dump() const;
private:
TreePatternNode *ParseTreePattern(DagInit *DI);
};
class DAGInstruction {
TreePattern *Pattern;
unsigned NumResults;
unsigned NumOperands;
std::vector<MVT::ValueType> ResultTypes;
std::vector<MVT::ValueType> OperandTypes;
TreePatternNode *ResultPattern;
public:
DAGInstruction(TreePattern *TP,
const std::vector<MVT::ValueType> &resultTypes,
const std::vector<MVT::ValueType> &operandTypes)
: Pattern(TP), ResultTypes(resultTypes), OperandTypes(operandTypes),
ResultPattern(0) {}
TreePattern *getPattern() const { return Pattern; }
unsigned getNumResults() const { return ResultTypes.size(); }
unsigned getNumOperands() const { return OperandTypes.size(); }
void setResultPattern(TreePatternNode *R) { ResultPattern = R; }
MVT::ValueType getResultType(unsigned RN) const {
assert(RN < ResultTypes.size());
return ResultTypes[RN];
}
MVT::ValueType getOperandType(unsigned ON) const {
assert(ON < OperandTypes.size());
return OperandTypes[ON];
}
TreePatternNode *getResultPattern() const { return ResultPattern; }
};
/// InstrSelectorEmitter - The top-level class which coordinates construction
/// and emission of the instruction selector.
///
class DAGISelEmitter : public TableGenBackend {
public:
typedef std::pair<TreePatternNode*, TreePatternNode*> PatternToMatch;
private:
RecordKeeper &Records;
CodeGenTarget Target;
std::map<Record*, SDNodeInfo> SDNodes;
std::map<Record*, std::pair<Record*, std::string> > SDNodeXForms;
std::map<Record*, TreePattern*> PatternFragments;
std::map<Record*, DAGInstruction> Instructions;
/// PatternsToMatch - All of the things we are matching on the DAG. The first
/// value is the pattern to match, the second pattern is the result to
/// emit.
std::vector<PatternToMatch> PatternsToMatch;
public:
DAGISelEmitter(RecordKeeper &R) : Records(R) {}
// run - Output the isel, returning true on failure.
void run(std::ostream &OS);
const CodeGenTarget &getTargetInfo() const { return Target; }
const SDNodeInfo &getSDNodeInfo(Record *R) const {
assert(SDNodes.count(R) && "Unknown node!");
return SDNodes.find(R)->second;
}
TreePattern *getPatternFragment(Record *R) const {
assert(PatternFragments.count(R) && "Invalid pattern fragment request!");
return PatternFragments.find(R)->second;
}
const std::pair<Record*, std::string> &getSDNodeTransform(Record *R) const {
assert(SDNodeXForms.count(R) && "Invalid transform!");
return SDNodeXForms.find(R)->second;
}
const DAGInstruction &getInstruction(Record *R) const {
assert(Instructions.count(R) && "Unknown instruction!");
return Instructions.find(R)->second;
}
private:
void ParseNodeInfo();
void ParseNodeTransforms(std::ostream &OS);
void ParsePatternFragments(std::ostream &OS);
void ParseInstructions();
void ParsePatterns();
void GenerateVariants();
void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string,
TreePatternNode*> &InstInputs,
std::map<std::string, Record*> &InstResults);
void EmitMatchForPattern(TreePatternNode *N, const std::string &RootName,
std::map<std::string,std::string> &VarMap,
unsigned PatternNo, std::ostream &OS);
unsigned CodeGenPatternResult(TreePatternNode *N, unsigned &Ctr,
std::map<std::string,std::string> &VariableMap,
std::ostream &OS, bool isRoot = false);
void EmitCodeForPattern(PatternToMatch &Pattern, std::ostream &OS);
void EmitInstructionSelector(std::ostream &OS);
};
} // End llvm namespace
#endif