1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00

Implement spu_runtime::reset

To handle JIT: Out Of Memory error.
This commit is contained in:
Nekotekina 2019-03-18 23:01:16 +03:00
parent 1880a17f79
commit 4b381fbbb1
7 changed files with 332 additions and 92 deletions

View File

@ -64,6 +64,8 @@ static u8* add_jit_memory(std::size_t size, uint align)
if (UNLIKELY(_new > 0x40000000)) if (UNLIKELY(_new > 0x40000000))
{ {
// Sorry, we failed, and further attempts should fail too.
ctr = 0x40000000;
return -1; return -1;
} }
@ -77,7 +79,7 @@ static u8* add_jit_memory(std::size_t size, uint align)
if (UNLIKELY(pos == -1)) if (UNLIKELY(pos == -1))
{ {
LOG_FATAL(GENERAL, "JIT: Out of memory (size=0x%x, align=0x%x, off=0x%x)", size, align, Off); LOG_WARNING(GENERAL, "JIT: Out of memory (size=0x%x, align=0x%x, off=0x%x)", size, align, Off);
return nullptr; return nullptr;
} }
@ -181,10 +183,10 @@ void jit_runtime::finalize() noexcept
std::memcpy(alloc(s_data_init.size(), 1, false), s_data_init.data(), s_data_init.size()); std::memcpy(alloc(s_data_init.size(), 1, false), s_data_init.data(), s_data_init.size());
} }
::jit_runtime& asmjit::get_global_runtime() asmjit::JitRuntime& asmjit::get_global_runtime()
{ {
// Magic static // Magic static
static ::jit_runtime g_rt; static asmjit::JitRuntime g_rt;
return g_rt; return g_rt;
} }

View File

@ -40,7 +40,7 @@ struct jit_runtime final : asmjit::HostRuntime
namespace asmjit namespace asmjit
{ {
// Should only be used to build global functions // Should only be used to build global functions
::jit_runtime& get_global_runtime(); asmjit::JitRuntime& get_global_runtime();
// Emit xbegin and adjacent loop, return label at xbegin // Emit xbegin and adjacent loop, return label at xbegin
Label build_transaction_enter(X86Assembler& c, Label fallback); Label build_transaction_enter(X86Assembler& c, Label fallback);

View File

@ -46,35 +46,20 @@ void spu_recompiler::init()
} }
} }
spu_function_t spu_recompiler::compile(std::vector<u32>&& func_rv) bool spu_recompiler::compile(u64 last_reset_count, const std::vector<u32>& func)
{ {
init(); const auto fn_location = m_spurt->find(last_reset_count, func);
std::unique_lock lock(m_spurt->m_mutex); if (fn_location == spu_runtime::g_dispatcher)
// Try to find existing function, register new one if necessary
const auto fn_info = m_spurt->m_map.emplace(std::move(func_rv), nullptr);
auto& fn_location = fn_info.first->second;
if (!fn_location && !fn_info.second)
{ {
// Wait if already in progress return true;
while (!fn_location)
{
m_spurt->m_cond.wait(lock);
}
} }
if (fn_location) if (!fn_location)
{ {
return fn_location; return false;
} }
auto& func = fn_info.first->first;
lock.unlock();
using namespace asmjit; using namespace asmjit;
SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode); SPUDisAsm dis_asm(CPUDisAsm_InterpreterMode);
@ -833,12 +818,20 @@ spu_function_t spu_recompiler::compile(std::vector<u32>&& func_rv)
// Compile and get function address // Compile and get function address
spu_function_t fn; spu_function_t fn;
if (m_asmrt.add(&fn, &code)) if (auto err = m_asmrt.add(&fn, &code))
{ {
if (err == asmjit::ErrorCode::kErrorNoVirtualMemory)
{
return false;
}
LOG_FATAL(SPU, "Failed to build a function"); LOG_FATAL(SPU, "Failed to build a function");
} }
m_spurt->add(*fn_info.first, fn); if (!m_spurt->add(last_reset_count, fn_location, fn))
{
return false;
}
if (g_cfg.core.spu_debug) if (g_cfg.core.spu_debug)
{ {
@ -848,7 +841,7 @@ spu_function_t spu_recompiler::compile(std::vector<u32>&& func_rv)
log += "\n\n\n"; log += "\n\n\n";
// Append log file // Append log file
fs::file(m_spurt->m_cache_path + "spu.log", fs::write + fs::append).write(log); fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
} }
if (m_cache && g_cfg.core.spu_cache) if (m_cache && g_cfg.core.spu_cache)
@ -856,7 +849,7 @@ spu_function_t spu_recompiler::compile(std::vector<u32>&& func_rv)
m_cache->add(func); m_cache->add(func);
} }
return fn; return true;
} }
spu_recompiler::XmmLink spu_recompiler::XmmAlloc() // get empty xmm register spu_recompiler::XmmLink spu_recompiler::XmmAlloc() // get empty xmm register
@ -947,11 +940,21 @@ void spu_recompiler::branch_fixed(u32 target)
return; return;
} }
const auto ppptr = m_spurt->make_branch_patchpoint(target);
c->mov(SPU_OFF_32(pc), target); c->mov(SPU_OFF_32(pc), target);
c->xor_(qw0->r32(), qw0->r32()); c->xor_(qw0->r32(), qw0->r32());
c->cmp(SPU_OFF_32(state), 0); c->cmp(SPU_OFF_32(state), 0);
c->jnz(label_stop); c->jnz(label_stop);
c->jmp(imm_ptr(m_spurt->make_branch_patchpoint(target)));
if (ppptr)
{
c->jmp(imm_ptr(ppptr));
}
else
{
c->ret();
}
} }
void spu_recompiler::branch_indirect(spu_opcode_t op, bool jt, bool ret) void spu_recompiler::branch_indirect(spu_opcode_t op, bool jt, bool ret)

View File

@ -13,7 +13,7 @@ public:
virtual void init() override; virtual void init() override;
virtual spu_function_t compile(std::vector<u32>&&) override; virtual bool compile(u64 last_reset_count, const std::vector<u32>&) override;
private: private:
// ASMJIT runtime // ASMJIT runtime

View File

@ -23,6 +23,10 @@ const spu_decoder<spu_iname> s_spu_iname;
extern u64 get_timebased_time(); extern u64 get_timebased_time();
thread_local DECLARE(spu_runtime::workload){};
thread_local DECLARE(spu_runtime::addrv){u32{0}};
DECLARE(spu_runtime::tr_dispatch) = [] DECLARE(spu_runtime::tr_dispatch) = []
{ {
// Generate a special trampoline to spu_recompiler_base::dispatch with pause instruction // Generate a special trampoline to spu_recompiler_base::dispatch with pause instruction
@ -149,6 +153,7 @@ void spu_cache::initialize()
// Read cache // Read cache
auto func_list = cache->get(); auto func_list = cache->get();
atomic_t<std::size_t> fnext{}; atomic_t<std::size_t> fnext{};
atomic_t<u8> fail_flag{0};
// Initialize compiler instances for parallel compilation // Initialize compiler instances for parallel compilation
u32 max_threads = static_cast<u32>(g_cfg.core.llvm_threads); u32 max_threads = static_cast<u32>(g_cfg.core.llvm_threads);
@ -190,6 +195,9 @@ void spu_cache::initialize()
for (std::size_t i = 0; i < compilers.size(); i++) thread_queue.emplace_back("Worker " + std::to_string(i), [&, compiler = compilers[i].get()]() for (std::size_t i = 0; i < compilers.size(); i++) thread_queue.emplace_back("Worker " + std::to_string(i), [&, compiler = compilers[i].get()]()
{ {
// Register SPU runtime user
spu_runtime::passive_lock _passive_lock(compiler->get_runtime());
// Fake LS // Fake LS
std::vector<be_t<u32>> ls(0x10000); std::vector<be_t<u32>> ls(0x10000);
@ -198,7 +206,7 @@ void spu_cache::initialize()
{ {
std::vector<u32>& func = func_list[func_i]; std::vector<u32>& func = func_list[func_i];
if (Emu.IsStopped()) if (Emu.IsStopped() || fail_flag)
{ {
g_progr_pdone++; g_progr_pdone++;
continue; continue;
@ -222,7 +230,11 @@ void spu_cache::initialize()
LOG_ERROR(SPU, "[0x%05x] SPU Analyser failed, %u vs %u", func2[0], func2.size() - 1, size0 - 1); LOG_ERROR(SPU, "[0x%05x] SPU Analyser failed, %u vs %u", func2[0], func2.size() - 1, size0 - 1);
} }
compiler->compile(std::move(func)); if (!compiler->compile(0, func))
{
// Likely, out of JIT memory. Signal to prevent further building.
fail_flag |= 1;
}
// Clear fake LS // Clear fake LS
for (u32 i = 1, pos = start; i < func2.size(); i++, pos += 4) for (u32 i = 1, pos = start; i < func2.size(); i++, pos += 4)
@ -256,6 +268,14 @@ void spu_cache::initialize()
return; return;
} }
if (fail_flag)
{
LOG_ERROR(SPU, "SPU Runtime: Cache building failed (too much data). SPU Cache will be disabled.");
spu_runtime::passive_lock _passive_lock(compilers[0]->get_runtime());
compilers[0]->get_runtime().reset(0);
return;
}
if (compilers.size() && !func_list.empty()) if (compilers.size() && !func_list.empty())
{ {
LOG_SUCCESS(SPU, "SPU Runtime: Built %u functions.", func_list.size()); LOG_SUCCESS(SPU, "SPU Runtime: Built %u functions.", func_list.size());
@ -288,9 +308,18 @@ spu_runtime::spu_runtime()
LOG_SUCCESS(SPU, "SPU Recompiler Runtime initialized..."); LOG_SUCCESS(SPU, "SPU Recompiler Runtime initialized...");
} }
void spu_runtime::add(std::pair<const std::vector<u32>, spu_function_t>& where, spu_function_t compiled) bool spu_runtime::add(u64 last_reset_count, void* _where, spu_function_t compiled)
{ {
std::unique_lock lock(m_mutex); writer_lock lock(*this);
// Check reset count (makes where invalid)
if (!_where || last_reset_count != m_reset_count)
{
return false;
}
// Use opaque pointer
auto& where = *static_cast<decltype(m_map)::value_type*>(_where);
// Function info // Function info
const std::vector<u32>& func = where.first; const std::vector<u32>& func = where.first;
@ -315,7 +344,12 @@ void spu_runtime::add(std::pair<const std::vector<u32>, spu_function_t>& where,
else else
{ {
// Allocate some writable executable memory // Allocate some writable executable memory
u8* const wxptr = verify(HERE, jit_runtime::alloc(size0 * 20, 16)); u8* const wxptr = jit_runtime::alloc(size0 * 20, 16);
if (!wxptr)
{
return false;
}
// Raw assembly pointer // Raw assembly pointer
u8* raw = wxptr; u8* raw = wxptr;
@ -547,13 +581,63 @@ void spu_runtime::add(std::pair<const std::vector<u32>, spu_function_t>& where,
g_dispatcher[func[0] / 4] = reinterpret_cast<spu_function_t>(reinterpret_cast<u64>(wxptr)); g_dispatcher[func[0] / 4] = reinterpret_cast<spu_function_t>(reinterpret_cast<u64>(wxptr));
} }
lock.unlock(); // Notify in lock destructor
m_cond.notify_all(); lock.notify = true;
return true;
} }
spu_function_t spu_runtime::find(const se_t<u32, false>* ls, u32 addr) void* spu_runtime::find(u64 last_reset_count, const std::vector<u32>& func)
{ {
std::unique_lock lock(m_mutex); writer_lock lock(*this);
// Check reset count
if (last_reset_count != m_reset_count)
{
return nullptr;
}
// Try to find existing function, register new one if necessary
const auto result = m_map.try_emplace(func, nullptr);
// Pointer to the value in the map (pair)
const auto fn_location = &*result.first;
if (fn_location->second)
{
// Already compiled
return g_dispatcher;
}
else if (!result.second)
{
// Wait if already in progress
while (!fn_location->second)
{
m_cond.wait(m_mutex);
// If reset count changed, fn_location is invalidated; also requires return
if (last_reset_count != m_reset_count)
{
return nullptr;
}
}
return g_dispatcher;
}
// Return location to compile and use in add()
return fn_location;
}
spu_function_t spu_runtime::find(const se_t<u32, false>* ls, u32 addr) const
{
const u64 reset_count = m_reset_count;
reader_lock lock(*this);
if (reset_count != m_reset_count)
{
return nullptr;
}
const u32 start = addr * (g_cfg.core.spu_block_size != spu_block_size_type::giga); const u32 start = addr * (g_cfg.core.spu_block_size != spu_block_size_type::giga);
@ -591,6 +675,11 @@ spu_function_t spu_runtime::make_branch_patchpoint(u32 target) const
{ {
u8* const raw = jit_runtime::alloc(16, 16); u8* const raw = jit_runtime::alloc(16, 16);
if (!raw)
{
return nullptr;
}
// Save address of the following jmp // Save address of the following jmp
#ifdef _WIN32 #ifdef _WIN32
raw[0] = 0x4c; // lea r8, [rip+1] raw[0] = 0x4c; // lea r8, [rip+1]
@ -621,13 +710,50 @@ spu_function_t spu_runtime::make_branch_patchpoint(u32 target) const
return reinterpret_cast<spu_function_t>(raw); return reinterpret_cast<spu_function_t>(raw);
} }
void spu_runtime::handle_return(cpu_thread* _thr) u64 spu_runtime::reset(std::size_t last_reset_count)
{
writer_lock lock(*this);
if (last_reset_count != m_reset_count || !m_reset_count.compare_and_swap_test(last_reset_count, last_reset_count + 1))
{
// Probably already reset
return m_reset_count;
}
// Notify SPU threads
idm::select<named_thread<spu_thread>>([](u32, cpu_thread& cpu)
{
if (!cpu.state.test_and_set(cpu_flag::jit_return))
{
cpu.notify();
}
});
// Reset function map (may take some time)
m_map.clear();
// Wait for threads to catch on jit_return flag
while (m_passive_locks)
{
busy_wait();
}
// Reinitialize (TODO)
jit_runtime::finalize();
jit_runtime::initialize();
return ++m_reset_count;
}
void spu_runtime::handle_return(spu_thread* _spu)
{ {
// Wait until the runtime becomes available // Wait until the runtime becomes available
//writer_lock lock(*this); writer_lock lock(*this);
// Simply reset the flag // Reset stack mirror
_thr->state -= cpu_flag::jit_return; std::memset(_spu->stack_mirror.data(), 0xff, sizeof(spu_thread::stack_mirror));
// Reset the flag
_spu->state -= cpu_flag::jit_return;
} }
spu_recompiler_base::spu_recompiler_base() spu_recompiler_base::spu_recompiler_base()
@ -638,6 +764,19 @@ spu_recompiler_base::~spu_recompiler_base()
{ {
} }
void spu_recompiler_base::make_function(const std::vector<u32>& data)
{
for (u64 reset_count = m_spurt->get_reset_count();;)
{
if (LIKELY(compile(reset_count, data)))
{
break;
}
reset_count = m_spurt->reset(reset_count);
}
}
void spu_recompiler_base::dispatch(spu_thread& spu, void*, u8* rip) void spu_recompiler_base::dispatch(spu_thread& spu, void*, u8* rip)
{ {
// If code verification failed from a patched patchpoint, clear it with a dispatcher jump // If code verification failed from a patched patchpoint, clear it with a dispatcher jump
@ -669,7 +808,7 @@ void spu_recompiler_base::dispatch(spu_thread& spu, void*, u8* rip)
} }
// Compile // Compile
verify(HERE), spu.jit->compile(spu.jit->block(spu._ptr<u32>(0), spu.pc)); spu.jit->make_function(spu.jit->block(spu._ptr<u32>(0), spu.pc));
// Diagnostic // Diagnostic
if (g_cfg.core.spu_block_size == spu_block_size_type::giga) if (g_cfg.core.spu_block_size == spu_block_size_type::giga)
@ -2097,11 +2236,12 @@ class spu_llvm_recompiler : public spu_recompiler_base, public cpu_translator
// Generate a patchpoint for fixed location // Generate a patchpoint for fixed location
const auto cblock = m_ir->GetInsertBlock(); const auto cblock = m_ir->GetInsertBlock();
const auto ppptr = m_spurt->make_branch_patchpoint(target);
const auto result = llvm::BasicBlock::Create(m_context, "", m_function); const auto result = llvm::BasicBlock::Create(m_context, "", m_function);
m_ir->SetInsertPoint(result); m_ir->SetInsertPoint(result);
m_ir->CreateStore(m_ir->getInt32(target), spu_ptr<u32>(&spu_thread::pc)); m_ir->CreateStore(m_ir->getInt32(target), spu_ptr<u32>(&spu_thread::pc));
const auto type = llvm::FunctionType::get(get_type<void>(), {get_type<u8*>(), get_type<u8*>(), get_type<u32>()}, false)->getPointerTo(); const auto type = llvm::FunctionType::get(get_type<void>(), {get_type<u8*>(), get_type<u8*>(), get_type<u32>()}, false)->getPointerTo();
tail(m_ir->CreateIntToPtr(m_ir->getInt64((u64)m_spurt->make_branch_patchpoint(target)), type)); tail(m_ir->CreateIntToPtr(m_ir->getInt64(reinterpret_cast<u64>(ppptr ? ppptr : &spu_recompiler_base::dispatch)), type));
m_ir->SetInsertPoint(cblock); m_ir->SetInsertPoint(cblock);
return result; return result;
} }
@ -2652,36 +2792,20 @@ public:
} }
} }
virtual spu_function_t compile(std::vector<u32>&& func_rv) override virtual bool compile(u64 last_reset_count, const std::vector<u32>& func) override
{ {
init(); const auto fn_location = m_spurt->find(last_reset_count, func);
// Don't lock without shared runtime if (fn_location == spu_runtime::g_dispatcher)
std::unique_lock lock(m_spurt->m_mutex);
// Try to find existing function, register new one if necessary
const auto fn_info = m_spurt->m_map.emplace(std::move(func_rv), nullptr);
auto& fn_location = fn_info.first->second;
if (!fn_location && !fn_info.second)
{ {
// Wait if already in progress return true;
while (!fn_location)
{
m_spurt->m_cond.wait(lock);
}
} }
if (fn_location) if (!fn_location)
{ {
return fn_location; return false;
} }
auto& func = fn_info.first->first;
lock.unlock();
std::string hash; std::string hash;
{ {
sha1_context ctx; sha1_context ctx;
@ -2744,12 +2868,7 @@ public:
log += '\n'; log += '\n';
this->dump(log); this->dump(log);
fs::file(m_spurt->m_cache_path + "spu.log", fs::write + fs::append).write(log); fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
}
if (m_cache && g_cfg.core.spu_cache)
{
m_cache->add(func);
} }
using namespace llvm; using namespace llvm;
@ -3181,7 +3300,7 @@ public:
if (g_cfg.core.spu_debug) if (g_cfg.core.spu_debug)
{ {
fs::file(m_spurt->m_cache_path + "spu.log", fs::write + fs::append).write(log); fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
} }
fmt::raw_error("Compilation failed"); fmt::raw_error("Compilation failed");
@ -3190,7 +3309,7 @@ public:
if (g_cfg.core.spu_debug) if (g_cfg.core.spu_debug)
{ {
// Testing only // Testing only
m_jit.add(std::move(module), m_spurt->m_cache_path + "llvm/"); m_jit.add(std::move(module), m_spurt->get_cache_path() + "llvm/");
} }
else else
{ {
@ -3202,15 +3321,23 @@ public:
// Register function pointer // Register function pointer
const spu_function_t fn = reinterpret_cast<spu_function_t>(m_jit.get_engine().getPointerToFunction(main_func)); const spu_function_t fn = reinterpret_cast<spu_function_t>(m_jit.get_engine().getPointerToFunction(main_func));
m_spurt->add(*fn_info.first, fn); if (!m_spurt->add(last_reset_count, fn_location, fn))
{
return false;
}
if (g_cfg.core.spu_debug) if (g_cfg.core.spu_debug)
{ {
out.flush(); out.flush();
fs::file(m_spurt->m_cache_path + "spu.log", fs::write + fs::append).write(log); fs::file(m_spurt->get_cache_path() + "spu.log", fs::write + fs::append).write(log);
} }
return fn; if (m_cache && g_cfg.core.spu_cache)
{
m_cache->add(func);
}
return true;
} }
static bool exec_check_state(spu_thread* _spu) static bool exec_check_state(spu_thread* _spu)

View File

@ -36,10 +36,13 @@ public:
// Helper class // Helper class
class spu_runtime class spu_runtime
{ {
public: mutable shared_mutex m_mutex;
shared_mutex m_mutex;
cond_variable m_cond; mutable cond_variable m_cond;
mutable atomic_t<u64> m_passive_locks{0};
atomic_t<u64> m_reset_count{0};
// All functions // All functions
std::map<std::vector<u32>, spu_function_t> m_map; std::map<std::vector<u32>, spu_function_t> m_map;
@ -57,12 +60,12 @@ public:
std::map<std::vector<u32>, spu_function_t>::iterator beg; std::map<std::vector<u32>, spu_function_t>::iterator beg;
std::map<std::vector<u32>, spu_function_t>::iterator end; std::map<std::vector<u32>, spu_function_t>::iterator end;
}; };
private:
// Scratch vector
std::vector<work> workload;
// Scratch vector // Scratch vector
std::vector<u32> addrv{u32{0}}; static thread_local std::vector<work> workload;
// Scratch vector
static thread_local std::vector<u32> addrv;
// Trampoline to spu_recompiler_base::dispatch // Trampoline to spu_recompiler_base::dispatch
static const spu_function_t tr_dispatch; static const spu_function_t tr_dispatch;
@ -73,20 +76,104 @@ private:
public: public:
spu_runtime(); spu_runtime();
const std::string& get_cache_path() const
{
return m_cache_path;
}
// Add compiled function and generate trampoline if necessary // Add compiled function and generate trampoline if necessary
void add(std::pair<const std::vector<u32>, spu_function_t>& where, spu_function_t compiled); bool add(u64 last_reset_count, void* where, spu_function_t compiled);
// Return opaque pointer for add()
void* find(u64 last_reset_count, const std::vector<u32>&);
// Find existing function // Find existing function
spu_function_t find(const se_t<u32, false>* ls, u32 addr); spu_function_t find(const se_t<u32, false>* ls, u32 addr) const;
// Generate a patchable trampoline to spu_recompiler_base::branch // Generate a patchable trampoline to spu_recompiler_base::branch
spu_function_t make_branch_patchpoint(u32 target) const; spu_function_t make_branch_patchpoint(u32 target) const;
// reset() arg retriever, for race avoidance (can result in double reset)
u64 get_reset_count() const
{
return m_reset_count.load();
}
// Remove all compiled function and free JIT memory
u64 reset(std::size_t last_reset_count);
// Handle cpu_flag::jit_return // Handle cpu_flag::jit_return
void handle_return(cpu_thread* _thr); void handle_return(spu_thread* _spu);
// All dispatchers (array allocated in jit memory) // All dispatchers (array allocated in jit memory)
static atomic_t<spu_function_t>* const g_dispatcher; static atomic_t<spu_function_t>* const g_dispatcher;
struct passive_lock
{
spu_runtime& _this;
passive_lock(const passive_lock&) = delete;
passive_lock(spu_runtime& _this)
: _this(_this)
{
std::lock_guard lock(_this.m_mutex);
_this.m_passive_locks++;
}
~passive_lock()
{
_this.m_passive_locks--;
}
};
// Exclusive lock within passive_lock scope
struct writer_lock
{
spu_runtime& _this;
bool notify = false;
writer_lock(const writer_lock&) = delete;
writer_lock(spu_runtime& _this)
: _this(_this)
{
// Temporarily release the passive lock
_this.m_passive_locks--;
_this.m_mutex.lock();
}
~writer_lock()
{
_this.m_passive_locks++;
_this.m_mutex.unlock();
if (notify)
{
_this.m_cond.notify_all();
}
}
};
struct reader_lock
{
const spu_runtime& _this;
reader_lock(const reader_lock&) = delete;
reader_lock(const spu_runtime& _this)
: _this(_this)
{
_this.m_passive_locks--;
_this.m_mutex.lock_shared();
}
~reader_lock()
{
_this.m_passive_locks++;
_this.m_mutex.unlock_shared();
}
};
}; };
// SPU Recompiler instance base class // SPU Recompiler instance base class
@ -130,8 +217,11 @@ public:
// Initialize // Initialize
virtual void init() = 0; virtual void init() = 0;
// Compile function // Compile function (may fail)
virtual spu_function_t compile(std::vector<u32>&&) = 0; virtual bool compile(u64 last_reset_count, const std::vector<u32>&) = 0;
// Compile function, handle failure
void make_function(const std::vector<u32>&);
// Default dispatch function fallback (second arg is unused) // Default dispatch function fallback (second arg is unused)
static void dispatch(spu_thread&, void*, u8* rip); static void dispatch(spu_thread&, void*, u8* rip);

View File

@ -568,8 +568,26 @@ void spu_thread::cpu_task()
if (jit) if (jit)
{ {
while (LIKELY(!state || !check_state())) // Register SPU runtime user
spu_runtime::passive_lock _passive_lock(jit->get_runtime());
while (true)
{ {
if (UNLIKELY(state))
{
if (check_state())
{
if (state & cpu_flag::jit_return)
{
// Handle jit_return as a special case
jit->get_runtime().handle_return(this);
continue;
}
break;
}
}
spu_runtime::g_dispatcher[pc / 4](*this, vm::_ptr<u8>(offset), nullptr); spu_runtime::g_dispatcher[pc / 4](*this, vm::_ptr<u8>(offset), nullptr);
} }