1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 18:53:28 +01:00

Added missed files

This commit is contained in:
DHrpcs3 2016-01-05 23:32:25 +02:00
parent 48919330d7
commit c1be0cf3bf
2 changed files with 908 additions and 0 deletions

View File

@ -0,0 +1,839 @@
#include "stdafx.h"
#include "rsx_methods.h"
#include "RSXThread.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/state.h"
#include "rsx_utils.h"
#include "Emu/SysCalls/Callback.h"
#include "Emu/SysCalls/CB_FUNC.h"
namespace rsx
{
u32 method_registers[0x10000 >> 2];
rsx_method_t methods[0x10000 >> 2]{};
template<typename Type> struct vertex_data_type_from_element_type;
template<> struct vertex_data_type_from_element_type<float> { enum { type = CELL_GCM_VERTEX_F }; };
template<> struct vertex_data_type_from_element_type<f16> { enum { type = CELL_GCM_VERTEX_SF }; };
template<> struct vertex_data_type_from_element_type<u8> { enum { type = CELL_GCM_VERTEX_UB }; };
template<> struct vertex_data_type_from_element_type<u16> { enum { type = CELL_GCM_VERTEX_S1 }; };
namespace nv406e
{
force_inline void set_reference(thread* rsx, u32 arg)
{
rsx->ctrl->ref.exchange(arg);
}
force_inline void semaphore_acquire(thread* rsx, u32 arg)
{
//TODO: dma
while (vm::ps3::read32(rsx->label_addr + method_registers[NV406E_SEMAPHORE_OFFSET]) != arg)
{
if (Emu.IsStopped())
break;
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
force_inline void semaphore_release(thread* rsx, u32 arg)
{
//TODO: dma
vm::ps3::write32(rsx->label_addr + method_registers[NV406E_SEMAPHORE_OFFSET], arg);
}
}
namespace nv4097
{
force_inline void texture_read_semaphore_release(thread* rsx, u32 arg)
{
//TODO: dma
vm::ps3::write32(rsx->label_addr + method_registers[NV4097_SET_SEMAPHORE_OFFSET], arg);
}
force_inline void back_end_write_semaphore_release(thread* rsx, u32 arg)
{
//TODO: dma
vm::ps3::write32(rsx->label_addr + method_registers[NV4097_SET_SEMAPHORE_OFFSET],
(arg & 0xff00ff00) | ((arg & 0xff) << 16) | ((arg >> 16) & 0xff));
}
//fire only when all data passed to rsx cmd buffer
template<u32 id, u32 index, int count, typename type>
force_inline void set_vertex_data_impl(thread* rsx, u32 arg)
{
static const size_t element_size = (count * sizeof(type));
static const size_t element_size_in_words = element_size / sizeof(u32);
auto& info = rsx->register_vertex_info[index];
info.type = vertex_data_type_from_element_type<type>::type;
info.size = count;
info.frequency = 0;
info.stride = 0;
auto& entry = rsx->register_vertex_data[index];
//find begin of data
size_t begin = id + index * element_size_in_words;
size_t position = 0;//entry.size();
entry.resize(position + element_size);
memcpy(entry.data() + position, method_registers + begin, element_size);
}
template<u32 index>
struct set_vertex_data4ub_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA4UB_M, index, 4, u8>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data1f_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA1F_M, index, 1, f32>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data2f_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA2F_M, index, 2, f32>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data3f_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA3F_M, index, 3, f32>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data4f_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA4F_M, index, 4, f32>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data2s_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA2S_M, index, 2, u16>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data4s_m
{
force_inline static void impl(thread* rsx, u32 arg)
{
set_vertex_data_impl<NV4097_SET_VERTEX_DATA4S_M, index, 4, u16>(rsx, arg);
}
};
template<u32 index>
struct set_vertex_data_array_format
{
force_inline static void impl(thread* rsx, u32 arg)
{
auto& info = rsx->vertex_arrays_info[index];
info.unpack_array(arg);
}
};
force_inline void draw_arrays(thread* rsx, u32 arg)
{
rsx->draw_command = thread::Draw_command::draw_command_array;
u32 first = arg & 0xffffff;
u32 count = (arg >> 24) + 1;
rsx->load_vertex_data(first, count);
}
force_inline void draw_index_array(thread* rsx, u32 arg)
{
rsx->draw_command = thread::Draw_command::draw_command_indexed;
u32 first = arg & 0xffffff;
u32 count = (arg >> 24) + 1;
rsx->load_vertex_data(first, count);
rsx->load_vertex_index_data(first, count);
}
force_inline void draw_inline_array(thread* rsx, u32 arg)
{
rsx->draw_command = thread::Draw_command::draw_command_inlined_array;
rsx->draw_inline_vertex_array = true;
rsx->inline_vertex_array.push_back(arg);
}
template<u32 index>
struct set_transform_constant
{
force_inline static void impl(thread* rsxthr, u32 arg)
{
u32 load = method_registers[NV4097_SET_TRANSFORM_CONSTANT_LOAD];
static const size_t count = 4;
static const size_t size = count * sizeof(f32);
size_t reg = index / 4;
size_t subreg = index % 4;
memcpy(rsxthr->transform_constants[load + reg].rgba + subreg, method_registers + NV4097_SET_TRANSFORM_CONSTANT + reg * count + subreg, sizeof(f32));
}
};
template<u32 index>
struct set_transform_program
{
force_inline static void impl(thread* rsx, u32 arg)
{
u32& load = method_registers[NV4097_SET_TRANSFORM_PROGRAM_LOAD];
static const size_t count = 4;
static const size_t size = count * sizeof(u32);
memcpy(rsx->transform_program + load++ * count, method_registers + NV4097_SET_TRANSFORM_PROGRAM + index * count, size);
}
};
force_inline void set_begin_end(thread* rsx, u32 arg)
{
if (arg)
{
rsx->draw_inline_vertex_array = false;
rsx->inline_vertex_array.clear();
rsx->begin();
return;
}
if (!rsx->vertex_draw_count)
{
bool has_array = false;
for (int i = 0; i < rsx::limits::vertex_count; ++i)
{
if (rsx->vertex_arrays_info[i].size > 0)
{
has_array = true;
break;
}
}
if (!has_array)
{
u32 min_count = ~0;
for (int i = 0; i < rsx::limits::vertex_count; ++i)
{
if (!rsx->register_vertex_info[i].size)
continue;
u32 count = u32(rsx->register_vertex_data[i].size()) /
rsx::get_vertex_type_size(rsx->register_vertex_info[i].type) * rsx->register_vertex_info[i].size;
if (count < min_count)
min_count = count;
}
if (min_count && min_count < ~0)
{
rsx->vertex_draw_count = min_count;
}
}
}
rsx->end();
rsx->vertex_draw_count = 0;
}
force_inline void get_report(thread* rsx, u32 arg)
{
u8 type = arg >> 24;
u32 offset = arg & 0xffffff;
//TODO: use DMA
vm::ps3::ptr<CellGcmReportData> result = { rsx->local_mem_addr + offset, vm::addr };
result->timer = rsx->timestamp();
switch (type)
{
case CELL_GCM_ZPASS_PIXEL_CNT:
case CELL_GCM_ZCULL_STATS:
case CELL_GCM_ZCULL_STATS1:
case CELL_GCM_ZCULL_STATS2:
case CELL_GCM_ZCULL_STATS3:
result->value = 0;
LOG_WARNING(RSX, "NV4097_GET_REPORT: Unimplemented type %d", type);
break;
default:
result->value = 0;
LOG_ERROR(RSX, "NV4097_GET_REPORT: Bad type %d", type);
break;
}
//result->padding = 0;
}
force_inline void clear_report_value(thread* rsx, u32 arg)
{
switch (arg)
{
case CELL_GCM_ZPASS_PIXEL_CNT:
LOG_WARNING(RSX, "TODO: NV4097_CLEAR_REPORT_VALUE: ZPASS_PIXEL_CNT");
break;
case CELL_GCM_ZCULL_STATS:
LOG_WARNING(RSX, "TODO: NV4097_CLEAR_REPORT_VALUE: ZCULL_STATS");
break;
default:
LOG_ERROR(RSX, "NV4097_CLEAR_REPORT_VALUE: Bad type: %d", arg);
break;
}
}
}
namespace nv308a
{
template<u32 index>
struct color
{
force_inline static void impl(u32 arg)
{
u32 point = method_registers[NV308A_POINT];
u16 x = point;
u16 y = point >> 16;
if (y)
{
LOG_ERROR(RSX, "%s: y is not null (0x%x)", __FUNCTION__, y);
}
u32 address = get_address(method_registers[NV3062_SET_OFFSET_DESTIN] + (x << 2) + index * 4, method_registers[NV3062_SET_CONTEXT_DMA_IMAGE_DESTIN]);
vm::ps3::write32(address, arg);
}
};
}
namespace nv3089
{
never_inline void image_in(u32 arg)
{
u32 operation = method_registers[NV3089_SET_OPERATION];
u32 clip_x = method_registers[NV3089_CLIP_POINT] & 0xffff;
u32 clip_y = method_registers[NV3089_CLIP_POINT] >> 16;
u32 clip_w = method_registers[NV3089_CLIP_SIZE] & 0xffff;
u32 clip_h = method_registers[NV3089_CLIP_SIZE] >> 16;
u32 out_x = method_registers[NV3089_IMAGE_OUT_POINT] & 0xffff;
u32 out_y = method_registers[NV3089_IMAGE_OUT_POINT] >> 16;
u32 out_w = method_registers[NV3089_IMAGE_OUT_SIZE] & 0xffff;
u32 out_h = method_registers[NV3089_IMAGE_OUT_SIZE] >> 16;
u16 in_w = method_registers[NV3089_IMAGE_IN_SIZE];
u16 in_h = method_registers[NV3089_IMAGE_IN_SIZE] >> 16;
u16 in_pitch = method_registers[NV3089_IMAGE_IN_FORMAT];
u8 in_origin = method_registers[NV3089_IMAGE_IN_FORMAT] >> 16;
u8 in_inter = method_registers[NV3089_IMAGE_IN_FORMAT] >> 24;
u32 src_color_format = method_registers[NV3089_SET_COLOR_FORMAT];
f32 in_x = (method_registers[NV3089_IMAGE_IN] & 0xffff) / 16.f;
f32 in_y = (method_registers[NV3089_IMAGE_IN] >> 16) / 16.f;
if (in_origin != CELL_GCM_TRANSFER_ORIGIN_CORNER)
{
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown origin (%d)", in_origin);
}
if (in_inter != CELL_GCM_TRANSFER_INTERPOLATOR_ZOH && in_inter != CELL_GCM_TRANSFER_INTERPOLATOR_FOH)
{
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown inter (%d)", in_inter);
}
if (operation != CELL_GCM_TRANSFER_OPERATION_SRCCOPY)
{
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown operation (%d)", operation);
}
const u32 src_offset = method_registers[NV3089_IMAGE_IN_OFFSET];
const u32 src_dma = method_registers[NV3089_SET_CONTEXT_DMA_IMAGE];
u32 dst_offset;
u32 dst_dma = 0;
u16 dst_color_format;
u32 out_pitch = 0;
u32 out_aligment = 64;
switch (method_registers[NV3089_SET_CONTEXT_SURFACE])
{
case CELL_GCM_CONTEXT_SURFACE2D:
dst_dma = method_registers[NV3062_SET_CONTEXT_DMA_IMAGE_DESTIN];
dst_offset = method_registers[NV3062_SET_OFFSET_DESTIN];
dst_color_format = method_registers[NV3062_SET_COLOR_FORMAT];
out_pitch = method_registers[NV3062_SET_PITCH] >> 16;
out_aligment = method_registers[NV3062_SET_PITCH] & 0xffff;
break;
case CELL_GCM_CONTEXT_SWIZZLE2D:
dst_dma = method_registers[NV309E_SET_CONTEXT_DMA_IMAGE];
dst_offset = method_registers[NV309E_SET_OFFSET];
dst_color_format = method_registers[NV309E_SET_FORMAT];
break;
default:
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown m_context_surface (0x%x)", method_registers[NV3089_SET_CONTEXT_SURFACE]);
return;
}
u32 src_address = get_address(src_offset, src_dma);
u32 dst_address = get_address(dst_offset, dst_dma);
u32 in_bpp = src_color_format == CELL_GCM_TRANSFER_SCALE_FORMAT_R5G6B5 ? 2 : 4; // bytes per pixel
u32 out_bpp = dst_color_format == CELL_GCM_TRANSFER_SURFACE_FORMAT_R5G6B5 ? 2 : 4;
if (out_pitch == 0)
{
out_pitch = out_bpp * out_w;
}
if (in_pitch == 0)
{
in_pitch = in_bpp * in_w;
}
if (clip_w > out_w)
{
clip_w = out_w;
}
if (clip_h > out_h)
{
clip_h = out_h;
}
//LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: src = 0x%x, dst = 0x%x", src_address, dst_address);
u8* pixels_src = vm::ps3::_ptr<u8>(src_address);
u8* pixels_dst = vm::ps3::_ptr<u8>(dst_address);
if (dst_color_format != CELL_GCM_TRANSFER_SURFACE_FORMAT_R5G6B5 &&
dst_color_format != CELL_GCM_TRANSFER_SURFACE_FORMAT_A8R8G8B8)
{
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown dst_color_format (%d)", dst_color_format);
}
if (src_color_format != CELL_GCM_TRANSFER_SCALE_FORMAT_R5G6B5 &&
src_color_format != CELL_GCM_TRANSFER_SCALE_FORMAT_A8R8G8B8)
{
LOG_ERROR(RSX, "NV3089_IMAGE_IN_SIZE: unknown src_color_format (%d)", src_color_format);
}
//LOG_WARNING(RSX, "NV3089_IMAGE_IN_SIZE: SIZE=0x%08x, pitch=0x%x, offset=0x%x, scaleX=%f, scaleY=%f, CLIP_SIZE=0x%08x, OUT_SIZE=0x%08x",
// method_registers[NV3089_IMAGE_IN_SIZE], in_pitch, src_offset, double(1 << 20) / (method_registers[NV3089_DS_DX]), double(1 << 20) / (method_registers[NV3089_DT_DY]),
// method_registers[NV3089_CLIP_SIZE], method_registers[NV3089_IMAGE_OUT_SIZE]);
std::unique_ptr<u8[]> temp1, temp2;
AVPixelFormat in_format = src_color_format == CELL_GCM_TRANSFER_SCALE_FORMAT_R5G6B5 ? AV_PIX_FMT_RGB565BE : AV_PIX_FMT_ARGB;
AVPixelFormat out_format = dst_color_format == CELL_GCM_TRANSFER_SURFACE_FORMAT_R5G6B5 ? AV_PIX_FMT_RGB565BE : AV_PIX_FMT_ARGB;
u32 out_offset = out_x * out_bpp + out_pitch * out_y;
bool need_clip = method_registers[NV3089_CLIP_SIZE] != method_registers[NV3089_IMAGE_IN_SIZE] || method_registers[NV3089_CLIP_POINT];
bool need_convert = out_format != in_format || out_w != in_w || out_h != in_h;
u32 slice_h = (u32)(clip_h * (method_registers[NV3089_DS_DX] / 1048576.f));
if (slice_h)
{
if (clip_h < out_h)
{
--slice_h;
}
}
else
{
slice_h = clip_h;
}
if (method_registers[NV3089_SET_CONTEXT_SURFACE] != CELL_GCM_CONTEXT_SWIZZLE2D)
{
if (need_convert || need_clip)
{
if (need_clip)
{
if (need_convert)
{
convert_scale_image(temp1, out_format, out_w, out_h, out_pitch,
pixels_src, in_format, in_w, in_h, in_pitch, slice_h, in_inter ? true : false);
clip_image(pixels_dst + out_offset, temp1.get(), clip_x, clip_y, clip_w, clip_h, out_bpp, out_pitch, out_pitch);
}
else
{
clip_image(pixels_dst + out_offset, pixels_src, clip_x, clip_y, clip_w, clip_h, out_bpp, in_pitch, out_pitch);
}
}
else
{
convert_scale_image(pixels_dst + out_offset, out_format, out_w, out_h, out_pitch,
pixels_src, in_format, in_w, in_h, in_pitch, slice_h, in_inter ? true : false);
}
}
else
{
if (out_pitch != in_pitch || out_pitch != out_bpp * out_w)
{
for (u32 y = 0; y < out_h; ++y)
{
u8 *dst = pixels_dst + out_x * out_bpp + out_pitch * (y + out_y);
u8 *src = pixels_src + in_pitch * y;
std::memmove(dst, src, out_w * out_bpp);
}
}
else
{
std::memmove(pixels_dst + out_offset, pixels_src, out_pitch * out_h);
}
}
}
else
{
if (need_convert || need_clip)
{
if (need_clip)
{
if (need_convert)
{
convert_scale_image(temp1, out_format, out_w, out_h, out_pitch,
pixels_src, in_format, in_w, in_h, in_pitch, slice_h, in_inter ? true : false);
clip_image(temp2, temp1.get(), clip_x, clip_y, clip_w, clip_h, out_bpp, out_pitch, out_pitch);
}
else
{
clip_image(temp2, pixels_src, clip_x, clip_y, clip_w, clip_h, out_bpp, in_pitch, out_pitch);
}
}
else
{
convert_scale_image(temp2, out_format, out_w, out_h, out_pitch,
pixels_src, in_format, in_w, in_h, in_pitch, clip_h, in_inter ? true : false);
}
pixels_src = temp2.get();
}
u8 sw_width_log2 = method_registers[NV309E_SET_FORMAT] >> 16;
u8 sw_height_log2 = method_registers[NV309E_SET_FORMAT] >> 24;
// 0 indicates height of 1 pixel
sw_height_log2 = sw_height_log2 == 0 ? 1 : sw_height_log2;
// swizzle based on destination size
u16 sw_width = 1 << sw_width_log2;
u16 sw_height = 1 << sw_height_log2;
temp2.reset(new u8[out_bpp * sw_width * sw_height]);
u8* linear_pixels = pixels_src;
u8* swizzled_pixels = temp2.get();
// Check and pad texture out if we are given non square texture for swizzle to be correct
if (sw_width != out_w || sw_height != out_h)
{
std::unique_ptr<u8[]> sw_temp(new u8[out_bpp * sw_width * sw_height]);
switch (out_bpp)
{
case 1:
pad_texture<u8>(linear_pixels, sw_temp.get(), out_w, out_h, sw_width, sw_height);
break;
case 2:
pad_texture<u16>(linear_pixels, sw_temp.get(), out_w, out_h, sw_width, sw_height);
break;
case 4:
pad_texture<u32>(linear_pixels, sw_temp.get(), out_w, out_h, sw_width, sw_height);
break;
}
linear_pixels = sw_temp.get();
}
switch (out_bpp)
{
case 1:
convert_linear_swizzle<u8>(linear_pixels, swizzled_pixels, sw_width, sw_height, false);
break;
case 2:
convert_linear_swizzle<u16>(linear_pixels, swizzled_pixels, sw_width, sw_height, false);
break;
case 4:
convert_linear_swizzle<u32>(linear_pixels, swizzled_pixels, sw_width, sw_height, false);
break;
}
std::memcpy(pixels_dst, swizzled_pixels, out_bpp * sw_width * sw_height);
}
}
}
namespace nv0039
{
force_inline void buffer_notify(u32 arg)
{
const u32 inPitch = method_registers[NV0039_PITCH_IN];
const u32 outPitch = method_registers[NV0039_PITCH_OUT];
const u32 lineLength = method_registers[NV0039_LINE_LENGTH_IN];
const u32 lineCount = method_registers[NV0039_LINE_COUNT];
const u8 outFormat = method_registers[NV0039_FORMAT] >> 8;
const u8 inFormat = method_registers[NV0039_FORMAT];
const u32 notify = arg;
// The existing GCM commands use only the value 0x1 for inFormat and outFormat
if (inFormat != 0x01 || outFormat != 0x01)
{
LOG_ERROR(RSX, "NV0039_OFFSET_IN: Unsupported format: inFormat=%d, outFormat=%d", inFormat, outFormat);
}
if (lineCount == 1 && !inPitch && !outPitch && !notify)
{
std::memcpy(
vm::base(get_address(method_registers[NV0039_OFFSET_OUT], method_registers[NV0039_SET_CONTEXT_DMA_BUFFER_OUT])),
vm::base(get_address(method_registers[NV0039_OFFSET_IN], method_registers[NV0039_SET_CONTEXT_DMA_BUFFER_IN])),
lineLength);
}
else
{
LOG_ERROR(RSX, "NV0039_OFFSET_IN: bad offset(in=0x%x, out=0x%x), pitch(in=0x%x, out=0x%x), line(len=0x%x, cnt=0x%x), fmt(in=0x%x, out=0x%x), notify=0x%x",
method_registers[NV0039_OFFSET_IN], method_registers[NV0039_OFFSET_OUT], inPitch, outPitch, lineLength, lineCount, inFormat, outFormat, notify);
}
}
}
void flip_command(thread* rsx, u32 arg)
{
if (user_asked_for_frame_capture)
{
rsx->capture_current_frame = true;
user_asked_for_frame_capture = false;
frame_debug.reset();
}
else if (rsx->capture_current_frame)
{
rsx->capture_current_frame = false;
Emu.Pause();
}
rsx->gcm_current_buffer = arg;
rsx->flip(arg);
// After each flip PS3 system is executing a routine that changes registers value to some default.
// Some game use this default state (SH3).
rsx->reset();
rsx->last_flip_time = get_system_time() - 1000000;
rsx->gcm_current_buffer = arg;
rsx->flip_status = 0;
if (rsx->flip_handler)
{
Emu.GetCallbackManager().Async([func = rsx->flip_handler](PPUThread& ppu)
{
func(ppu, 1);
});
}
rsx->sem_flip.post_and_wait();
//sync
double limit;
switch (rpcs3::state.config.rsx.frame_limit.value())
{
case rsx_frame_limit::_50: limit = 50.; break;
case rsx_frame_limit::_59_94: limit = 59.94; break;
case rsx_frame_limit::_30: limit = 30.; break;
case rsx_frame_limit::_60: limit = 60.; break;
case rsx_frame_limit::Auto: limit = rsx->fps_limit; break; //TODO
case rsx_frame_limit::Off:
default:
return;
}
std::this_thread::sleep_for(std::chrono::milliseconds((s64)(1000.0 / limit - rsx->timer_sync.GetElapsedTimeInMilliSec())));
rsx->timer_sync.Start();
rsx->local_transform_constants.clear();
}
void user_command(thread* rsx, u32 arg)
{
if (rsx->user_handler)
{
Emu.GetCallbackManager().Async([func = rsx->user_handler, arg](PPUThread& ppu)
{
func(ppu, arg);
});
}
else
{
throw EXCEPTION("User handler not set");
}
}
struct __rsx_methods_t
{
using rsx_impl_method_t = void(*)(u32);
template<rsx_method_t impl_func>
force_inline static void call_impl_func(thread *rsx, u32 arg)
{
impl_func(rsx, arg);
}
template<rsx_impl_method_t impl_func>
force_inline static void call_impl_func(thread *rsx, u32 arg)
{
impl_func(arg);
}
template<int id, typename T, T impl_func>
static void wrapper(thread *rsx, u32 arg)
{
// try process using gpu
if (rsx->do_method(id, arg))
{
if (rsx->capture_current_frame && id == NV4097_CLEAR_SURFACE)
rsx->capture_frame("clear");
return;
}
// not handled by renderer
// try process using cpu
if (impl_func != nullptr)
call_impl_func<impl_func>(rsx, arg);
}
template<int id, int step, int count, template<u32> class T, int index = 0>
struct bind_range_impl_t
{
force_inline static void impl()
{
bind_range_impl_t<id + step, step, count, T, index + 1>::impl();
bind<id, T<index>::impl>();
}
};
template<int id, int step, int count, template<u32> class T>
struct bind_range_impl_t<id, step, count, T, count>
{
force_inline static void impl()
{
}
};
template<int id, int step, int count, template<u32> class T, int index = 0>
force_inline static void bind_range()
{
bind_range_impl_t<id, step, count, T, index>::impl();
}
[[noreturn]] never_inline static void bind_redefinition_error(int id)
{
throw EXCEPTION("RSX method implementation redefinition (0x%04x)", id);
}
template<int id, typename T, T impl_func>
static void bind_impl()
{
if (methods[id])
{
bind_redefinition_error(id);
}
methods[id] = wrapper<id, T, impl_func>;
}
template<int id, typename T, T impl_func>
static void bind_cpu_only_impl()
{
if (methods[id])
{
bind_redefinition_error(id);
}
methods[id] = call_impl_func<impl_func>;
}
template<int id, rsx_impl_method_t impl_func> static void bind() { bind_impl<id, rsx_impl_method_t, impl_func>(); }
template<int id, rsx_method_t impl_func = nullptr> static void bind() { bind_impl<id, rsx_method_t, impl_func>(); }
//do not try process on gpu
template<int id, rsx_impl_method_t impl_func> static void bind_cpu_only() { bind_cpu_only_impl<id, rsx_impl_method_t, impl_func>(); }
//do not try process on gpu
template<int id, rsx_method_t impl_func = nullptr> static void bind_cpu_only() { bind_cpu_only_impl<id, rsx_method_t, impl_func>(); }
__rsx_methods_t()
{
// NV406E
bind_cpu_only<NV406E_SET_REFERENCE, nv406e::set_reference>();
bind<NV406E_SEMAPHORE_ACQUIRE, nv406e::semaphore_acquire>();
bind<NV406E_SEMAPHORE_RELEASE, nv406e::semaphore_release>();
// NV4097
bind<NV4097_TEXTURE_READ_SEMAPHORE_RELEASE, nv4097::texture_read_semaphore_release>();
bind<NV4097_BACK_END_WRITE_SEMAPHORE_RELEASE, nv4097::back_end_write_semaphore_release>();
bind<NV4097_SET_BEGIN_END, nv4097::set_begin_end>();
bind<NV4097_CLEAR_SURFACE>();
bind<NV4097_DRAW_ARRAYS, nv4097::draw_arrays>();
bind<NV4097_DRAW_INDEX_ARRAY, nv4097::draw_index_array>();
bind<NV4097_INLINE_ARRAY, nv4097::draw_inline_array>();
bind_range<NV4097_SET_VERTEX_DATA_ARRAY_FORMAT, 1, 16, nv4097::set_vertex_data_array_format>();
bind_range<NV4097_SET_VERTEX_DATA4UB_M, 1, 16, nv4097::set_vertex_data4ub_m>();
bind_range<NV4097_SET_VERTEX_DATA1F_M, 1, 16, nv4097::set_vertex_data1f_m>();
bind_range<NV4097_SET_VERTEX_DATA2F_M + 1, 2, 16, nv4097::set_vertex_data2f_m>();
bind_range<NV4097_SET_VERTEX_DATA3F_M + 2, 3, 16, nv4097::set_vertex_data3f_m>();
bind_range<NV4097_SET_VERTEX_DATA4F_M + 3, 4, 16, nv4097::set_vertex_data4f_m>();
bind_range<NV4097_SET_VERTEX_DATA2S_M, 1, 16, nv4097::set_vertex_data2s_m>();
bind_range<NV4097_SET_VERTEX_DATA4S_M + 1, 2, 16, nv4097::set_vertex_data4s_m>();
bind_range<NV4097_SET_TRANSFORM_CONSTANT, 1, 32, nv4097::set_transform_constant>();
bind_range<NV4097_SET_TRANSFORM_PROGRAM + 3, 4, 128, nv4097::set_transform_program>();
bind_cpu_only<NV4097_GET_REPORT, nv4097::get_report>();
bind_cpu_only<NV4097_CLEAR_REPORT_VALUE, nv4097::clear_report_value>();
//NV308A
bind_range<NV308A_COLOR, 1, 256, nv308a::color>();
bind_range<NV308A_COLOR + 256, 1, 512, nv308a::color, 256>();
//NV3089
bind<NV3089_IMAGE_IN, nv3089::image_in>();
//NV0039
bind<NV0039_BUFFER_NOTIFY, nv0039::buffer_notify>();
// custom methods
bind_cpu_only<GCM_FLIP_COMMAND, flip_command>();
bind_cpu_only<GCM_SET_USER_COMMAND, user_command>();
}
} __rsx_methods;
}

View File

@ -0,0 +1,69 @@
#pragma once
namespace rsx
{
//TODO
union alignas(4) method_registers_t
{
u8 _u8[0x10000];
u32 _u32[0x10000 >> 2];
/*
struct alignas(4)
{
u8 pad[NV4097_SET_TEXTURE_OFFSET - 4];
struct alignas(4) texture_t
{
u32 offset;
union format_t
{
u32 _u32;
struct
{
u32: 1;
u32 location : 1;
u32 cubemap : 1;
u32 border_type : 1;
u32 dimension : 4;
u32 format : 8;
u32 mipmap : 16;
};
} format;
union address_t
{
u32 _u32;
struct
{
u32 wrap_s : 4;
u32 aniso_bias : 4;
u32 wrap_t : 4;
u32 unsigned_remap : 4;
u32 wrap_r : 4;
u32 gamma : 4;
u32 signed_remap : 4;
u32 zfunc : 4;
};
} address;
u32 control0;
u32 control1;
u32 filter;
u32 image_rect;
u32 border_color;
} textures[limits::textures_count];
};
*/
u32& operator[](int index)
{
return _u32[index >> 2];
}
};
using rsx_method_t = void(*)(class thread*, u32);
extern u32 method_registers[0x10000 >> 2];
extern rsx_method_t methods[0x10000 >> 2];
}