1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2025-01-31 20:41:45 +01:00

ppu_acontext draft

This commit is contained in:
Nekotekina 2017-10-13 05:13:43 +03:00
parent 00a0d37455
commit 89fba1c385
3 changed files with 2710 additions and 0 deletions

View File

@ -534,6 +534,26 @@ inline u64 cntlz64(u64 arg, bool nonzero = false)
#endif
}
inline u32 cnttz32(u32 arg, bool nonzero = false)
{
#ifdef _MSC_VER
ulong res;
return _BitScanForward(&res, arg) || nonzero ? res : 32;
#else
return arg || nonzero ? __builtin_ctzll(arg) : 32;
#endif
}
inline u64 cnttz64(u64 arg, bool nonzero = false)
{
#ifdef _MSC_VER
ulong res;
return _BitScanForward64(&res, arg) || nonzero ? res : 64;
#else
return arg || nonzero ? __builtin_ctzll(arg) : 64;
#endif
}
// Helper function, used by ""_u16, ""_u32, ""_u64
constexpr u8 to_u8(char c)
{

File diff suppressed because it is too large Load Diff

View File

@ -6,6 +6,7 @@
#include "Utilities/bit_set.h"
#include "Utilities/BEType.h"
#include "PPUOpcodes.h"
// PPU Function Attributes
enum class ppu_attr : u32
@ -941,3 +942,738 @@ struct ppu_iname
return value;
}
};
// PPU Analyser Context
struct ppu_acontext
{
// General-purpose register range
struct spec_gpr
{
// Integral range: normalized undef = (0;UINT64_MAX), unnormalized undefs are possible (when max = min - 1)
// Bit range: constant 0 = (0;0), constant 1 = (1;1), normalized undef = (0;1), unnormalized undef = (1;0)
u64 imin = 0; // Integral range begin
u64 imax = -1; // Integral range end
u64 bmin = 0; // Bit range begin
u64 bmax = -1; // Bit range end
void set_undef()
{
imin = 0;
imax = -1;
bmin = 0;
bmax = -1;
}
// (Number of possible values - 1), 0 = const
u64 div() const
{
return imax - imin;
}
// Return zero bits for zeros, ones for ones or undefs
u64 mask() const
{
return bmin | bmax;
}
// Return one bits for ones, zeros for zeros or undefs
u64 ones() const
{
return bmin & bmax;
}
// Return one bits for undefs
u64 undefs() const
{
return bmin ^ bmax;
}
// Return number of trailing zero bits
u64 tz() const
{
return ::cnttz64(mask());
}
// Range NOT
spec_gpr operator ~() const
{
spec_gpr r;
r.imin = ~imax;
r.imax = ~imin;
r.bmin = ~bmax;
r.bmax = ~bmin;
return r;
}
// Range ADD
spec_gpr operator +(const spec_gpr& rhs) const
{
spec_gpr r{};
const u64 adiv = div();
const u64 bdiv = rhs.div();
// Check overflow, generate normalized range
if (adiv != -1 && bdiv != -1 && adiv <= adiv + bdiv)
{
r = range(imin + rhs.imin, imax + rhs.imax);
}
// Carry for bitrange computation
u64 cmin = 0;
u64 cmax = 0;
const u64 amask = mask();
const u64 bmask = rhs.mask();
const u64 aones = ones();
const u64 bones = rhs.ones();
for (u32 i = 0; i < 64; i++)
{
cmin += ((amask >> i) & 1) + ((bmask >> i) & 1);
cmax += ((aones >> i) & 1) + ((bones >> i) & 1);
// Discover some constant bits
if (cmin == cmax)
{
r.bmin |= (cmin & 1) << i;
r.bmax &= ~((~cmin & 1) << i);
}
cmin >>= 1;
cmax >>= 1;
}
return r;
}
// Range AND
spec_gpr operator &(const spec_gpr& rhs) const
{
// Ignore inverted ranges (TODO)
if (imin > imax || rhs.imin > rhs.imax)
{
return approx(ones() & rhs.ones(), mask() & rhs.mask());
}
// Const (TODO: remove when unnecessary)
if (imin == imax && rhs.imin == rhs.imax)
{
return fixed(imin & rhs.imin);
}
// Swap (TODO: remove when unnecessary)
if (imin == imax || rhs.undefs() > undefs())
{
return rhs & *this;
}
// Copy and attempt to partially preserve integral range
spec_gpr r = *this;
for (u32 i = 63; ~i; i--)
{
const u64 m = 1ull << i;
if (!(rhs.mask() & m))
{
if (r.undefs() & m)
{
// undef -> 0
r.imin &= ~(m - 1);
r.imax |= (m - 1);
r.imin &= ~m;
r.imax &= ~m;
}
else if (r.ones() & m)
{
// 1 -> 0
if ((r.imin ^ r.imax) > (m - 1))
{
r.imin &= ~(m - 1);
r.imax |= (m - 1);
}
r.imin &= ~m;
r.imax &= ~m;
}
}
else if (rhs.undefs() & m)
{
// -> undef
r.imin &= ~(m - 1);
r.imax |= (m - 1);
r.imin &= ~m;
r.imax |= m;
}
}
r.bmin = ones() & rhs.ones();
r.bmax = mask() & rhs.mask();
return r;
}
// Range OR
spec_gpr operator |(const spec_gpr& rhs) const
{
// Ignore inverted ranges (TODO)
if (imin > imax || rhs.imin > rhs.imax)
{
return approx(ones() | rhs.ones(), mask() | rhs.mask());
}
// Const (TODO: remove when unnecessary)
if (imin == imax && rhs.imin == rhs.imax)
{
return fixed(imin | rhs.imin);
}
// Swap (TODO: remove when unnecessary)
if (imin == imax || rhs.undefs() > undefs())
{
return rhs | *this;
}
// Copy and attempt to partially preserve integral range
spec_gpr r = *this;
for (u32 i = 63; ~i; i--)
{
const u64 m = 1ull << i;
if (rhs.ones() & m)
{
if (r.undefs() & m)
{
// undef -> 1
r.imin &= ~(m - 1);
r.imax |= (m - 1);
r.imin |= m;
r.imax |= m;
}
else if (!(r.mask() & m))
{
// 0 -> 1
if ((r.imin ^ r.imax) > (m - 1))
{
r.imin &= ~(m - 1);
r.imax |= (m - 1);
}
r.imin |= m;
r.imax |= m;
}
}
else if (rhs.undefs() & m)
{
// -> undef
r.imin &= ~(m - 1);
r.imax |= (m - 1);
r.imin &= ~m;
r.imax |= m;
}
}
r.bmin = ones() | rhs.ones();
r.bmax = mask() | rhs.mask();
return r;
}
// Range XOR
spec_gpr operator ^(const spec_gpr& rhs)
{
return (~*this & rhs) | (*this & ~rhs);
}
// Check whether the value is in range
bool test(u64 value) const
{
if (imin <= imax)
{
if (value < imin || value > imax)
{
return false;
}
}
else
{
if (value < imin && value > imax)
{
return false;
}
}
if ((value & mask()) != value)
{
return false;
}
if ((value | ones()) != value)
{
return false;
}
return true;
}
// Constant value
static spec_gpr fixed(u64 value)
{
spec_gpr r;
r.imin = value;
r.imax = value;
r.bmin = value;
r.bmax = value;
return r;
}
// Range (tz = number of constant trailing zeros)
static spec_gpr range(u64 min, u64 max, u64 tz = 0)
{
const u64 mask = tz < 64 ? ~0ull << tz : 0ull;
spec_gpr r;
r.bmin = 0;
r.bmax = mask;
// Normalize min/max for tz (TODO)
if (min < max)
{
// Inverted constant MSB mask
const u64 mix = ~0ull >> ::cntlz64(min ^ max, true);
r.bmin |= min & ~mix;
r.bmax &= max | mix;
r.imin = (min + ~mask) & mask;
r.imax = max & mask;
verify("Impossible range" HERE), r.imin <= r.imax;
}
else
{
r.imin = min & mask;
r.imax = (max + ~mask) & mask;
verify("Impossible range" HERE), r.imin >= r.imax;
}
// Fix const values
if (r.imin == r.imax)
{
r.bmin = r.imin;
r.bmax = r.imax;
}
return r;
}
// Make from bitrange (normalize, approximate range values)
static spec_gpr approx(u64 bmin, u64 bmax)
{
spec_gpr r;
r.imin = bmin & ~(bmin ^ bmax);
r.imax = bmax | (bmin ^ bmax);
r.bmin = bmin & ~(bmin ^ bmax);
r.bmax = bmax | (bmin ^ bmax);
return r;
}
} gpr[32]{};
// Vector registers (draft)
struct spec_vec
{
u8 imin8[16]{};
u8 imax8[16]{255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255};
u16 imin16[8]{};
u16 imax16[8]{0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff};
u32 imin32[4]{};
u32 imax32[4]{0xffffffffu, 0xffffffffu, 0xffffffffu, 0xffffffffu};
u64 bmin64[2]{};
u64 bmax64[2]{0xffffffffffffffffull, 0xffffffffffffffffull};
};
// Info
u32 cia;
// Analyser step
void UNK(ppu_opcode_t);
void MFVSCR(ppu_opcode_t);
void MTVSCR(ppu_opcode_t);
void VADDCUW(ppu_opcode_t);
void VADDFP(ppu_opcode_t);
void VADDSBS(ppu_opcode_t);
void VADDSHS(ppu_opcode_t);
void VADDSWS(ppu_opcode_t);
void VADDUBM(ppu_opcode_t);
void VADDUBS(ppu_opcode_t);
void VADDUHM(ppu_opcode_t);
void VADDUHS(ppu_opcode_t);
void VADDUWM(ppu_opcode_t);
void VADDUWS(ppu_opcode_t);
void VAND(ppu_opcode_t);
void VANDC(ppu_opcode_t);
void VAVGSB(ppu_opcode_t);
void VAVGSH(ppu_opcode_t);
void VAVGSW(ppu_opcode_t);
void VAVGUB(ppu_opcode_t);
void VAVGUH(ppu_opcode_t);
void VAVGUW(ppu_opcode_t);
void VCFSX(ppu_opcode_t);
void VCFUX(ppu_opcode_t);
void VCMPBFP(ppu_opcode_t);
void VCMPEQFP(ppu_opcode_t);
void VCMPEQUB(ppu_opcode_t);
void VCMPEQUH(ppu_opcode_t);
void VCMPEQUW(ppu_opcode_t);
void VCMPGEFP(ppu_opcode_t);
void VCMPGTFP(ppu_opcode_t);
void VCMPGTSB(ppu_opcode_t);
void VCMPGTSH(ppu_opcode_t);
void VCMPGTSW(ppu_opcode_t);
void VCMPGTUB(ppu_opcode_t);
void VCMPGTUH(ppu_opcode_t);
void VCMPGTUW(ppu_opcode_t);
void VCTSXS(ppu_opcode_t);
void VCTUXS(ppu_opcode_t);
void VEXPTEFP(ppu_opcode_t);
void VLOGEFP(ppu_opcode_t);
void VMADDFP(ppu_opcode_t);
void VMAXFP(ppu_opcode_t);
void VMAXSB(ppu_opcode_t);
void VMAXSH(ppu_opcode_t);
void VMAXSW(ppu_opcode_t);
void VMAXUB(ppu_opcode_t);
void VMAXUH(ppu_opcode_t);
void VMAXUW(ppu_opcode_t);
void VMHADDSHS(ppu_opcode_t);
void VMHRADDSHS(ppu_opcode_t);
void VMINFP(ppu_opcode_t);
void VMINSB(ppu_opcode_t);
void VMINSH(ppu_opcode_t);
void VMINSW(ppu_opcode_t);
void VMINUB(ppu_opcode_t);
void VMINUH(ppu_opcode_t);
void VMINUW(ppu_opcode_t);
void VMLADDUHM(ppu_opcode_t);
void VMRGHB(ppu_opcode_t);
void VMRGHH(ppu_opcode_t);
void VMRGHW(ppu_opcode_t);
void VMRGLB(ppu_opcode_t);
void VMRGLH(ppu_opcode_t);
void VMRGLW(ppu_opcode_t);
void VMSUMMBM(ppu_opcode_t);
void VMSUMSHM(ppu_opcode_t);
void VMSUMSHS(ppu_opcode_t);
void VMSUMUBM(ppu_opcode_t);
void VMSUMUHM(ppu_opcode_t);
void VMSUMUHS(ppu_opcode_t);
void VMULESB(ppu_opcode_t);
void VMULESH(ppu_opcode_t);
void VMULEUB(ppu_opcode_t);
void VMULEUH(ppu_opcode_t);
void VMULOSB(ppu_opcode_t);
void VMULOSH(ppu_opcode_t);
void VMULOUB(ppu_opcode_t);
void VMULOUH(ppu_opcode_t);
void VNMSUBFP(ppu_opcode_t);
void VNOR(ppu_opcode_t);
void VOR(ppu_opcode_t);
void VPERM(ppu_opcode_t);
void VPKPX(ppu_opcode_t);
void VPKSHSS(ppu_opcode_t);
void VPKSHUS(ppu_opcode_t);
void VPKSWSS(ppu_opcode_t);
void VPKSWUS(ppu_opcode_t);
void VPKUHUM(ppu_opcode_t);
void VPKUHUS(ppu_opcode_t);
void VPKUWUM(ppu_opcode_t);
void VPKUWUS(ppu_opcode_t);
void VREFP(ppu_opcode_t);
void VRFIM(ppu_opcode_t);
void VRFIN(ppu_opcode_t);
void VRFIP(ppu_opcode_t);
void VRFIZ(ppu_opcode_t);
void VRLB(ppu_opcode_t);
void VRLH(ppu_opcode_t);
void VRLW(ppu_opcode_t);
void VRSQRTEFP(ppu_opcode_t);
void VSEL(ppu_opcode_t);
void VSL(ppu_opcode_t);
void VSLB(ppu_opcode_t);
void VSLDOI(ppu_opcode_t);
void VSLH(ppu_opcode_t);
void VSLO(ppu_opcode_t);
void VSLW(ppu_opcode_t);
void VSPLTB(ppu_opcode_t);
void VSPLTH(ppu_opcode_t);
void VSPLTISB(ppu_opcode_t);
void VSPLTISH(ppu_opcode_t);
void VSPLTISW(ppu_opcode_t);
void VSPLTW(ppu_opcode_t);
void VSR(ppu_opcode_t);
void VSRAB(ppu_opcode_t);
void VSRAH(ppu_opcode_t);
void VSRAW(ppu_opcode_t);
void VSRB(ppu_opcode_t);
void VSRH(ppu_opcode_t);
void VSRO(ppu_opcode_t);
void VSRW(ppu_opcode_t);
void VSUBCUW(ppu_opcode_t);
void VSUBFP(ppu_opcode_t);
void VSUBSBS(ppu_opcode_t);
void VSUBSHS(ppu_opcode_t);
void VSUBSWS(ppu_opcode_t);
void VSUBUBM(ppu_opcode_t);
void VSUBUBS(ppu_opcode_t);
void VSUBUHM(ppu_opcode_t);
void VSUBUHS(ppu_opcode_t);
void VSUBUWM(ppu_opcode_t);
void VSUBUWS(ppu_opcode_t);
void VSUMSWS(ppu_opcode_t);
void VSUM2SWS(ppu_opcode_t);
void VSUM4SBS(ppu_opcode_t);
void VSUM4SHS(ppu_opcode_t);
void VSUM4UBS(ppu_opcode_t);
void VUPKHPX(ppu_opcode_t);
void VUPKHSB(ppu_opcode_t);
void VUPKHSH(ppu_opcode_t);
void VUPKLPX(ppu_opcode_t);
void VUPKLSB(ppu_opcode_t);
void VUPKLSH(ppu_opcode_t);
void VXOR(ppu_opcode_t);
void TDI(ppu_opcode_t);
void TWI(ppu_opcode_t);
void MULLI(ppu_opcode_t);
void SUBFIC(ppu_opcode_t);
void CMPLI(ppu_opcode_t);
void CMPI(ppu_opcode_t);
void ADDIC(ppu_opcode_t);
void ADDI(ppu_opcode_t);
void ADDIS(ppu_opcode_t);
void BC(ppu_opcode_t);
void SC(ppu_opcode_t);
void B(ppu_opcode_t);
void MCRF(ppu_opcode_t);
void BCLR(ppu_opcode_t);
void CRNOR(ppu_opcode_t);
void CRANDC(ppu_opcode_t);
void ISYNC(ppu_opcode_t);
void CRXOR(ppu_opcode_t);
void CRNAND(ppu_opcode_t);
void CRAND(ppu_opcode_t);
void CREQV(ppu_opcode_t);
void CRORC(ppu_opcode_t);
void CROR(ppu_opcode_t);
void BCCTR(ppu_opcode_t);
void RLWIMI(ppu_opcode_t);
void RLWINM(ppu_opcode_t);
void RLWNM(ppu_opcode_t);
void ORI(ppu_opcode_t);
void ORIS(ppu_opcode_t);
void XORI(ppu_opcode_t);
void XORIS(ppu_opcode_t);
void ANDI(ppu_opcode_t);
void ANDIS(ppu_opcode_t);
void RLDICL(ppu_opcode_t);
void RLDICR(ppu_opcode_t);
void RLDIC(ppu_opcode_t);
void RLDIMI(ppu_opcode_t);
void RLDCL(ppu_opcode_t);
void RLDCR(ppu_opcode_t);
void CMP(ppu_opcode_t);
void TW(ppu_opcode_t);
void LVSL(ppu_opcode_t);
void LVEBX(ppu_opcode_t);
void SUBFC(ppu_opcode_t);
void ADDC(ppu_opcode_t);
void MULHDU(ppu_opcode_t);
void MULHWU(ppu_opcode_t);
void MFOCRF(ppu_opcode_t);
void LWARX(ppu_opcode_t);
void LDX(ppu_opcode_t);
void LWZX(ppu_opcode_t);
void SLW(ppu_opcode_t);
void CNTLZW(ppu_opcode_t);
void SLD(ppu_opcode_t);
void AND(ppu_opcode_t);
void CMPL(ppu_opcode_t);
void LVSR(ppu_opcode_t);
void LVEHX(ppu_opcode_t);
void SUBF(ppu_opcode_t);
void LDUX(ppu_opcode_t);
void DCBST(ppu_opcode_t);
void LWZUX(ppu_opcode_t);
void CNTLZD(ppu_opcode_t);
void ANDC(ppu_opcode_t);
void TD(ppu_opcode_t);
void LVEWX(ppu_opcode_t);
void MULHD(ppu_opcode_t);
void MULHW(ppu_opcode_t);
void LDARX(ppu_opcode_t);
void DCBF(ppu_opcode_t);
void LBZX(ppu_opcode_t);
void LVX(ppu_opcode_t);
void NEG(ppu_opcode_t);
void LBZUX(ppu_opcode_t);
void NOR(ppu_opcode_t);
void STVEBX(ppu_opcode_t);
void SUBFE(ppu_opcode_t);
void ADDE(ppu_opcode_t);
void MTOCRF(ppu_opcode_t);
void STDX(ppu_opcode_t);
void STWCX(ppu_opcode_t);
void STWX(ppu_opcode_t);
void STVEHX(ppu_opcode_t);
void STDUX(ppu_opcode_t);
void STWUX(ppu_opcode_t);
void STVEWX(ppu_opcode_t);
void SUBFZE(ppu_opcode_t);
void ADDZE(ppu_opcode_t);
void STDCX(ppu_opcode_t);
void STBX(ppu_opcode_t);
void STVX(ppu_opcode_t);
void SUBFME(ppu_opcode_t);
void MULLD(ppu_opcode_t);
void ADDME(ppu_opcode_t);
void MULLW(ppu_opcode_t);
void DCBTST(ppu_opcode_t);
void STBUX(ppu_opcode_t);
void ADD(ppu_opcode_t);
void DCBT(ppu_opcode_t);
void LHZX(ppu_opcode_t);
void EQV(ppu_opcode_t);
void ECIWX(ppu_opcode_t);
void LHZUX(ppu_opcode_t);
void XOR(ppu_opcode_t);
void MFSPR(ppu_opcode_t);
void LWAX(ppu_opcode_t);
void DST(ppu_opcode_t);
void LHAX(ppu_opcode_t);
void LVXL(ppu_opcode_t);
void MFTB(ppu_opcode_t);
void LWAUX(ppu_opcode_t);
void DSTST(ppu_opcode_t);
void LHAUX(ppu_opcode_t);
void STHX(ppu_opcode_t);
void ORC(ppu_opcode_t);
void ECOWX(ppu_opcode_t);
void STHUX(ppu_opcode_t);
void OR(ppu_opcode_t);
void DIVDU(ppu_opcode_t);
void DIVWU(ppu_opcode_t);
void MTSPR(ppu_opcode_t);
void DCBI(ppu_opcode_t);
void NAND(ppu_opcode_t);
void STVXL(ppu_opcode_t);
void DIVD(ppu_opcode_t);
void DIVW(ppu_opcode_t);
void LVLX(ppu_opcode_t);
void LDBRX(ppu_opcode_t);
void LSWX(ppu_opcode_t);
void LWBRX(ppu_opcode_t);
void LFSX(ppu_opcode_t);
void SRW(ppu_opcode_t);
void SRD(ppu_opcode_t);
void LVRX(ppu_opcode_t);
void LSWI(ppu_opcode_t);
void LFSUX(ppu_opcode_t);
void SYNC(ppu_opcode_t);
void LFDX(ppu_opcode_t);
void LFDUX(ppu_opcode_t);
void STVLX(ppu_opcode_t);
void STDBRX(ppu_opcode_t);
void STSWX(ppu_opcode_t);
void STWBRX(ppu_opcode_t);
void STFSX(ppu_opcode_t);
void STVRX(ppu_opcode_t);
void STFSUX(ppu_opcode_t);
void STSWI(ppu_opcode_t);
void STFDX(ppu_opcode_t);
void STFDUX(ppu_opcode_t);
void LVLXL(ppu_opcode_t);
void LHBRX(ppu_opcode_t);
void SRAW(ppu_opcode_t);
void SRAD(ppu_opcode_t);
void LVRXL(ppu_opcode_t);
void DSS(ppu_opcode_t);
void SRAWI(ppu_opcode_t);
void SRADI(ppu_opcode_t);
void EIEIO(ppu_opcode_t);
void STVLXL(ppu_opcode_t);
void STHBRX(ppu_opcode_t);
void EXTSH(ppu_opcode_t);
void STVRXL(ppu_opcode_t);
void EXTSB(ppu_opcode_t);
void STFIWX(ppu_opcode_t);
void EXTSW(ppu_opcode_t);
void ICBI(ppu_opcode_t);
void DCBZ(ppu_opcode_t);
void LWZ(ppu_opcode_t);
void LWZU(ppu_opcode_t);
void LBZ(ppu_opcode_t);
void LBZU(ppu_opcode_t);
void STW(ppu_opcode_t);
void STWU(ppu_opcode_t);
void STB(ppu_opcode_t);
void STBU(ppu_opcode_t);
void LHZ(ppu_opcode_t);
void LHZU(ppu_opcode_t);
void LHA(ppu_opcode_t);
void LHAU(ppu_opcode_t);
void STH(ppu_opcode_t);
void STHU(ppu_opcode_t);
void LMW(ppu_opcode_t);
void STMW(ppu_opcode_t);
void LFS(ppu_opcode_t);
void LFSU(ppu_opcode_t);
void LFD(ppu_opcode_t);
void LFDU(ppu_opcode_t);
void STFS(ppu_opcode_t);
void STFSU(ppu_opcode_t);
void STFD(ppu_opcode_t);
void STFDU(ppu_opcode_t);
void LD(ppu_opcode_t);
void LDU(ppu_opcode_t);
void LWA(ppu_opcode_t);
void STD(ppu_opcode_t);
void STDU(ppu_opcode_t);
void FDIVS(ppu_opcode_t);
void FSUBS(ppu_opcode_t);
void FADDS(ppu_opcode_t);
void FSQRTS(ppu_opcode_t);
void FRES(ppu_opcode_t);
void FMULS(ppu_opcode_t);
void FMADDS(ppu_opcode_t);
void FMSUBS(ppu_opcode_t);
void FNMSUBS(ppu_opcode_t);
void FNMADDS(ppu_opcode_t);
void MTFSB1(ppu_opcode_t);
void MCRFS(ppu_opcode_t);
void MTFSB0(ppu_opcode_t);
void MTFSFI(ppu_opcode_t);
void MFFS(ppu_opcode_t);
void MTFSF(ppu_opcode_t);
void FCMPU(ppu_opcode_t);
void FRSP(ppu_opcode_t);
void FCTIW(ppu_opcode_t);
void FCTIWZ(ppu_opcode_t);
void FDIV(ppu_opcode_t);
void FSUB(ppu_opcode_t);
void FADD(ppu_opcode_t);
void FSQRT(ppu_opcode_t);
void FSEL(ppu_opcode_t);
void FMUL(ppu_opcode_t);
void FRSQRTE(ppu_opcode_t);
void FMSUB(ppu_opcode_t);
void FMADD(ppu_opcode_t);
void FNMSUB(ppu_opcode_t);
void FNMADD(ppu_opcode_t);
void FCMPO(ppu_opcode_t);
void FNEG(ppu_opcode_t);
void FMR(ppu_opcode_t);
void FNABS(ppu_opcode_t);
void FABS(ppu_opcode_t);
void FCTID(ppu_opcode_t);
void FCTIDZ(ppu_opcode_t);
void FCFID(ppu_opcode_t);
};