1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00

Refactor aarch64 JIT code

This commit is contained in:
kd-11 2024-08-16 02:59:21 +03:00 committed by kd-11
parent fd6ebe2895
commit 2faa61ac31
2 changed files with 158 additions and 96 deletions

View File

@ -333,99 +333,20 @@ namespace aarch64
// However, there is not much guarantee that those are safe with only rare exceptions, and it doesn't hurt to patch the frame around them that much anyway.
}
terminator_found |= instruction_info.is_tail_call;
if (!instruction_info.preserve_stack)
if (instruction_info.preserve_stack)
{
// Now we patch the call if required. For normal calls that 'return' (i.e calls to C/C++ ABI), we do not patch them as they will manage the stack themselves (callee-managed)
llvm::Instruction* original_inst = llvm::dyn_cast<llvm::Instruction>(bit);
irb->SetInsertPoint(ensure(llvm::dyn_cast<llvm::Instruction>(bit)));
// Non-tail call. If we have a stack allocated, we preserve it across the call
++bit;
continue;
}
// We're about to make a tail call. This means after this call, we're supposed to return immediately. In that case, don't link, lower to branch only.
// Note that branches have some undesirable side-effects. For one, we lose the argument inputs, which the callee is expecting.
// This means we burn some cycles on every exit, but in return we do not require one instruction on the prologue + the ret chain is eliminated.
// No ret-chain also means two BBs can call each other indefinitely without running out of stack without relying on llvm to optimize that away.
std::string exit_fn;
auto ci = ensure(llvm::dyn_cast<llvm::CallInst>(original_inst));
auto operand_count = ci->getNumOperands() - 1; // The last operand is the callee, not a real operand
std::vector<std::string> constraints;
std::vector<llvm::Value*> args;
// We now load the callee args in reverse order to avoid self-clobbering of dependencies.
// FIXME: This is often times redundant and wastes cycles, we'll clean this up in a MachineFunction pass later.
int args_base_reg = instruction_info.callee_is_GHC ? aarch64::x19 : aarch64::x0; // GHC args are always x19..x25
for (auto i = static_cast<int>(operand_count) - 1; i >= 0; --i)
{
args.push_back(ci->getOperand(i));
exit_fn += fmt::format("mov x%d, $%u;\n", (args_base_reg + i), ::size32(args) - 1);
constraints.push_back("r");
}
// Restore LR to the exit gate if we think it may have been trampled.
if (function_info.clobbers_x30)
{
// Load the context "base" thread register to restore the link register from
auto context_base_reg = get_base_register_for_call(instruction_info.callee_name);
if (!instruction_info.callee_is_GHC)
{
// For non-GHC calls, we have to remap the arguments to x0...
context_base_reg = static_cast<gpr>(context_base_reg - 19);
}
// We want to do this after loading the arguments in case there was any spilling involved.
DPRINT("Patching call from %s to %s on register %d...",
this_name.c_str(),
instruction_info.callee_name.c_str(),
static_cast<int>(context_base_reg));
const auto x30_tail_restore = fmt::format(
"ldr x30, [x%u, #%u];\n", // Load x30 from thread context
static_cast<u32>(context_base_reg),
m_config.hypervisor_context_offset);
exit_fn += x30_tail_restore;
}
// Stack cleanup. We need to do this last to allow the spiller to find it's own spilled variables.
if (function_info.stack_frame_size > 0)
{
exit_fn += frame_epilogue;
}
if (m_config.debug_info)
{
// Store x27 as our current address taking the place of LR (for debugging since bt is now useless)
// x28 and x29 are used as breadcrumb registers in this mode to form a pseudo-backtrace.
exit_fn +=
"mov x29, x28;\n"
"mov x28, x27;\n"
"adr x27, .;\n";
}
auto target = ensure(ci->getCalledOperand());
args.push_back(target);
if (instruction_info.is_indirect)
{
// NOTE: For indirect calls, we read the callee register before we load the operands
// If we don't do that the operands will overwrite our callee address if it lies in the x19-x25 range
// There is no safe temp register to stuff the call address to either, you just have to stuff it below sp and load it after operands are all assigned.
constraints.push_back("r");
exit_fn = fmt::format("str $%u, [sp, #-8];\n", operand_count) + exit_fn;
exit_fn +=
"ldr x15, [sp, #-8];\n"
"br x15;\n";
}
else
{
constraints.push_back("i");
exit_fn += fmt::format("b $%u;\n", operand_count);
}
// Emit the branch
llvm_asm(irb, exit_fn, args, fmt::merge(constraints, ","), f.getContext());
ensure(instruction_info.is_tail_call);
terminator_found = true;
// Now we patch the call if required. For normal calls that 'return' (i.e calls to C/C++ ABI), we do not patch them as they will manage the stack themselves (callee-managed)
auto ci = llvm::dyn_cast<llvm::CallInst>(bit);
if (patch_tail_call(irb, f, ci, instruction_info, function_info, frame_epilogue))
{
// Delete original call instruction
bit = ci->eraseFromParent();
}
@ -458,6 +379,120 @@ namespace aarch64
}
}
bool GHC_frame_preservation_pass::patch_tail_call(
llvm::IRBuilder<>* irb,
llvm::Function& f,
llvm::CallInst* ci,
const instruction_info_t& instruction_info,
const function_info_t& function_info,
const std::string& frame_epilogue)
{
ensure(ci);
const auto this_name = f.getName().str();
irb->SetInsertPoint(ci);
// We're about to make a tail call. This means after this call, we're supposed to return immediately. In that case, don't link, lower to branch only.
// Note that branches have some undesirable side-effects. For one, we lose the argument inputs, which the callee is expecting.
// This means we burn some cycles on every exit, but in return we do not require one instruction on the prologue + the ret chain is eliminated.
// No ret-chain also means two BBs can call each other indefinitely without running out of stack without relying on llvm to optimize that away.
std::string exit_fn;
auto operand_count = ci->getNumOperands() - 1; // The last operand is the callee, not a real operand
std::vector<std::string> arg_constraints;
std::vector<llvm::Value*> unused_args; // To ref/touch
std::vector<llvm::Value*> args;
// We now load the callee args in reverse order to avoid self-clobbering of dependencies.
// FIXME: This is often times redundant and wastes cycles, we'll clean this up in a MachineFunction pass later.
int args_base_reg = instruction_info.callee_is_GHC ? aarch64::x19 : aarch64::x0; // GHC args are always x19..x25
for (auto i = static_cast<int>(operand_count) - 1; i >= 0; --i)
{
llvm::Value* arg = ci->getOperand(i);
args.push_back(arg);
exit_fn += fmt::format("mov %s, $%u;\n", gpr_names[args_base_reg + i], ::size32(args) - 1);
arg_constraints.push_back("r");
}
// Restore LR to the exit gate if we think it may have been trampled.
if (function_info.clobbers_x30)
{
// Load the context "base" thread register to restore the link register from
auto context_base_reg = get_base_register_for_call(instruction_info.callee_name);
if (!instruction_info.callee_is_GHC)
{
// For non-GHC calls, we have to remap the arguments to x0...
context_base_reg = static_cast<gpr>(context_base_reg - 19);
}
// We want to do this after loading the arguments in case there was any spilling involved.
DPRINT("Patching call from %s to %s on register %d...",
this_name.c_str(),
instruction_info.callee_name.c_str(),
static_cast<int>(context_base_reg));
const auto x30_tail_restore = fmt::format(
"ldr x30, [%s, #%u];\n", // Load x30 from thread context
gpr_names[context_base_reg],
m_config.hypervisor_context_offset);
exit_fn += x30_tail_restore;
}
// Stack cleanup. We need to do this last to allow the spiller to find it's own spilled variables.
if (function_info.stack_frame_size > 0)
{
exit_fn += frame_epilogue;
}
if (m_config.debug_info)
{
// Store x27 as our current address taking the place of LR (for debugging since bt is now useless)
// x28 and x29 are used as breadcrumb registers in this mode to form a pseudo-backtrace.
exit_fn +=
"mov x29, x28;\n"
"mov x28, x27;\n"
"adr x27, .;\n";
}
const auto callee_arg = ::size32(args);
auto target = ensure(ci->getCalledOperand());
args.push_back(target);
if (instruction_info.is_indirect)
{
// NOTE: For indirect calls, we read the callee register before we load the operands
// If we don't do that the operands will overwrite our callee address if it lies in the x19-x25 range
// There is no safe temp register to stuff the call address to either, you just have to stuff it below sp and load it after operands are all assigned.
arg_constraints.push_back("r");
exit_fn = fmt::format(
"str $%u, [sp, #-8];\n",
callee_arg) + exit_fn;
exit_fn +=
"ldr x15, [sp, #-8];\n"
"br x15;\n";
}
else
{
arg_constraints.push_back("i");
exit_fn += fmt::format("b $%u;\n", callee_arg);
}
// Touch the unused args by adding them to the instruction. This actually stops LLVM from clobbering the register during lowering.
for (auto& arg : unused_args)
{
args.push_back(arg); // Consume arg to tell LLVM about the reference
arg_constraints.push_back("r"); // Always a register in this case
}
// Emit the branch
llvm_asm(irb, exit_fn, args, fmt::merge(arg_constraints, ","), f.getContext());
// Successful patch
return true;
}
bool GHC_frame_preservation_pass::is_ret_instruction(const llvm::Instruction* i)
{
if (llvm::isa<llvm::ReturnInst>(i))
@ -515,8 +550,8 @@ namespace aarch64
const auto restore_x30 = [&](llvm::Instruction* where)
{
const auto x30_tail_restore = fmt::format(
"ldr x30, [x%u, #%u];\n", // Load x30 from thread context
static_cast<u32>(thread_context_reg),
"ldr x30, [%s, #%u];\n", // Load x30 from thread context
gpr_names[thread_context_reg],
m_config.hypervisor_context_offset);
ensure(where);
@ -545,10 +580,10 @@ namespace aarch64
const auto callee = ci->getCalledFunction();
const std::string callee_name = callee ? callee->getName().str() : "__indirect";
auto base_reg = get_base_register_for_call(callee_name, m_config.base_register_lookup.empty() ? gpr::x19 : gpr::xzr);
auto base_reg = get_base_register_for_call(callee_name, m_config.base_register_lookup.empty() ? gpr::x19 : gpr::x30);
// Check if the call is unexpected. We cannot guarantee that the reload is well-formed in such scenarios
if (base_reg == gpr::xzr)
if (base_reg == gpr::x30)
{
if (callee)
{

View File

@ -16,8 +16,26 @@ namespace aarch64
x0 = 0,
x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30,
xzr, pc, sp
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30
};
enum spr : s32
{
xzr = 0,
pc,
sp
};
static const char* gpr_names[] =
{
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
"x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19",
"x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30"
};
static const char* spr_names[] =
{
"xzr", "pc", "sp"
};
// On non-x86 architectures GHC runs stackless. SP is treated as a pointer to scratchpad memory.
@ -50,6 +68,7 @@ namespace aarch64
{
bool debug_info = false; // Record debug information
bool use_stack_frames = true; // Allocate a stack frame for each function. The gateway can alternatively manage a global stack to use as scratch.
bool optimize = true; // Optimize instructions when possible. Set to false when debugging.
u32 hypervisor_context_offset = 0; // Offset within the "thread" object where we can find the hypervisor context (registers configured at gateway).
std::function<bool(const std::string&)> exclusion_callback; // [Optional] Callback run on each function before transform. Return "true" to exclude from frame processing.
std::vector<std::pair<std::string, gpr>> base_register_lookup; // [Optional] Function lookup table to determine the location of the "thread" context.
@ -73,6 +92,14 @@ namespace aarch64
gpr get_base_register_for_call(const std::string& callee_name, gpr default_reg = gpr::x19);
void process_leaf_function(llvm::IRBuilder<>* irb, llvm::Function& f);
bool patch_tail_call(
llvm::IRBuilder<>* irb,
llvm::Function& f,
llvm::CallInst* where,
const instruction_info_t& instruction_info,
const function_info_t& function_info,
const std::string& frame_epilogue);
public:
GHC_frame_preservation_pass(const config_t& configuration);