1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00

Remove 7z copy pasta repo

This commit is contained in:
Megamouse 2024-05-25 01:35:46 +02:00
parent 21c03b74b6
commit ed579fbb9c
104 changed files with 0 additions and 39852 deletions

View File

@ -1,263 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClInclude Include="src\7z.h" />
<ClInclude Include="src\7zAlloc.h" />
<ClInclude Include="src\7zBuf.h" />
<ClInclude Include="src\7zCrc.h" />
<ClInclude Include="src\7zFile.h" />
<ClInclude Include="src\7zTypes.h" />
<ClInclude Include="src\7zVersion.h" />
<ClInclude Include="src\7zWindows.h" />
<ClInclude Include="src\Aes.h" />
<ClInclude Include="src\Alloc.h" />
<ClInclude Include="src\Bcj2.h" />
<ClInclude Include="src\Blake2.h" />
<ClInclude Include="src\Bra.h" />
<ClInclude Include="src\BwtSort.h" />
<ClInclude Include="src\Compiler.h" />
<ClInclude Include="src\CpuArch.h" />
<ClInclude Include="src\Delta.h" />
<ClInclude Include="src\DllSecur.h" />
<ClInclude Include="src\HuffEnc.h" />
<ClInclude Include="src\LzFind.h" />
<ClInclude Include="src\LzFindMt.h" />
<ClInclude Include="src\LzHash.h" />
<ClInclude Include="src\Lzma2Dec.h" />
<ClInclude Include="src\Lzma2DecMt.h" />
<ClInclude Include="src\Lzma2Enc.h" />
<ClInclude Include="src\Lzma86.h" />
<ClInclude Include="src\LzmaDec.h" />
<ClInclude Include="src\LzmaEnc.h" />
<ClInclude Include="src\LzmaLib.h" />
<ClInclude Include="src\MtCoder.h" />
<ClInclude Include="src\MtDec.h" />
<ClInclude Include="src\Ppmd.h" />
<ClInclude Include="src\Ppmd7.h" />
<ClInclude Include="src\Ppmd8.h" />
<ClInclude Include="src\Precomp.h" />
<ClInclude Include="src\RotateDefs.h" />
<ClInclude Include="src\Sha1.h" />
<ClInclude Include="src\Sha256.h" />
<ClInclude Include="src\Sort.h" />
<ClInclude Include="src\SwapBytes.h" />
<ClInclude Include="src\Threads.h" />
<ClInclude Include="src\Xz.h" />
<ClInclude Include="src\XzCrc64.h" />
<ClInclude Include="src\XzEnc.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\7zAlloc.c" />
<ClCompile Include="src\7zArcIn.c" />
<ClCompile Include="src\7zBuf.c" />
<ClCompile Include="src\7zBuf2.c" />
<ClCompile Include="src\7zCrc.c" />
<ClCompile Include="src\7zCrcOpt.c" />
<ClCompile Include="src\7zDec.c" />
<ClCompile Include="src\7zFile.c" />
<ClCompile Include="src\7zStream.c" />
<ClCompile Include="src\Aes.c" />
<ClCompile Include="src\AesOpt.c" />
<ClCompile Include="src\Alloc.c" />
<ClCompile Include="src\Bcj2.c" />
<ClCompile Include="src\Bcj2Enc.c" />
<ClCompile Include="src\Blake2s.c" />
<ClCompile Include="src\Bra.c" />
<ClCompile Include="src\Bra86.c" />
<ClCompile Include="src\BraIA64.c" />
<ClCompile Include="src\BwtSort.c" />
<ClCompile Include="src\CpuArch.c" />
<ClCompile Include="src\Delta.c" />
<ClCompile Include="src\DllSecur.c" />
<ClCompile Include="src\HuffEnc.c" />
<ClCompile Include="src\LzFind.c" />
<ClCompile Include="src\LzFindMt.c" />
<ClCompile Include="src\LzFindOpt.c" />
<ClCompile Include="src\Lzma2Dec.c" />
<ClCompile Include="src\Lzma2DecMt.c" />
<ClCompile Include="src\Lzma2Enc.c" />
<ClCompile Include="src\Lzma86Dec.c" />
<ClCompile Include="src\Lzma86Enc.c" />
<ClCompile Include="src\LzmaDec.c" />
<ClCompile Include="src\LzmaEnc.c" />
<ClCompile Include="src\LzmaLib.c" />
<ClCompile Include="src\MtCoder.c" />
<ClCompile Include="src\MtDec.c" />
<ClCompile Include="src\Ppmd7.c" />
<ClCompile Include="src\Ppmd7aDec.c" />
<ClCompile Include="src\Ppmd7Dec.c" />
<ClCompile Include="src\Ppmd7Enc.c" />
<ClCompile Include="src\Ppmd8.c" />
<ClCompile Include="src\Ppmd8Dec.c" />
<ClCompile Include="src\Ppmd8Enc.c" />
<ClCompile Include="src\Sha1.c" />
<ClCompile Include="src\Sha1Opt.c" />
<ClCompile Include="src\Sha256.c" />
<ClCompile Include="src\Sha256Opt.c" />
<ClCompile Include="src\Sort.c" />
<ClCompile Include="src\SwapBytes.c" />
<ClCompile Include="src\Threads.c" />
<ClCompile Include="src\Xz.c" />
<ClCompile Include="src\XzCrc64.c" />
<ClCompile Include="src\XzCrc64Opt.c" />
<ClCompile Include="src\XzDec.c" />
<ClCompile Include="src\XzEnc.c" />
<ClCompile Include="src\XzIn.c" />
</ItemGroup>
<PropertyGroup Label="Globals">
<VCProjectVersion>16.0</VCProjectVersion>
<ProjectGuid>{5B146DEA-9ACE-4D32-A7FD-3F42464DD69C}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>My7zlib</RootNamespace>
</PropertyGroup>
<Import Project="$(SolutionDir)\buildfiles\msvc\common_default.props" />
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<PreferredToolArchitecture>x64</PreferredToolArchitecture>
</PropertyGroup>
<Import Project="$(SolutionDir)\buildfiles\msvc\common_default_macros.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<OutDir>$(SolutionDir)lib/$(Configuration)-$(Platform)/</OutDir>
<IntDir>$(SolutionDir)tmp\$(ProjectName)-$(Configuration)-$(Platform)/</IntDir>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<PrecompiledHeader>NotUsing</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>NDEBUG;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
</ClCompile>
<Link>
<SubSystem>Windows</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>Use</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;_DEBUG;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
</ClCompile>
<Link>
<SubSystem>Windows</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>_DEBUG;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
</ClCompile>
<Link>
<SubSystem>Windows</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<PrecompiledHeader>Use</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<SDLCheck>true</SDLCheck>
<PreprocessorDefinitions>WIN32;NDEBUG;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<ConformanceMode>true</ConformanceMode>
<PrecompiledHeaderFile>pch.h</PrecompiledHeaderFile>
</ClCompile>
<Link>
<SubSystem>Windows</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@ -1,107 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<ClInclude Include="src\7z.h" />
<ClInclude Include="src\7zAlloc.h" />
<ClInclude Include="src\7zBuf.h" />
<ClInclude Include="src\7zCrc.h" />
<ClInclude Include="src\7zFile.h" />
<ClInclude Include="src\7zTypes.h" />
<ClInclude Include="src\7zVersion.h" />
<ClInclude Include="src\7zWindows.h" />
<ClInclude Include="src\Aes.h" />
<ClInclude Include="src\Alloc.h" />
<ClInclude Include="src\Bcj2.h" />
<ClInclude Include="src\Blake2.h" />
<ClInclude Include="src\Bra.h" />
<ClInclude Include="src\BwtSort.h" />
<ClInclude Include="src\Compiler.h" />
<ClInclude Include="src\CpuArch.h" />
<ClInclude Include="src\Delta.h" />
<ClInclude Include="src\DllSecur.h" />
<ClInclude Include="src\HuffEnc.h" />
<ClInclude Include="src\LzFind.h" />
<ClInclude Include="src\LzFindMt.h" />
<ClInclude Include="src\LzHash.h" />
<ClInclude Include="src\Lzma2Dec.h" />
<ClInclude Include="src\Lzma2DecMt.h" />
<ClInclude Include="src\Lzma2Enc.h" />
<ClInclude Include="src\Lzma86.h" />
<ClInclude Include="src\LzmaDec.h" />
<ClInclude Include="src\LzmaEnc.h" />
<ClInclude Include="src\LzmaLib.h" />
<ClInclude Include="src\MtCoder.h" />
<ClInclude Include="src\MtDec.h" />
<ClInclude Include="src\Ppmd.h" />
<ClInclude Include="src\Ppmd7.h" />
<ClInclude Include="src\Ppmd8.h" />
<ClInclude Include="src\Precomp.h" />
<ClInclude Include="src\RotateDefs.h" />
<ClInclude Include="src\Sha1.h" />
<ClInclude Include="src\Sha256.h" />
<ClInclude Include="src\Sort.h" />
<ClInclude Include="src\SwapBytes.h" />
<ClInclude Include="src\Threads.h" />
<ClInclude Include="src\Xz.h" />
<ClInclude Include="src\XzCrc64.h" />
<ClInclude Include="src\XzEnc.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="src\7zAlloc.c" />
<ClCompile Include="src\7zArcIn.c" />
<ClCompile Include="src\7zBuf.c" />
<ClCompile Include="src\7zBuf2.c" />
<ClCompile Include="src\7zCrc.c" />
<ClCompile Include="src\7zCrcOpt.c" />
<ClCompile Include="src\7zDec.c" />
<ClCompile Include="src\7zFile.c" />
<ClCompile Include="src\7zStream.c" />
<ClCompile Include="src\Aes.c" />
<ClCompile Include="src\AesOpt.c" />
<ClCompile Include="src\Alloc.c" />
<ClCompile Include="src\Bcj2.c" />
<ClCompile Include="src\Bcj2Enc.c" />
<ClCompile Include="src\Blake2s.c" />
<ClCompile Include="src\Bra.c" />
<ClCompile Include="src\Bra86.c" />
<ClCompile Include="src\BraIA64.c" />
<ClCompile Include="src\BwtSort.c" />
<ClCompile Include="src\CpuArch.c" />
<ClCompile Include="src\Delta.c" />
<ClCompile Include="src\DllSecur.c" />
<ClCompile Include="src\HuffEnc.c" />
<ClCompile Include="src\LzFind.c" />
<ClCompile Include="src\LzFindMt.c" />
<ClCompile Include="src\LzFindOpt.c" />
<ClCompile Include="src\Lzma2Dec.c" />
<ClCompile Include="src\Lzma2DecMt.c" />
<ClCompile Include="src\Lzma2Enc.c" />
<ClCompile Include="src\Lzma86Dec.c" />
<ClCompile Include="src\Lzma86Enc.c" />
<ClCompile Include="src\LzmaDec.c" />
<ClCompile Include="src\LzmaEnc.c" />
<ClCompile Include="src\LzmaLib.c" />
<ClCompile Include="src\MtCoder.c" />
<ClCompile Include="src\MtDec.c" />
<ClCompile Include="src\Ppmd7.c" />
<ClCompile Include="src\Ppmd7aDec.c" />
<ClCompile Include="src\Ppmd7Dec.c" />
<ClCompile Include="src\Ppmd7Enc.c" />
<ClCompile Include="src\Ppmd8.c" />
<ClCompile Include="src\Ppmd8Dec.c" />
<ClCompile Include="src\Ppmd8Enc.c" />
<ClCompile Include="src\Sha1.c" />
<ClCompile Include="src\Sha1Opt.c" />
<ClCompile Include="src\Sha256.c" />
<ClCompile Include="src\Sha256Opt.c" />
<ClCompile Include="src\Sort.c" />
<ClCompile Include="src\SwapBytes.c" />
<ClCompile Include="src\Threads.c" />
<ClCompile Include="src\Xz.c" />
<ClCompile Include="src\XzCrc64.c" />
<ClCompile Include="src\XzCrc64Opt.c" />
<ClCompile Include="src\XzDec.c" />
<ClCompile Include="src\XzEnc.c" />
<ClCompile Include="src\XzIn.c" />
</ItemGroup>
</Project>

View File

@ -1,70 +0,0 @@
# 7z sdk
if(WIN32 OR APPLE)
add_library(3rdparty_7z STATIC EXCLUDE_FROM_ALL
src/7zAlloc.c
src/7zArcIn.c
src/7zBuf.c
src/7zBuf2.c
src/7zCrc.c
src/7zCrcOpt.c
src/7zDec.c
src/7zFile.c
src/7zStream.c
src/Aes.c
src/AesOpt.c
src/Alloc.c
src/Bcj2.c
src/Bcj2Enc.c
src/Blake2s.c
src/Bra.c
src/Bra86.c
src/BraIA64.c
src/BwtSort.c
src/CpuArch.c
src/Delta.c
src/DllSecur.c
src/HuffEnc.c
src/LzFind.c
src/LzFindMt.c
src/LzFindOpt.c
src/Lzma2Dec.c
src/Lzma2DecMt.c
src/Lzma2Enc.c
src/Lzma86Dec.c
src/Lzma86Enc.c
src/LzmaDec.c
src/LzmaEnc.c
src/LzmaLib.c
src/MtCoder.c
src/MtDec.c
src/Ppmd7.c
src/Ppmd7aDec.c
src/Ppmd7Dec.c
src/Ppmd7Enc.c
src/Ppmd8.c
src/Ppmd8Dec.c
src/Ppmd8Enc.c
src/Sha1.c
src/Sha1Opt.c
src/Sha256.c
src/Sha256Opt.c
src/Sort.c
src/SwapBytes.c
src/Threads.c
src/Xz.c
src/XzCrc64.c
src/XzCrc64Opt.c
src/XzDec.c
src/XzEnc.c
src/XzIn.c)
target_include_directories(3rdparty_7z INTERFACE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/src>
$<INSTALL_INTERFACE:/src>)
target_include_directories(3rdparty_7z INTERFACE 7z)
set_property(TARGET 3rdparty_7z PROPERTY FOLDER "3rdparty/")
else()
add_library(3rdparty_7z INTERFACE)
endif()

204
3rdparty/7z/src/7z.h vendored
View File

@ -1,204 +0,0 @@
/* 7z.h -- 7z interface
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_H
#define ZIP7_INC_7Z_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define k7zStartHeaderSize 0x20
#define k7zSignatureSize 6
extern const Byte k7zSignature[k7zSignatureSize];
typedef struct
{
const Byte *Data;
size_t Size;
} CSzData;
/* CSzCoderInfo & CSzFolder support only default methods */
typedef struct
{
size_t PropsOffset;
UInt32 MethodID;
Byte NumStreams;
Byte PropsSize;
} CSzCoderInfo;
typedef struct
{
UInt32 InIndex;
UInt32 OutIndex;
} CSzBond;
#define SZ_NUM_CODERS_IN_FOLDER_MAX 4
#define SZ_NUM_BONDS_IN_FOLDER_MAX 3
#define SZ_NUM_PACK_STREAMS_IN_FOLDER_MAX 4
typedef struct
{
UInt32 NumCoders;
UInt32 NumBonds;
UInt32 NumPackStreams;
UInt32 UnpackStream;
UInt32 PackStreams[SZ_NUM_PACK_STREAMS_IN_FOLDER_MAX];
CSzBond Bonds[SZ_NUM_BONDS_IN_FOLDER_MAX];
CSzCoderInfo Coders[SZ_NUM_CODERS_IN_FOLDER_MAX];
} CSzFolder;
SRes SzGetNextFolderItem(CSzFolder *f, CSzData *sd);
typedef struct
{
UInt32 Low;
UInt32 High;
} CNtfsFileTime;
typedef struct
{
Byte *Defs; /* MSB 0 bit numbering */
UInt32 *Vals;
} CSzBitUi32s;
typedef struct
{
Byte *Defs; /* MSB 0 bit numbering */
// UInt64 *Vals;
CNtfsFileTime *Vals;
} CSzBitUi64s;
#define SzBitArray_Check(p, i) (((p)[(i) >> 3] & (0x80 >> ((i) & 7))) != 0)
#define SzBitWithVals_Check(p, i) ((p)->Defs && ((p)->Defs[(i) >> 3] & (0x80 >> ((i) & 7))) != 0)
typedef struct
{
UInt32 NumPackStreams;
UInt32 NumFolders;
UInt64 *PackPositions; // NumPackStreams + 1
CSzBitUi32s FolderCRCs; // NumFolders
size_t *FoCodersOffsets; // NumFolders + 1
UInt32 *FoStartPackStreamIndex; // NumFolders + 1
UInt32 *FoToCoderUnpackSizes; // NumFolders + 1
Byte *FoToMainUnpackSizeIndex; // NumFolders
UInt64 *CoderUnpackSizes; // for all coders in all folders
Byte *CodersData;
UInt64 RangeLimit;
} CSzAr;
UInt64 SzAr_GetFolderUnpackSize(const CSzAr *p, UInt32 folderIndex);
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStreamPtr stream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain);
typedef struct
{
CSzAr db;
UInt64 startPosAfterHeader;
UInt64 dataPos;
UInt32 NumFiles;
UInt64 *UnpackPositions; // NumFiles + 1
// Byte *IsEmptyFiles;
Byte *IsDirs;
CSzBitUi32s CRCs;
CSzBitUi32s Attribs;
// CSzBitUi32s Parents;
CSzBitUi64s MTime;
CSzBitUi64s CTime;
UInt32 *FolderToFile; // NumFolders + 1
UInt32 *FileToFolder; // NumFiles
size_t *FileNameOffsets; /* in 2-byte steps */
Byte *FileNames; /* UTF-16-LE */
} CSzArEx;
#define SzArEx_IsDir(p, i) (SzBitArray_Check((p)->IsDirs, i))
#define SzArEx_GetFileSize(p, i) ((p)->UnpackPositions[(i) + 1] - (p)->UnpackPositions[i])
void SzArEx_Init(CSzArEx *p);
void SzArEx_Free(CSzArEx *p, ISzAllocPtr alloc);
UInt64 SzArEx_GetFolderStreamPos(const CSzArEx *p, UInt32 folderIndex, UInt32 indexInFolder);
int SzArEx_GetFolderFullPackSize(const CSzArEx *p, UInt32 folderIndex, UInt64 *resSize);
/*
if dest == NULL, the return value specifies the required size of the buffer,
in 16-bit characters, including the null-terminating character.
if dest != NULL, the return value specifies the number of 16-bit characters that
are written to the dest, including the null-terminating character. */
size_t SzArEx_GetFileNameUtf16(const CSzArEx *p, size_t fileIndex, UInt16 *dest);
/*
size_t SzArEx_GetFullNameLen(const CSzArEx *p, size_t fileIndex);
UInt16 *SzArEx_GetFullNameUtf16_Back(const CSzArEx *p, size_t fileIndex, UInt16 *dest);
*/
/*
SzArEx_Extract extracts file from archive
*outBuffer must be 0 before first call for each new archive.
Extracting cache:
If you need to decompress more than one file, you can send
these values from previous call:
*blockIndex,
*outBuffer,
*outBufferSize
You can consider "*outBuffer" as cache of solid block. If your archive is solid,
it will increase decompression speed.
If you use external function, you can declare these 3 cache variables
(blockIndex, outBuffer, outBufferSize) as static in that external function.
Free *outBuffer and set *outBuffer to 0, if you want to flush cache.
*/
SRes SzArEx_Extract(
const CSzArEx *db,
ILookInStreamPtr inStream,
UInt32 fileIndex, /* index of file */
UInt32 *blockIndex, /* index of solid block */
Byte **outBuffer, /* pointer to pointer to output buffer (allocated with allocMain) */
size_t *outBufferSize, /* buffer size for output buffer */
size_t *offset, /* offset of stream for required file in *outBuffer */
size_t *outSizeProcessed, /* size of file in *outBuffer */
ISzAllocPtr allocMain,
ISzAllocPtr allocTemp);
/*
SzArEx_Open Errors:
SZ_ERROR_NO_ARCHIVE
SZ_ERROR_ARCHIVE
SZ_ERROR_UNSUPPORTED
SZ_ERROR_MEM
SZ_ERROR_CRC
SZ_ERROR_INPUT_EOF
SZ_ERROR_FAIL
*/
SRes SzArEx_Open(CSzArEx *p, ILookInStreamPtr inStream,
ISzAllocPtr allocMain, ISzAllocPtr allocTemp);
EXTERN_C_END
#endif

View File

@ -1,89 +0,0 @@
/* 7zAlloc.c -- Allocation functions for 7z processing
2023-03-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <stdlib.h>
#include "7zAlloc.h"
/* #define SZ_ALLOC_DEBUG */
/* use SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef SZ_ALLOC_DEBUG
/*
#ifdef _WIN32
#include "7zWindows.h"
#endif
*/
#include <stdio.h>
static int g_allocCount = 0;
static int g_allocCountTemp = 0;
static void Print_Alloc(const char *s, size_t size, int *counter)
{
const unsigned size2 = (unsigned)size;
fprintf(stderr, "\n%s count = %10d : %10u bytes; ", s, *counter, size2);
(*counter)++;
}
static void Print_Free(const char *s, int *counter)
{
(*counter)--;
fprintf(stderr, "\n%s count = %10d", s, *counter);
}
#endif
void *SzAlloc(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p)
if (size == 0)
return 0;
#ifdef SZ_ALLOC_DEBUG
Print_Alloc("Alloc", size, &g_allocCount);
#endif
return malloc(size);
}
void SzFree(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p)
#ifdef SZ_ALLOC_DEBUG
if (address)
Print_Free("Free ", &g_allocCount);
#endif
free(address);
}
void *SzAllocTemp(ISzAllocPtr p, size_t size)
{
UNUSED_VAR(p)
if (size == 0)
return 0;
#ifdef SZ_ALLOC_DEBUG
Print_Alloc("Alloc_temp", size, &g_allocCountTemp);
/*
#ifdef _WIN32
return HeapAlloc(GetProcessHeap(), 0, size);
#endif
*/
#endif
return malloc(size);
}
void SzFreeTemp(ISzAllocPtr p, void *address)
{
UNUSED_VAR(p)
#ifdef SZ_ALLOC_DEBUG
if (address)
Print_Free("Free_temp ", &g_allocCountTemp);
/*
#ifdef _WIN32
HeapFree(GetProcessHeap(), 0, address);
return;
#endif
*/
#endif
free(address);
}

View File

@ -1,19 +0,0 @@
/* 7zAlloc.h -- Allocation functions
2023-03-04 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_ALLOC_H
#define ZIP7_INC_7Z_ALLOC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void *SzAlloc(ISzAllocPtr p, size_t size);
void SzFree(ISzAllocPtr p, void *address);
void *SzAllocTemp(ISzAllocPtr p, size_t size);
void SzFreeTemp(ISzAllocPtr p, void *address);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,36 +0,0 @@
/* 7zBuf.c -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zBuf.h"
void Buf_Init(CBuf *p)
{
p->data = 0;
p->size = 0;
}
int Buf_Create(CBuf *p, size_t size, ISzAllocPtr alloc)
{
p->size = 0;
if (size == 0)
{
p->data = 0;
return 1;
}
p->data = (Byte *)ISzAlloc_Alloc(alloc, size);
if (p->data)
{
p->size = size;
return 1;
}
return 0;
}
void Buf_Free(CBuf *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->data);
p->data = 0;
p->size = 0;
}

View File

@ -1,35 +0,0 @@
/* 7zBuf.h -- Byte Buffer
2023-03-04 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_BUF_H
#define ZIP7_INC_7Z_BUF_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
Byte *data;
size_t size;
} CBuf;
void Buf_Init(CBuf *p);
int Buf_Create(CBuf *p, size_t size, ISzAllocPtr alloc);
void Buf_Free(CBuf *p, ISzAllocPtr alloc);
typedef struct
{
Byte *data;
size_t size;
size_t pos;
} CDynBuf;
void DynBuf_Construct(CDynBuf *p);
void DynBuf_SeekToBeg(CDynBuf *p);
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAllocPtr alloc);
void DynBuf_Free(CDynBuf *p, ISzAllocPtr alloc);
EXTERN_C_END
#endif

View File

@ -1,52 +0,0 @@
/* 7zBuf2.c -- Byte Buffer
2017-04-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zBuf.h"
void DynBuf_Construct(CDynBuf *p)
{
p->data = 0;
p->size = 0;
p->pos = 0;
}
void DynBuf_SeekToBeg(CDynBuf *p)
{
p->pos = 0;
}
int DynBuf_Write(CDynBuf *p, const Byte *buf, size_t size, ISzAllocPtr alloc)
{
if (size > p->size - p->pos)
{
size_t newSize = p->pos + size;
Byte *data;
newSize += newSize / 4;
data = (Byte *)ISzAlloc_Alloc(alloc, newSize);
if (!data)
return 0;
p->size = newSize;
if (p->pos != 0)
memcpy(data, p->data, p->pos);
ISzAlloc_Free(alloc, p->data);
p->data = data;
}
if (size != 0)
{
memcpy(p->data + p->pos, buf, size);
p->pos += size;
}
return 1;
}
void DynBuf_Free(CDynBuf *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->data);
p->data = 0;
p->size = 0;
p->pos = 0;
}

View File

@ -1,340 +0,0 @@
/* 7zCrc.c -- CRC32 calculation and init
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#define kCrcPoly 0xEDB88320
#ifdef MY_CPU_LE
#define CRC_NUM_TABLES 8
#else
#define CRC_NUM_TABLES 9
UInt32 Z7_FASTCALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
#ifndef MY_CPU_BE
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
#endif
/*
extern
CRC_FUNC g_CrcUpdateT4;
CRC_FUNC g_CrcUpdateT4;
*/
extern
CRC_FUNC g_CrcUpdateT8;
CRC_FUNC g_CrcUpdateT8;
extern
CRC_FUNC g_CrcUpdateT0_32;
CRC_FUNC g_CrcUpdateT0_32;
extern
CRC_FUNC g_CrcUpdateT0_64;
CRC_FUNC g_CrcUpdateT0_64;
extern
CRC_FUNC g_CrcUpdate;
CRC_FUNC g_CrcUpdate;
UInt32 g_CrcTable[256 * CRC_NUM_TABLES];
UInt32 Z7_FASTCALL CrcUpdate(UInt32 v, const void *data, size_t size)
{
return g_CrcUpdate(v, data, size, g_CrcTable);
}
UInt32 Z7_FASTCALL CrcCalc(const void *data, size_t size)
{
return g_CrcUpdate(CRC_INIT_VAL, data, size, g_CrcTable) ^ CRC_INIT_VAL;
}
#if CRC_NUM_TABLES < 4 \
|| (CRC_NUM_TABLES == 4 && defined(MY_CPU_BE)) \
|| (!defined(MY_CPU_LE) && !defined(MY_CPU_BE))
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 Z7_FASTCALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT1(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
const Byte *pEnd = p + size;
for (; p != pEnd; p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
/* ---------- hardware CRC ---------- */
#ifdef MY_CPU_LE
#if defined(MY_CPU_ARM_OR_ARM64)
// #pragma message("ARM*")
#if defined(_MSC_VER)
#if defined(MY_CPU_ARM64)
#if (_MSC_VER >= 1910)
#ifndef __clang__
#define USE_ARM64_CRC
#include <intrin.h>
#endif
#endif
#endif
#elif (defined(__clang__) && (__clang_major__ >= 3)) \
|| (defined(__GNUC__) && (__GNUC__ > 4))
#if !defined(__ARM_FEATURE_CRC32)
#define __ARM_FEATURE_CRC32 1
#if defined(__clang__)
#if defined(MY_CPU_ARM64)
#define ATTRIB_CRC __attribute__((__target__("crc")))
#else
#define ATTRIB_CRC __attribute__((__target__("armv8-a,crc")))
#endif
#else
#if defined(MY_CPU_ARM64)
#define ATTRIB_CRC __attribute__((__target__("+crc")))
#else
#define ATTRIB_CRC __attribute__((__target__("arch=armv8-a+crc")))
#endif
#endif
#endif
#if defined(__ARM_FEATURE_CRC32)
#define USE_ARM64_CRC
#include <arm_acle.h>
#endif
#endif
#else
// no hardware CRC
// #define USE_CRC_EMU
#ifdef USE_CRC_EMU
#pragma message("ARM64 CRC emulation")
Z7_FORCE_INLINE
UInt32 __crc32b(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data);
return v;
}
Z7_FORCE_INLINE
UInt32 __crc32w(UInt32 v, UInt32 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
Z7_FORCE_INLINE
UInt32 __crc32d(UInt32 v, UInt64 data)
{
const UInt32 *table = g_CrcTable;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
v = CRC_UPDATE_BYTE_2(v, (Byte)data); data >>= 8;
return v;
}
#endif // USE_CRC_EMU
#endif // defined(MY_CPU_ARM64) && defined(MY_CPU_LE)
#if defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#define T0_32_UNROLL_BYTES (4 * 4)
#define T0_64_UNROLL_BYTES (4 * 8)
#ifndef ATTRIB_CRC
#define ATTRIB_CRC
#endif
// #pragma message("USE ARM HW CRC")
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_32(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_32_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_32_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_32_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
v = __crc32w(v, *(const UInt32 *)(const void *)(p));
v = __crc32w(v, *(const UInt32 *)(const void *)(p + 4)); p += 2 * 4;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table);
ATTRIB_CRC
UInt32 Z7_FASTCALL CrcUpdateT0_64(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
UNUSED_VAR(table);
for (; size != 0 && ((unsigned)(ptrdiff_t)p & (T0_64_UNROLL_BYTES - 1)) != 0; size--)
v = __crc32b(v, *p++);
if (size >= T0_64_UNROLL_BYTES)
{
const Byte *lim = p + size;
size &= (T0_64_UNROLL_BYTES - 1);
lim -= size;
do
{
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
v = __crc32d(v, *(const UInt64 *)(const void *)(p));
v = __crc32d(v, *(const UInt64 *)(const void *)(p + 8)); p += 2 * 8;
}
while (p != lim);
}
for (; size != 0; size--)
v = __crc32b(v, *p++);
return v;
}
#undef T0_32_UNROLL_BYTES
#undef T0_64_UNROLL_BYTES
#endif // defined(USE_ARM64_CRC) || defined(USE_CRC_EMU)
#endif // MY_CPU_LE
void Z7_FASTCALL CrcGenerateTable(void)
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt32 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrcPoly & ((UInt32)0 - (r & 1)));
g_CrcTable[i] = r;
}
for (i = 256; i < 256 * CRC_NUM_TABLES; i++)
{
const UInt32 r = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = g_CrcTable[r & 0xFF] ^ (r >> 8);
}
#if CRC_NUM_TABLES < 4
g_CrcUpdate = CrcUpdateT1;
#elif defined(MY_CPU_LE)
// g_CrcUpdateT4 = CrcUpdateT4;
#if CRC_NUM_TABLES < 8
g_CrcUpdate = CrcUpdateT4;
#else // CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
/*
#ifdef MY_CPU_X86_OR_AMD64
if (!CPU_Is_InOrder())
#endif
*/
g_CrcUpdate = CrcUpdateT8;
#endif
#else
{
#ifndef MY_CPU_BE
UInt32 k = 0x01020304;
const Byte *p = (const Byte *)&k;
if (p[0] == 4 && p[1] == 3)
{
#if CRC_NUM_TABLES < 8
// g_CrcUpdateT4 = CrcUpdateT4;
g_CrcUpdate = CrcUpdateT4;
#else // CRC_NUM_TABLES >= 8
g_CrcUpdateT8 = CrcUpdateT8;
g_CrcUpdate = CrcUpdateT8;
#endif
}
else if (p[0] != 1 || p[1] != 2)
g_CrcUpdate = CrcUpdateT1;
else
#endif // MY_CPU_BE
{
for (i = 256 * CRC_NUM_TABLES - 1; i >= 256; i--)
{
const UInt32 x = g_CrcTable[(size_t)i - 256];
g_CrcTable[i] = Z7_BSWAP32(x);
}
#if CRC_NUM_TABLES <= 4
g_CrcUpdate = CrcUpdateT1;
#elif CRC_NUM_TABLES <= 8
// g_CrcUpdateT4 = CrcUpdateT1_BeT4;
g_CrcUpdate = CrcUpdateT1_BeT4;
#else // CRC_NUM_TABLES > 8
g_CrcUpdateT8 = CrcUpdateT1_BeT8;
g_CrcUpdate = CrcUpdateT1_BeT8;
#endif
}
}
#endif // CRC_NUM_TABLES < 4
#ifdef MY_CPU_LE
#ifdef USE_ARM64_CRC
if (CPU_IsSupported_CRC32())
{
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate =
#if defined(MY_CPU_ARM)
CrcUpdateT0_32;
#else
CrcUpdateT0_64;
#endif
}
#endif
#ifdef USE_CRC_EMU
g_CrcUpdateT0_32 = CrcUpdateT0_32;
g_CrcUpdateT0_64 = CrcUpdateT0_64;
g_CrcUpdate = CrcUpdateT0_64;
#endif
#endif
}
#undef kCrcPoly
#undef CRC64_NUM_TABLES
#undef CRC_UPDATE_BYTE_2

View File

@ -1,27 +0,0 @@
/* 7zCrc.h -- CRC32 calculation
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_CRC_H
#define ZIP7_INC_7Z_CRC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
extern UInt32 g_CrcTable[];
/* Call CrcGenerateTable one time before other CRC functions */
void Z7_FASTCALL CrcGenerateTable(void);
#define CRC_INIT_VAL 0xFFFFFFFF
#define CRC_GET_DIGEST(crc) ((crc) ^ CRC_INIT_VAL)
#define CRC_UPDATE_BYTE(crc, b) (g_CrcTable[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 Z7_FASTCALL CrcUpdate(UInt32 crc, const void *data, size_t size);
UInt32 Z7_FASTCALL CrcCalc(const void *data, size_t size);
typedef UInt32 (Z7_FASTCALL *CRC_FUNC)(UInt32 v, const void *data, size_t size, const UInt32 *table);
EXTERN_C_END
#endif

View File

@ -1,117 +0,0 @@
/* 7zCrcOpt.c -- CRC32 calculation
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x300)[((v ) & 0xFF)]
^ (table + 0x200)[((v >> 8) & 0xFF)]
^ (table + 0x100)[((v >> 16) & 0xFF)]
^ (table + 0x000)[((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table);
UInt32 Z7_FASTCALL CrcUpdateT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x700)[((v ) & 0xFF)]
^ (table + 0x600)[((v >> 8) & 0xFF)]
^ (table + 0x500)[((v >> 16) & 0xFF)]
^ (table + 0x400)[((v >> 24))];
d = *((const UInt32 *)(const void *)p + 1);
v ^=
(table + 0x300)[((d ) & 0xFF)]
^ (table + 0x200)[((d >> 8) & 0xFF)]
^ (table + 0x100)[((d >> 16) & 0xFF)]
^ (table + 0x000)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC_UINT32_SWAP(v) Z7_BSWAP32(v)
#define CRC_UPDATE_BYTE_2_BE(crc, b) (table[(((crc) >> 24) ^ (b))] ^ ((crc) << 8))
UInt32 Z7_FASTCALL CrcUpdateT1_BeT4(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x000)[((v ) & 0xFF)]
^ (table + 0x100)[((v >> 8) & 0xFF)]
^ (table + 0x200)[((v >> 16) & 0xFF)]
^ (table + 0x300)[((v >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
UInt32 Z7_FASTCALL CrcUpdateT1_BeT8(UInt32 v, const void *data, size_t size, const UInt32 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = CRC_UINT32_SWAP(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 7) != 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 8; size -= 8, p += 8)
{
UInt32 d;
v ^= *(const UInt32 *)(const void *)p;
v =
(table + 0x400)[((v ) & 0xFF)]
^ (table + 0x500)[((v >> 8) & 0xFF)]
^ (table + 0x600)[((v >> 16) & 0xFF)]
^ (table + 0x700)[((v >> 24))];
d = *((const UInt32 *)(const void *)p + 1);
v ^=
(table + 0x000)[((d ) & 0xFF)]
^ (table + 0x100)[((d >> 8) & 0xFF)]
^ (table + 0x200)[((d >> 16) & 0xFF)]
^ (table + 0x300)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC_UPDATE_BYTE_2_BE(v, *p);
return CRC_UINT32_SWAP(v);
}
#endif

View File

@ -1,648 +0,0 @@
/* 7zDec.c -- Decoding from 7z folder
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define Z7_PPMD_SUPPORT */
#include "7z.h"
#include "7zCrc.h"
#include "Bcj2.h"
#include "Bra.h"
#include "CpuArch.h"
#include "Delta.h"
#include "LzmaDec.h"
#include "Lzma2Dec.h"
#ifdef Z7_PPMD_SUPPORT
#include "Ppmd7.h"
#endif
#define k_Copy 0
#ifndef Z7_NO_METHOD_LZMA2
#define k_LZMA2 0x21
#endif
#define k_LZMA 0x30101
#define k_BCJ2 0x303011B
#if !defined(Z7_NO_METHODS_FILTERS)
#define Z7_USE_BRANCH_FILTER
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || \
defined(Z7_USE_NATIVE_BRANCH_FILTER) && defined(MY_CPU_ARM64)
#define Z7_USE_FILTER_ARM64
#ifndef Z7_USE_BRANCH_FILTER
#define Z7_USE_BRANCH_FILTER
#endif
#define k_ARM64 0xa
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || \
defined(Z7_USE_NATIVE_BRANCH_FILTER) && defined(MY_CPU_ARMT)
#define Z7_USE_FILTER_ARMT
#ifndef Z7_USE_BRANCH_FILTER
#define Z7_USE_BRANCH_FILTER
#endif
#define k_ARMT 0x3030701
#endif
#ifndef Z7_NO_METHODS_FILTERS
#define k_Delta 3
#define k_BCJ 0x3030103
#define k_PPC 0x3030205
#define k_IA64 0x3030401
#define k_ARM 0x3030501
#define k_SPARC 0x3030805
#endif
#ifdef Z7_PPMD_SUPPORT
#define k_PPMD 0x30401
typedef struct
{
IByteIn vt;
const Byte *cur;
const Byte *end;
const Byte *begin;
UInt64 processed;
BoolInt extra;
SRes res;
ILookInStreamPtr inStream;
} CByteInToLook;
static Byte ReadByte(IByteInPtr pp)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CByteInToLook)
if (p->cur != p->end)
return *p->cur++;
if (p->res == SZ_OK)
{
size_t size = (size_t)(p->cur - p->begin);
p->processed += size;
p->res = ILookInStream_Skip(p->inStream, size);
size = (1 << 25);
p->res = ILookInStream_Look(p->inStream, (const void **)&p->begin, &size);
p->cur = p->begin;
p->end = p->begin + size;
if (size != 0)
return *p->cur++;
}
p->extra = True;
return 0;
}
static SRes SzDecodePpmd(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CPpmd7 ppmd;
CByteInToLook s;
SRes res = SZ_OK;
s.vt.Read = ReadByte;
s.inStream = inStream;
s.begin = s.end = s.cur = NULL;
s.extra = False;
s.res = SZ_OK;
s.processed = 0;
if (propsSize != 5)
return SZ_ERROR_UNSUPPORTED;
{
unsigned order = props[0];
UInt32 memSize = GetUi32(props + 1);
if (order < PPMD7_MIN_ORDER ||
order > PPMD7_MAX_ORDER ||
memSize < PPMD7_MIN_MEM_SIZE ||
memSize > PPMD7_MAX_MEM_SIZE)
return SZ_ERROR_UNSUPPORTED;
Ppmd7_Construct(&ppmd);
if (!Ppmd7_Alloc(&ppmd, memSize, allocMain))
return SZ_ERROR_MEM;
Ppmd7_Init(&ppmd, order);
}
{
ppmd.rc.dec.Stream = &s.vt;
if (!Ppmd7z_RangeDec_Init(&ppmd.rc.dec))
res = SZ_ERROR_DATA;
else if (!s.extra)
{
Byte *buf = outBuffer;
const Byte *lim = buf + outSize;
for (; buf != lim; buf++)
{
int sym = Ppmd7z_DecodeSymbol(&ppmd);
if (s.extra || sym < 0)
break;
*buf = (Byte)sym;
}
if (buf != lim)
res = SZ_ERROR_DATA;
else if (!Ppmd7z_RangeDec_IsFinishedOK(&ppmd.rc.dec))
{
/* if (Ppmd7z_DecodeSymbol(&ppmd) != PPMD7_SYM_END || !Ppmd7z_RangeDec_IsFinishedOK(&ppmd.rc.dec)) */
res = SZ_ERROR_DATA;
}
}
if (s.extra)
res = (s.res != SZ_OK ? s.res : SZ_ERROR_DATA);
else if (s.processed + (size_t)(s.cur - s.begin) != inSize)
res = SZ_ERROR_DATA;
}
Ppmd7_Free(&ppmd, allocMain);
return res;
}
#endif
static SRes SzDecodeLzma(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzmaDec state;
SRes res = SZ_OK;
LzmaDec_CONSTRUCT(&state)
RINOK(LzmaDec_AllocateProbs(&state, props, propsSize, allocMain))
state.dic = outBuffer;
state.dicBufSize = outSize;
LzmaDec_Init(&state);
for (;;)
{
const void *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = ILookInStream_Look(inStream, &inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.dicPos;
ELzmaStatus status;
res = LzmaDec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
{
if (outSize != state.dicPos || inSize != 0)
res = SZ_ERROR_DATA;
break;
}
if (outSize == state.dicPos && inSize == 0 && status == LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK)
break;
if (inProcessed == 0 && dicPos == state.dicPos)
{
res = SZ_ERROR_DATA;
break;
}
res = ILookInStream_Skip(inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
LzmaDec_FreeProbs(&state, allocMain);
return res;
}
#ifndef Z7_NO_METHOD_LZMA2
static SRes SzDecodeLzma2(const Byte *props, unsigned propsSize, UInt64 inSize, ILookInStreamPtr inStream,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain)
{
CLzma2Dec state;
SRes res = SZ_OK;
Lzma2Dec_CONSTRUCT(&state)
if (propsSize != 1)
return SZ_ERROR_DATA;
RINOK(Lzma2Dec_AllocateProbs(&state, props[0], allocMain))
state.decoder.dic = outBuffer;
state.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&state);
for (;;)
{
const void *inBuf = NULL;
size_t lookahead = (1 << 18);
if (lookahead > inSize)
lookahead = (size_t)inSize;
res = ILookInStream_Look(inStream, &inBuf, &lookahead);
if (res != SZ_OK)
break;
{
SizeT inProcessed = (SizeT)lookahead, dicPos = state.decoder.dicPos;
ELzmaStatus status;
res = Lzma2Dec_DecodeToDic(&state, outSize, (const Byte *)inBuf, &inProcessed, LZMA_FINISH_END, &status);
lookahead -= inProcessed;
inSize -= inProcessed;
if (res != SZ_OK)
break;
if (status == LZMA_STATUS_FINISHED_WITH_MARK)
{
if (outSize != state.decoder.dicPos || inSize != 0)
res = SZ_ERROR_DATA;
break;
}
if (inProcessed == 0 && dicPos == state.decoder.dicPos)
{
res = SZ_ERROR_DATA;
break;
}
res = ILookInStream_Skip(inStream, inProcessed);
if (res != SZ_OK)
break;
}
}
Lzma2Dec_FreeProbs(&state, allocMain);
return res;
}
#endif
static SRes SzDecodeCopy(UInt64 inSize, ILookInStreamPtr inStream, Byte *outBuffer)
{
while (inSize > 0)
{
const void *inBuf;
size_t curSize = (1 << 18);
if (curSize > inSize)
curSize = (size_t)inSize;
RINOK(ILookInStream_Look(inStream, &inBuf, &curSize))
if (curSize == 0)
return SZ_ERROR_INPUT_EOF;
memcpy(outBuffer, inBuf, curSize);
outBuffer += curSize;
inSize -= curSize;
RINOK(ILookInStream_Skip(inStream, curSize))
}
return SZ_OK;
}
static BoolInt IS_MAIN_METHOD(UInt32 m)
{
switch (m)
{
case k_Copy:
case k_LZMA:
#ifndef Z7_NO_METHOD_LZMA2
case k_LZMA2:
#endif
#ifdef Z7_PPMD_SUPPORT
case k_PPMD:
#endif
return True;
}
return False;
}
static BoolInt IS_SUPPORTED_CODER(const CSzCoderInfo *c)
{
return
c->NumStreams == 1
/* && c->MethodID <= (UInt32)0xFFFFFFFF */
&& IS_MAIN_METHOD((UInt32)c->MethodID);
}
#define IS_BCJ2(c) ((c)->MethodID == k_BCJ2 && (c)->NumStreams == 4)
static SRes CheckSupportedFolder(const CSzFolder *f)
{
if (f->NumCoders < 1 || f->NumCoders > 4)
return SZ_ERROR_UNSUPPORTED;
if (!IS_SUPPORTED_CODER(&f->Coders[0]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumCoders == 1)
{
if (f->NumPackStreams != 1 || f->PackStreams[0] != 0 || f->NumBonds != 0)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
#if defined(Z7_USE_BRANCH_FILTER)
if (f->NumCoders == 2)
{
const CSzCoderInfo *c = &f->Coders[1];
if (
/* c->MethodID > (UInt32)0xFFFFFFFF || */
c->NumStreams != 1
|| f->NumPackStreams != 1
|| f->PackStreams[0] != 0
|| f->NumBonds != 1
|| f->Bonds[0].InIndex != 1
|| f->Bonds[0].OutIndex != 0)
return SZ_ERROR_UNSUPPORTED;
switch ((UInt32)c->MethodID)
{
#if !defined(Z7_NO_METHODS_FILTERS)
case k_Delta:
case k_BCJ:
case k_PPC:
case k_IA64:
case k_SPARC:
case k_ARM:
#endif
#ifdef Z7_USE_FILTER_ARM64
case k_ARM64:
#endif
#ifdef Z7_USE_FILTER_ARMT
case k_ARMT:
#endif
break;
default:
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
#endif
if (f->NumCoders == 4)
{
if (!IS_SUPPORTED_CODER(&f->Coders[1])
|| !IS_SUPPORTED_CODER(&f->Coders[2])
|| !IS_BCJ2(&f->Coders[3]))
return SZ_ERROR_UNSUPPORTED;
if (f->NumPackStreams != 4
|| f->PackStreams[0] != 2
|| f->PackStreams[1] != 6
|| f->PackStreams[2] != 1
|| f->PackStreams[3] != 0
|| f->NumBonds != 3
|| f->Bonds[0].InIndex != 5 || f->Bonds[0].OutIndex != 0
|| f->Bonds[1].InIndex != 4 || f->Bonds[1].OutIndex != 1
|| f->Bonds[2].InIndex != 3 || f->Bonds[2].OutIndex != 2)
return SZ_ERROR_UNSUPPORTED;
return SZ_OK;
}
return SZ_ERROR_UNSUPPORTED;
}
static SRes SzFolder_Decode2(const CSzFolder *folder,
const Byte *propsData,
const UInt64 *unpackSizes,
const UInt64 *packPositions,
ILookInStreamPtr inStream, UInt64 startPos,
Byte *outBuffer, SizeT outSize, ISzAllocPtr allocMain,
Byte *tempBuf[])
{
UInt32 ci;
SizeT tempSizes[3] = { 0, 0, 0};
SizeT tempSize3 = 0;
Byte *tempBuf3 = 0;
RINOK(CheckSupportedFolder(folder))
for (ci = 0; ci < folder->NumCoders; ci++)
{
const CSzCoderInfo *coder = &folder->Coders[ci];
if (IS_MAIN_METHOD((UInt32)coder->MethodID))
{
UInt32 si = 0;
UInt64 offset;
UInt64 inSize;
Byte *outBufCur = outBuffer;
SizeT outSizeCur = outSize;
if (folder->NumCoders == 4)
{
const UInt32 indices[] = { 3, 2, 0 };
const UInt64 unpackSize = unpackSizes[ci];
si = indices[ci];
if (ci < 2)
{
Byte *temp;
outSizeCur = (SizeT)unpackSize;
if (outSizeCur != unpackSize)
return SZ_ERROR_MEM;
temp = (Byte *)ISzAlloc_Alloc(allocMain, outSizeCur);
if (!temp && outSizeCur != 0)
return SZ_ERROR_MEM;
outBufCur = tempBuf[1 - ci] = temp;
tempSizes[1 - ci] = outSizeCur;
}
else if (ci == 2)
{
if (unpackSize > outSize) /* check it */
return SZ_ERROR_PARAM;
tempBuf3 = outBufCur = outBuffer + (outSize - (size_t)unpackSize);
tempSize3 = outSizeCur = (SizeT)unpackSize;
}
else
return SZ_ERROR_UNSUPPORTED;
}
offset = packPositions[si];
inSize = packPositions[(size_t)si + 1] - offset;
RINOK(LookInStream_SeekTo(inStream, startPos + offset))
if (coder->MethodID == k_Copy)
{
if (inSize != outSizeCur) /* check it */
return SZ_ERROR_DATA;
RINOK(SzDecodeCopy(inSize, inStream, outBufCur))
}
else if (coder->MethodID == k_LZMA)
{
RINOK(SzDecodeLzma(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#ifndef Z7_NO_METHOD_LZMA2
else if (coder->MethodID == k_LZMA2)
{
RINOK(SzDecodeLzma2(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#endif
#ifdef Z7_PPMD_SUPPORT
else if (coder->MethodID == k_PPMD)
{
RINOK(SzDecodePpmd(propsData + coder->PropsOffset, coder->PropsSize, inSize, inStream, outBufCur, outSizeCur, allocMain))
}
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
else if (coder->MethodID == k_BCJ2)
{
const UInt64 offset = packPositions[1];
const UInt64 s3Size = packPositions[2] - offset;
if (ci != 3)
return SZ_ERROR_UNSUPPORTED;
tempSizes[2] = (SizeT)s3Size;
if (tempSizes[2] != s3Size)
return SZ_ERROR_MEM;
tempBuf[2] = (Byte *)ISzAlloc_Alloc(allocMain, tempSizes[2]);
if (!tempBuf[2] && tempSizes[2] != 0)
return SZ_ERROR_MEM;
RINOK(LookInStream_SeekTo(inStream, startPos + offset))
RINOK(SzDecodeCopy(s3Size, inStream, tempBuf[2]))
if ((tempSizes[0] & 3) != 0 ||
(tempSizes[1] & 3) != 0 ||
tempSize3 + tempSizes[0] + tempSizes[1] != outSize)
return SZ_ERROR_DATA;
{
CBcj2Dec p;
p.bufs[0] = tempBuf3; p.lims[0] = tempBuf3 + tempSize3;
p.bufs[1] = tempBuf[0]; p.lims[1] = tempBuf[0] + tempSizes[0];
p.bufs[2] = tempBuf[1]; p.lims[2] = tempBuf[1] + tempSizes[1];
p.bufs[3] = tempBuf[2]; p.lims[3] = tempBuf[2] + tempSizes[2];
p.dest = outBuffer;
p.destLim = outBuffer + outSize;
Bcj2Dec_Init(&p);
RINOK(Bcj2Dec_Decode(&p))
{
unsigned i;
for (i = 0; i < 4; i++)
if (p.bufs[i] != p.lims[i])
return SZ_ERROR_DATA;
if (p.dest != p.destLim || !Bcj2Dec_IsMaybeFinished(&p))
return SZ_ERROR_DATA;
}
}
}
#if defined(Z7_USE_BRANCH_FILTER)
else if (ci == 1)
{
#if !defined(Z7_NO_METHODS_FILTERS)
if (coder->MethodID == k_Delta)
{
if (coder->PropsSize != 1)
return SZ_ERROR_UNSUPPORTED;
{
Byte state[DELTA_STATE_SIZE];
Delta_Init(state);
Delta_Decode(state, (unsigned)(propsData[coder->PropsOffset]) + 1, outBuffer, outSize);
}
continue;
}
#endif
#ifdef Z7_USE_FILTER_ARM64
if (coder->MethodID == k_ARM64)
{
UInt32 pc = 0;
if (coder->PropsSize == 4)
pc = GetUi32(propsData + coder->PropsOffset);
else if (coder->PropsSize != 0)
return SZ_ERROR_UNSUPPORTED;
z7_BranchConv_ARM64_Dec(outBuffer, outSize, pc);
continue;
}
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || defined(Z7_USE_FILTER_ARMT)
{
if (coder->PropsSize != 0)
return SZ_ERROR_UNSUPPORTED;
#define CASE_BRA_CONV(isa) case k_ ## isa: Z7_BRANCH_CONV_DEC(isa)(outBuffer, outSize, 0); break; // pc = 0;
switch (coder->MethodID)
{
#if !defined(Z7_NO_METHODS_FILTERS)
case k_BCJ:
{
UInt32 state = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Dec(outBuffer, outSize, 0, &state); // pc = 0
break;
}
CASE_BRA_CONV(PPC)
CASE_BRA_CONV(IA64)
CASE_BRA_CONV(SPARC)
CASE_BRA_CONV(ARM)
#endif
#if !defined(Z7_NO_METHODS_FILTERS) || defined(Z7_USE_FILTER_ARMT)
CASE_BRA_CONV(ARMT)
#endif
default:
return SZ_ERROR_UNSUPPORTED;
}
continue;
}
#endif
} // (c == 1)
#endif
else
return SZ_ERROR_UNSUPPORTED;
}
return SZ_OK;
}
SRes SzAr_DecodeFolder(const CSzAr *p, UInt32 folderIndex,
ILookInStreamPtr inStream, UInt64 startPos,
Byte *outBuffer, size_t outSize,
ISzAllocPtr allocMain)
{
SRes res;
CSzFolder folder;
CSzData sd;
const Byte *data = p->CodersData + p->FoCodersOffsets[folderIndex];
sd.Data = data;
sd.Size = p->FoCodersOffsets[(size_t)folderIndex + 1] - p->FoCodersOffsets[folderIndex];
res = SzGetNextFolderItem(&folder, &sd);
if (res != SZ_OK)
return res;
if (sd.Size != 0
|| folder.UnpackStream != p->FoToMainUnpackSizeIndex[folderIndex]
|| outSize != SzAr_GetFolderUnpackSize(p, folderIndex))
return SZ_ERROR_FAIL;
{
unsigned i;
Byte *tempBuf[3] = { 0, 0, 0};
res = SzFolder_Decode2(&folder, data,
&p->CoderUnpackSizes[p->FoToCoderUnpackSizes[folderIndex]],
p->PackPositions + p->FoStartPackStreamIndex[folderIndex],
inStream, startPos,
outBuffer, (SizeT)outSize, allocMain, tempBuf);
for (i = 0; i < 3; i++)
ISzAlloc_Free(allocMain, tempBuf[i]);
if (res == SZ_OK)
if (SzBitWithVals_Check(&p->FolderCRCs, folderIndex))
if (CrcCalc(outBuffer, outSize) != p->FolderCRCs.Vals[folderIndex])
res = SZ_ERROR_CRC;
return res;
}
}

View File

@ -1,443 +0,0 @@
/* 7zFile.c -- File IO
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zFile.h"
#ifndef USE_WINDOWS_FILE
#include <errno.h>
#ifndef USE_FOPEN
#include <stdio.h>
#include <fcntl.h>
#ifdef _WIN32
#include <io.h>
typedef int ssize_t;
typedef int off_t;
#else
#include <unistd.h>
#endif
#endif
#else
/*
ReadFile and WriteFile functions in Windows have BUG:
If you Read or Write 64MB or more (probably min_failure_size = 64MB - 32KB + 1)
from/to Network file, it returns ERROR_NO_SYSTEM_RESOURCES
(Insufficient system resources exist to complete the requested service).
Probably in some version of Windows there are problems with other sizes:
for 32 MB (maybe also for 16 MB).
And message can be "Network connection was lost"
*/
#endif
#define kChunkSizeMax (1 << 22)
void File_Construct(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
p->handle = INVALID_HANDLE_VALUE;
#elif defined(USE_FOPEN)
p->file = NULL;
#else
p->fd = -1;
#endif
}
#if !defined(UNDER_CE) || !defined(USE_WINDOWS_FILE)
static WRes File_Open(CSzFile *p, const char *name, int writeMode)
{
#ifdef USE_WINDOWS_FILE
p->handle = CreateFileA(name,
writeMode ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, NULL,
writeMode ? CREATE_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
return (p->handle != INVALID_HANDLE_VALUE) ? 0 : GetLastError();
#elif defined(USE_FOPEN)
p->file = fopen(name, writeMode ? "wb+" : "rb");
return (p->file != 0) ? 0 :
#ifdef UNDER_CE
2; /* ENOENT */
#else
errno;
#endif
#else
int flags = (writeMode ? (O_CREAT | O_EXCL | O_WRONLY) : O_RDONLY);
#ifdef O_BINARY
flags |= O_BINARY;
#endif
p->fd = open(name, flags, 0666);
return (p->fd != -1) ? 0 : errno;
#endif
}
WRes InFile_Open(CSzFile *p, const char *name) { return File_Open(p, name, 0); }
WRes OutFile_Open(CSzFile *p, const char *name)
{
#if defined(USE_WINDOWS_FILE) || defined(USE_FOPEN)
return File_Open(p, name, 1);
#else
p->fd = creat(name, 0666);
return (p->fd != -1) ? 0 : errno;
#endif
}
#endif
#ifdef USE_WINDOWS_FILE
static WRes File_OpenW(CSzFile *p, const WCHAR *name, int writeMode)
{
p->handle = CreateFileW(name,
writeMode ? GENERIC_WRITE : GENERIC_READ,
FILE_SHARE_READ, NULL,
writeMode ? CREATE_ALWAYS : OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
return (p->handle != INVALID_HANDLE_VALUE) ? 0 : GetLastError();
}
WRes InFile_OpenW(CSzFile *p, const WCHAR *name) { return File_OpenW(p, name, 0); }
WRes OutFile_OpenW(CSzFile *p, const WCHAR *name) { return File_OpenW(p, name, 1); }
#endif
WRes File_Close(CSzFile *p)
{
#ifdef USE_WINDOWS_FILE
if (p->handle != INVALID_HANDLE_VALUE)
{
if (!CloseHandle(p->handle))
return GetLastError();
p->handle = INVALID_HANDLE_VALUE;
}
#elif defined(USE_FOPEN)
if (p->file != NULL)
{
int res = fclose(p->file);
if (res != 0)
{
if (res == EOF)
return errno;
return res;
}
p->file = NULL;
}
#else
if (p->fd != -1)
{
if (close(p->fd) != 0)
return errno;
p->fd = -1;
}
#endif
return 0;
}
WRes File_Read(CSzFile *p, void *data, size_t *size)
{
size_t originalSize = *size;
*size = 0;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
do
{
const DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
const BOOL res = ReadFile(p->handle, data, curSize, &processed, NULL);
data = (void *)((Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
return GetLastError();
// debug : we can break here for partial reading mode
if (processed == 0)
break;
}
while (originalSize > 0);
#elif defined(USE_FOPEN)
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const size_t processed = fread(data, 1, curSize, p->file);
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= processed;
*size += processed;
if (processed != curSize)
return ferror(p->file);
// debug : we can break here for partial reading mode
if (processed == 0)
break;
}
while (originalSize > 0);
#else
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const ssize_t processed = read(p->fd, data, curSize);
if (processed == -1)
return errno;
if (processed == 0)
break;
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= (size_t)processed;
*size += (size_t)processed;
// debug : we can break here for partial reading mode
// break;
}
while (originalSize > 0);
#endif
return 0;
}
WRes File_Write(CSzFile *p, const void *data, size_t *size)
{
size_t originalSize = *size;
*size = 0;
if (originalSize == 0)
return 0;
#ifdef USE_WINDOWS_FILE
do
{
const DWORD curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : (DWORD)originalSize;
DWORD processed = 0;
const BOOL res = WriteFile(p->handle, data, curSize, &processed, NULL);
data = (const void *)((const Byte *)data + processed);
originalSize -= processed;
*size += processed;
if (!res)
return GetLastError();
if (processed == 0)
break;
}
while (originalSize > 0);
#elif defined(USE_FOPEN)
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const size_t processed = fwrite(data, 1, curSize, p->file);
data = (void *)((Byte *)data + (size_t)processed);
originalSize -= processed;
*size += processed;
if (processed != curSize)
return ferror(p->file);
if (processed == 0)
break;
}
while (originalSize > 0);
#else
do
{
const size_t curSize = (originalSize > kChunkSizeMax) ? kChunkSizeMax : originalSize;
const ssize_t processed = write(p->fd, data, curSize);
if (processed == -1)
return errno;
if (processed == 0)
break;
data = (const void *)((const Byte *)data + (size_t)processed);
originalSize -= (size_t)processed;
*size += (size_t)processed;
}
while (originalSize > 0);
#endif
return 0;
}
WRes File_Seek(CSzFile *p, Int64 *pos, ESzSeek origin)
{
#ifdef USE_WINDOWS_FILE
DWORD moveMethod;
UInt32 low = (UInt32)*pos;
LONG high = (LONG)((UInt64)*pos >> 16 >> 16); /* for case when UInt64 is 32-bit only */
// (int) to eliminate clang warning
switch ((int)origin)
{
case SZ_SEEK_SET: moveMethod = FILE_BEGIN; break;
case SZ_SEEK_CUR: moveMethod = FILE_CURRENT; break;
case SZ_SEEK_END: moveMethod = FILE_END; break;
default: return ERROR_INVALID_PARAMETER;
}
low = SetFilePointer(p->handle, (LONG)low, &high, moveMethod);
if (low == (UInt32)0xFFFFFFFF)
{
WRes res = GetLastError();
if (res != NO_ERROR)
return res;
}
*pos = ((Int64)high << 32) | low;
return 0;
#else
int moveMethod; // = origin;
switch ((int)origin)
{
case SZ_SEEK_SET: moveMethod = SEEK_SET; break;
case SZ_SEEK_CUR: moveMethod = SEEK_CUR; break;
case SZ_SEEK_END: moveMethod = SEEK_END; break;
default: return EINVAL;
}
#if defined(USE_FOPEN)
{
int res = fseek(p->file, (long)*pos, moveMethod);
if (res == -1)
return errno;
*pos = ftell(p->file);
if (*pos == -1)
return errno;
return 0;
}
#else
{
off_t res = lseek(p->fd, (off_t)*pos, moveMethod);
if (res == -1)
return errno;
*pos = res;
return 0;
}
#endif // USE_FOPEN
#endif // USE_WINDOWS_FILE
}
WRes File_GetLength(CSzFile *p, UInt64 *length)
{
#ifdef USE_WINDOWS_FILE
DWORD sizeHigh;
DWORD sizeLow = GetFileSize(p->handle, &sizeHigh);
if (sizeLow == 0xFFFFFFFF)
{
DWORD res = GetLastError();
if (res != NO_ERROR)
return res;
}
*length = (((UInt64)sizeHigh) << 32) + sizeLow;
return 0;
#elif defined(USE_FOPEN)
long pos = ftell(p->file);
int res = fseek(p->file, 0, SEEK_END);
*length = ftell(p->file);
fseek(p->file, pos, SEEK_SET);
return res;
#else
off_t pos;
*length = 0;
pos = lseek(p->fd, 0, SEEK_CUR);
if (pos != -1)
{
const off_t len2 = lseek(p->fd, 0, SEEK_END);
const off_t res2 = lseek(p->fd, pos, SEEK_SET);
if (len2 != -1)
{
*length = (UInt64)len2;
if (res2 != -1)
return 0;
}
}
return errno;
#endif
}
/* ---------- FileSeqInStream ---------- */
static SRes FileSeqInStream_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileSeqInStream)
const WRes wres = File_Read(&p->file, buf, size);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
void FileSeqInStream_CreateVTable(CFileSeqInStream *p)
{
p->vt.Read = FileSeqInStream_Read;
}
/* ---------- FileInStream ---------- */
static SRes FileInStream_Read(ISeekInStreamPtr pp, void *buf, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileInStream)
const WRes wres = File_Read(&p->file, buf, size);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
static SRes FileInStream_Seek(ISeekInStreamPtr pp, Int64 *pos, ESzSeek origin)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileInStream)
const WRes wres = File_Seek(&p->file, pos, origin);
p->wres = wres;
return (wres == 0) ? SZ_OK : SZ_ERROR_READ;
}
void FileInStream_CreateVTable(CFileInStream *p)
{
p->vt.Read = FileInStream_Read;
p->vt.Seek = FileInStream_Seek;
}
/* ---------- FileOutStream ---------- */
static size_t FileOutStream_Write(ISeqOutStreamPtr pp, const void *data, size_t size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CFileOutStream)
const WRes wres = File_Write(&p->file, data, &size);
p->wres = wres;
return size;
}
void FileOutStream_CreateVTable(CFileOutStream *p)
{
p->vt.Write = FileOutStream_Write;
}

View File

@ -1,92 +0,0 @@
/* 7zFile.h -- File IO
2023-03-05 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_FILE_H
#define ZIP7_INC_FILE_H
#ifdef _WIN32
#define USE_WINDOWS_FILE
// #include <windows.h>
#endif
#ifdef USE_WINDOWS_FILE
#include "7zWindows.h"
#else
// note: USE_FOPEN mode is limited to 32-bit file size
// #define USE_FOPEN
// #include <stdio.h>
#endif
#include "7zTypes.h"
EXTERN_C_BEGIN
/* ---------- File ---------- */
typedef struct
{
#ifdef USE_WINDOWS_FILE
HANDLE handle;
#elif defined(USE_FOPEN)
FILE *file;
#else
int fd;
#endif
} CSzFile;
void File_Construct(CSzFile *p);
#if !defined(UNDER_CE) || !defined(USE_WINDOWS_FILE)
WRes InFile_Open(CSzFile *p, const char *name);
WRes OutFile_Open(CSzFile *p, const char *name);
#endif
#ifdef USE_WINDOWS_FILE
WRes InFile_OpenW(CSzFile *p, const WCHAR *name);
WRes OutFile_OpenW(CSzFile *p, const WCHAR *name);
#endif
WRes File_Close(CSzFile *p);
/* reads max(*size, remain file's size) bytes */
WRes File_Read(CSzFile *p, void *data, size_t *size);
/* writes *size bytes */
WRes File_Write(CSzFile *p, const void *data, size_t *size);
WRes File_Seek(CSzFile *p, Int64 *pos, ESzSeek origin);
WRes File_GetLength(CSzFile *p, UInt64 *length);
/* ---------- FileInStream ---------- */
typedef struct
{
ISeqInStream vt;
CSzFile file;
WRes wres;
} CFileSeqInStream;
void FileSeqInStream_CreateVTable(CFileSeqInStream *p);
typedef struct
{
ISeekInStream vt;
CSzFile file;
WRes wres;
} CFileInStream;
void FileInStream_CreateVTable(CFileInStream *p);
typedef struct
{
ISeqOutStream vt;
CSzFile file;
WRes wres;
} CFileOutStream;
void FileOutStream_CreateVTable(CFileOutStream *p);
EXTERN_C_END
#endif

View File

@ -1,199 +0,0 @@
/* 7zStream.c -- 7z Stream functions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "7zTypes.h"
SRes SeqInStream_ReadMax(ISeqInStreamPtr stream, void *buf, size_t *processedSize)
{
size_t size = *processedSize;
*processedSize = 0;
while (size != 0)
{
size_t cur = size;
const SRes res = ISeqInStream_Read(stream, buf, &cur);
*processedSize += cur;
buf = (void *)((Byte *)buf + cur);
size -= cur;
if (res != SZ_OK)
return res;
if (cur == 0)
return SZ_OK;
}
return SZ_OK;
}
/*
SRes SeqInStream_Read2(ISeqInStreamPtr stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ISeqInStream_Read(stream, buf, &processed))
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes SeqInStream_Read(ISeqInStreamPtr stream, void *buf, size_t size)
{
return SeqInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
*/
SRes SeqInStream_ReadByte(ISeqInStreamPtr stream, Byte *buf)
{
size_t processed = 1;
RINOK(ISeqInStream_Read(stream, buf, &processed))
return (processed == 1) ? SZ_OK : SZ_ERROR_INPUT_EOF;
}
SRes LookInStream_SeekTo(ILookInStreamPtr stream, UInt64 offset)
{
Int64 t = (Int64)offset;
return ILookInStream_Seek(stream, &t, SZ_SEEK_SET);
}
SRes LookInStream_LookRead(ILookInStreamPtr stream, void *buf, size_t *size)
{
const void *lookBuf;
if (*size == 0)
return SZ_OK;
RINOK(ILookInStream_Look(stream, &lookBuf, size))
memcpy(buf, lookBuf, *size);
return ILookInStream_Skip(stream, *size);
}
SRes LookInStream_Read2(ILookInStreamPtr stream, void *buf, size_t size, SRes errorType)
{
while (size != 0)
{
size_t processed = size;
RINOK(ILookInStream_Read(stream, buf, &processed))
if (processed == 0)
return errorType;
buf = (void *)((Byte *)buf + processed);
size -= processed;
}
return SZ_OK;
}
SRes LookInStream_Read(ILookInStreamPtr stream, void *buf, size_t size)
{
return LookInStream_Read2(stream, buf, size, SZ_ERROR_INPUT_EOF);
}
#define GET_LookToRead2 Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLookToRead2)
static SRes LookToRead2_Look_Lookahead(ILookInStreamPtr pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size != 0)
{
p->pos = 0;
p->size = 0;
size2 = p->bufSize;
res = ISeekInStream_Read(p->realStream, p->buf, &size2);
p->size = size2;
}
if (*size > size2)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead2_Look_Exact(ILookInStreamPtr pp, const void **buf, size_t *size)
{
SRes res = SZ_OK;
GET_LookToRead2
size_t size2 = p->size - p->pos;
if (size2 == 0 && *size != 0)
{
p->pos = 0;
p->size = 0;
if (*size > p->bufSize)
*size = p->bufSize;
res = ISeekInStream_Read(p->realStream, p->buf, size);
size2 = p->size = *size;
}
if (*size > size2)
*size = size2;
*buf = p->buf + p->pos;
return res;
}
static SRes LookToRead2_Skip(ILookInStreamPtr pp, size_t offset)
{
GET_LookToRead2
p->pos += offset;
return SZ_OK;
}
static SRes LookToRead2_Read(ILookInStreamPtr pp, void *buf, size_t *size)
{
GET_LookToRead2
size_t rem = p->size - p->pos;
if (rem == 0)
return ISeekInStream_Read(p->realStream, buf, size);
if (rem > *size)
rem = *size;
memcpy(buf, p->buf + p->pos, rem);
p->pos += rem;
*size = rem;
return SZ_OK;
}
static SRes LookToRead2_Seek(ILookInStreamPtr pp, Int64 *pos, ESzSeek origin)
{
GET_LookToRead2
p->pos = p->size = 0;
return ISeekInStream_Seek(p->realStream, pos, origin);
}
void LookToRead2_CreateVTable(CLookToRead2 *p, int lookahead)
{
p->vt.Look = lookahead ?
LookToRead2_Look_Lookahead :
LookToRead2_Look_Exact;
p->vt.Skip = LookToRead2_Skip;
p->vt.Read = LookToRead2_Read;
p->vt.Seek = LookToRead2_Seek;
}
static SRes SecToLook_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CSecToLook)
return LookInStream_LookRead(p->realStream, buf, size);
}
void SecToLook_CreateVTable(CSecToLook *p)
{
p->vt.Read = SecToLook_Read;
}
static SRes SecToRead_Read(ISeqInStreamPtr pp, void *buf, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CSecToRead)
return ILookInStream_Read(p->realStream, buf, size);
}
void SecToRead_CreateVTable(CSecToRead *p)
{
p->vt.Read = SecToRead_Read;
}

View File

@ -1,597 +0,0 @@
/* 7zTypes.h -- Basic types
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_7Z_TYPES_H
#define ZIP7_7Z_TYPES_H
#ifdef _WIN32
/* #include <windows.h> */
#else
#include <errno.h>
#endif
#include <stddef.h>
#ifndef EXTERN_C_BEGIN
#ifdef __cplusplus
#define EXTERN_C_BEGIN extern "C" {
#define EXTERN_C_END }
#else
#define EXTERN_C_BEGIN
#define EXTERN_C_END
#endif
#endif
EXTERN_C_BEGIN
#define SZ_OK 0
#define SZ_ERROR_DATA 1
#define SZ_ERROR_MEM 2
#define SZ_ERROR_CRC 3
#define SZ_ERROR_UNSUPPORTED 4
#define SZ_ERROR_PARAM 5
#define SZ_ERROR_INPUT_EOF 6
#define SZ_ERROR_OUTPUT_EOF 7
#define SZ_ERROR_READ 8
#define SZ_ERROR_WRITE 9
#define SZ_ERROR_PROGRESS 10
#define SZ_ERROR_FAIL 11
#define SZ_ERROR_THREAD 12
#define SZ_ERROR_ARCHIVE 16
#define SZ_ERROR_NO_ARCHIVE 17
typedef int SRes;
#ifdef _MSC_VER
#if _MSC_VER > 1200
#define MY_ALIGN(n) __declspec(align(n))
#else
#define MY_ALIGN(n)
#endif
#else
/*
// C11/C++11:
#include <stdalign.h>
#define MY_ALIGN(n) alignas(n)
*/
#define MY_ALIGN(n) __attribute__ ((aligned(n)))
#endif
#ifdef _WIN32
/* typedef DWORD WRes; */
typedef unsigned WRes;
#define MY_SRes_HRESULT_FROM_WRes(x) HRESULT_FROM_WIN32(x)
// #define MY_HRES_ERROR_INTERNAL_ERROR MY_SRes_HRESULT_FROM_WRes(ERROR_INTERNAL_ERROR)
#else // _WIN32
// #define ENV_HAVE_LSTAT
typedef int WRes;
// (FACILITY_ERRNO = 0x800) is 7zip's FACILITY constant to represent (errno) errors in HRESULT
#define MY_FACILITY_ERRNO 0x800
#define MY_FACILITY_WIN32 7
#define MY_FACILITY_WRes MY_FACILITY_ERRNO
#define MY_HRESULT_FROM_errno_CONST_ERROR(x) ((HRESULT)( \
( (HRESULT)(x) & 0x0000FFFF) \
| (MY_FACILITY_WRes << 16) \
| (HRESULT)0x80000000 ))
#define MY_SRes_HRESULT_FROM_WRes(x) \
((HRESULT)(x) <= 0 ? ((HRESULT)(x)) : MY_HRESULT_FROM_errno_CONST_ERROR(x))
// we call macro HRESULT_FROM_WIN32 for system errors (WRes) that are (errno)
#define HRESULT_FROM_WIN32(x) MY_SRes_HRESULT_FROM_WRes(x)
/*
#define ERROR_FILE_NOT_FOUND 2L
#define ERROR_ACCESS_DENIED 5L
#define ERROR_NO_MORE_FILES 18L
#define ERROR_LOCK_VIOLATION 33L
#define ERROR_FILE_EXISTS 80L
#define ERROR_DISK_FULL 112L
#define ERROR_NEGATIVE_SEEK 131L
#define ERROR_ALREADY_EXISTS 183L
#define ERROR_DIRECTORY 267L
#define ERROR_TOO_MANY_POSTS 298L
#define ERROR_INTERNAL_ERROR 1359L
#define ERROR_INVALID_REPARSE_DATA 4392L
#define ERROR_REPARSE_TAG_INVALID 4393L
#define ERROR_REPARSE_TAG_MISMATCH 4394L
*/
// we use errno equivalents for some WIN32 errors:
#define ERROR_INVALID_PARAMETER EINVAL
#define ERROR_INVALID_FUNCTION EINVAL
#define ERROR_ALREADY_EXISTS EEXIST
#define ERROR_FILE_EXISTS EEXIST
#define ERROR_PATH_NOT_FOUND ENOENT
#define ERROR_FILE_NOT_FOUND ENOENT
#define ERROR_DISK_FULL ENOSPC
// #define ERROR_INVALID_HANDLE EBADF
// we use FACILITY_WIN32 for errors that has no errno equivalent
// Too many posts were made to a semaphore.
#define ERROR_TOO_MANY_POSTS ((HRESULT)0x8007012AL)
#define ERROR_INVALID_REPARSE_DATA ((HRESULT)0x80071128L)
#define ERROR_REPARSE_TAG_INVALID ((HRESULT)0x80071129L)
// if (MY_FACILITY_WRes != FACILITY_WIN32),
// we use FACILITY_WIN32 for COM errors:
#define E_OUTOFMEMORY ((HRESULT)0x8007000EL)
#define E_INVALIDARG ((HRESULT)0x80070057L)
#define MY_E_ERROR_NEGATIVE_SEEK ((HRESULT)0x80070083L)
/*
// we can use FACILITY_ERRNO for some COM errors, that have errno equivalents:
#define E_OUTOFMEMORY MY_HRESULT_FROM_errno_CONST_ERROR(ENOMEM)
#define E_INVALIDARG MY_HRESULT_FROM_errno_CONST_ERROR(EINVAL)
#define MY_E_ERROR_NEGATIVE_SEEK MY_HRESULT_FROM_errno_CONST_ERROR(EINVAL)
*/
#define TEXT(quote) quote
#define FILE_ATTRIBUTE_READONLY 0x0001
#define FILE_ATTRIBUTE_HIDDEN 0x0002
#define FILE_ATTRIBUTE_SYSTEM 0x0004
#define FILE_ATTRIBUTE_DIRECTORY 0x0010
#define FILE_ATTRIBUTE_ARCHIVE 0x0020
#define FILE_ATTRIBUTE_DEVICE 0x0040
#define FILE_ATTRIBUTE_NORMAL 0x0080
#define FILE_ATTRIBUTE_TEMPORARY 0x0100
#define FILE_ATTRIBUTE_SPARSE_FILE 0x0200
#define FILE_ATTRIBUTE_REPARSE_POINT 0x0400
#define FILE_ATTRIBUTE_COMPRESSED 0x0800
#define FILE_ATTRIBUTE_OFFLINE 0x1000
#define FILE_ATTRIBUTE_NOT_CONTENT_INDEXED 0x2000
#define FILE_ATTRIBUTE_ENCRYPTED 0x4000
#define FILE_ATTRIBUTE_UNIX_EXTENSION 0x8000 /* trick for Unix */
#endif
#ifndef RINOK
#define RINOK(x) { const int _result_ = (x); if (_result_ != 0) return _result_; }
#endif
#ifndef RINOK_WRes
#define RINOK_WRes(x) { const WRes _result_ = (x); if (_result_ != 0) return _result_; }
#endif
typedef unsigned char Byte;
typedef short Int16;
typedef unsigned short UInt16;
#ifdef Z7_DECL_Int32_AS_long
typedef long Int32;
typedef unsigned long UInt32;
#else
typedef int Int32;
typedef unsigned int UInt32;
#endif
#ifndef _WIN32
typedef int INT;
typedef Int32 INT32;
typedef unsigned int UINT;
typedef UInt32 UINT32;
typedef INT32 LONG; // LONG, ULONG and DWORD must be 32-bit for _WIN32 compatibility
typedef UINT32 ULONG;
#undef DWORD
typedef UINT32 DWORD;
#define VOID void
#define HRESULT LONG
typedef void *LPVOID;
// typedef void VOID;
// typedef ULONG_PTR DWORD_PTR, *PDWORD_PTR;
// gcc / clang on Unix : sizeof(long==sizeof(void*) in 32 or 64 bits)
typedef long INT_PTR;
typedef unsigned long UINT_PTR;
typedef long LONG_PTR;
typedef unsigned long DWORD_PTR;
typedef size_t SIZE_T;
#endif // _WIN32
#define MY_HRES_ERROR_INTERNAL_ERROR ((HRESULT)0x8007054FL)
#ifdef Z7_DECL_Int64_AS_long
typedef long Int64;
typedef unsigned long UInt64;
#else
#if (defined(_MSC_VER) || defined(__BORLANDC__)) && !defined(__clang__)
typedef __int64 Int64;
typedef unsigned __int64 UInt64;
#else
#if defined(__clang__) || defined(__GNUC__)
#include <stdint.h>
typedef int64_t Int64;
typedef uint64_t UInt64;
#else
typedef long long int Int64;
typedef unsigned long long int UInt64;
// #define UINT64_CONST(n) n ## ULL
#endif
#endif
#endif
#define UINT64_CONST(n) n
#ifdef Z7_DECL_SizeT_AS_unsigned_int
typedef unsigned int SizeT;
#else
typedef size_t SizeT;
#endif
/*
#if (defined(_MSC_VER) && _MSC_VER <= 1200)
typedef size_t MY_uintptr_t;
#else
#include <stdint.h>
typedef uintptr_t MY_uintptr_t;
#endif
*/
typedef int BoolInt;
/* typedef BoolInt Bool; */
#define True 1
#define False 0
#ifdef _WIN32
#define Z7_STDCALL __stdcall
#else
#define Z7_STDCALL
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define Z7_NO_INLINE __declspec(noinline)
#else
#define Z7_NO_INLINE
#endif
#define Z7_FORCE_INLINE __forceinline
#define Z7_CDECL __cdecl
#define Z7_FASTCALL __fastcall
#else // _MSC_VER
#if (defined(__GNUC__) && (__GNUC__ >= 4)) \
|| (defined(__clang__) && (__clang_major__ >= 4)) \
|| defined(__INTEL_COMPILER) \
|| defined(__xlC__)
#define Z7_NO_INLINE __attribute__((noinline))
#define Z7_FORCE_INLINE __attribute__((always_inline)) inline
#else
#define Z7_NO_INLINE
#define Z7_FORCE_INLINE
#endif
#define Z7_CDECL
#if defined(_M_IX86) \
|| defined(__i386__)
// #define Z7_FASTCALL __attribute__((fastcall))
// #define Z7_FASTCALL __attribute__((cdecl))
#define Z7_FASTCALL
#elif defined(MY_CPU_AMD64)
// #define Z7_FASTCALL __attribute__((ms_abi))
#define Z7_FASTCALL
#else
#define Z7_FASTCALL
#endif
#endif // _MSC_VER
/* The following interfaces use first parameter as pointer to structure */
// #define Z7_C_IFACE_CONST_QUAL
#define Z7_C_IFACE_CONST_QUAL const
#define Z7_C_IFACE_DECL(a) \
struct a ## _; \
typedef Z7_C_IFACE_CONST_QUAL struct a ## _ * a ## Ptr; \
typedef struct a ## _ a; \
struct a ## _
Z7_C_IFACE_DECL (IByteIn)
{
Byte (*Read)(IByteInPtr p); /* reads one byte, returns 0 in case of EOF or error */
};
#define IByteIn_Read(p) (p)->Read(p)
Z7_C_IFACE_DECL (IByteOut)
{
void (*Write)(IByteOutPtr p, Byte b);
};
#define IByteOut_Write(p, b) (p)->Write(p, b)
Z7_C_IFACE_DECL (ISeqInStream)
{
SRes (*Read)(ISeqInStreamPtr p, void *buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) < input(*size)) is allowed */
};
#define ISeqInStream_Read(p, buf, size) (p)->Read(p, buf, size)
/* try to read as much as avail in stream and limited by (*processedSize) */
SRes SeqInStream_ReadMax(ISeqInStreamPtr stream, void *buf, size_t *processedSize);
/* it can return SZ_ERROR_INPUT_EOF */
// SRes SeqInStream_Read(ISeqInStreamPtr stream, void *buf, size_t size);
// SRes SeqInStream_Read2(ISeqInStreamPtr stream, void *buf, size_t size, SRes errorType);
SRes SeqInStream_ReadByte(ISeqInStreamPtr stream, Byte *buf);
Z7_C_IFACE_DECL (ISeqOutStream)
{
size_t (*Write)(ISeqOutStreamPtr p, const void *buf, size_t size);
/* Returns: result - the number of actually written bytes.
(result < size) means error */
};
#define ISeqOutStream_Write(p, buf, size) (p)->Write(p, buf, size)
typedef enum
{
SZ_SEEK_SET = 0,
SZ_SEEK_CUR = 1,
SZ_SEEK_END = 2
} ESzSeek;
Z7_C_IFACE_DECL (ISeekInStream)
{
SRes (*Read)(ISeekInStreamPtr p, void *buf, size_t *size); /* same as ISeqInStream::Read */
SRes (*Seek)(ISeekInStreamPtr p, Int64 *pos, ESzSeek origin);
};
#define ISeekInStream_Read(p, buf, size) (p)->Read(p, buf, size)
#define ISeekInStream_Seek(p, pos, origin) (p)->Seek(p, pos, origin)
Z7_C_IFACE_DECL (ILookInStream)
{
SRes (*Look)(ILookInStreamPtr p, const void **buf, size_t *size);
/* if (input(*size) != 0 && output(*size) == 0) means end_of_stream.
(output(*size) > input(*size)) is not allowed
(output(*size) < input(*size)) is allowed */
SRes (*Skip)(ILookInStreamPtr p, size_t offset);
/* offset must be <= output(*size) of Look */
SRes (*Read)(ILookInStreamPtr p, void *buf, size_t *size);
/* reads directly (without buffer). It's same as ISeqInStream::Read */
SRes (*Seek)(ILookInStreamPtr p, Int64 *pos, ESzSeek origin);
};
#define ILookInStream_Look(p, buf, size) (p)->Look(p, buf, size)
#define ILookInStream_Skip(p, offset) (p)->Skip(p, offset)
#define ILookInStream_Read(p, buf, size) (p)->Read(p, buf, size)
#define ILookInStream_Seek(p, pos, origin) (p)->Seek(p, pos, origin)
SRes LookInStream_LookRead(ILookInStreamPtr stream, void *buf, size_t *size);
SRes LookInStream_SeekTo(ILookInStreamPtr stream, UInt64 offset);
/* reads via ILookInStream::Read */
SRes LookInStream_Read2(ILookInStreamPtr stream, void *buf, size_t size, SRes errorType);
SRes LookInStream_Read(ILookInStreamPtr stream, void *buf, size_t size);
typedef struct
{
ILookInStream vt;
ISeekInStreamPtr realStream;
size_t pos;
size_t size; /* it's data size */
/* the following variables must be set outside */
Byte *buf;
size_t bufSize;
} CLookToRead2;
void LookToRead2_CreateVTable(CLookToRead2 *p, int lookahead);
#define LookToRead2_INIT(p) { (p)->pos = (p)->size = 0; }
typedef struct
{
ISeqInStream vt;
ILookInStreamPtr realStream;
} CSecToLook;
void SecToLook_CreateVTable(CSecToLook *p);
typedef struct
{
ISeqInStream vt;
ILookInStreamPtr realStream;
} CSecToRead;
void SecToRead_CreateVTable(CSecToRead *p);
Z7_C_IFACE_DECL (ICompressProgress)
{
SRes (*Progress)(ICompressProgressPtr p, UInt64 inSize, UInt64 outSize);
/* Returns: result. (result != SZ_OK) means break.
Value (UInt64)(Int64)-1 for size means unknown value. */
};
#define ICompressProgress_Progress(p, inSize, outSize) (p)->Progress(p, inSize, outSize)
typedef struct ISzAlloc ISzAlloc;
typedef const ISzAlloc * ISzAllocPtr;
struct ISzAlloc
{
void *(*Alloc)(ISzAllocPtr p, size_t size);
void (*Free)(ISzAllocPtr p, void *address); /* address can be 0 */
};
#define ISzAlloc_Alloc(p, size) (p)->Alloc(p, size)
#define ISzAlloc_Free(p, a) (p)->Free(p, a)
/* deprecated */
#define IAlloc_Alloc(p, size) ISzAlloc_Alloc(p, size)
#define IAlloc_Free(p, a) ISzAlloc_Free(p, a)
#ifndef MY_offsetof
#ifdef offsetof
#define MY_offsetof(type, m) offsetof(type, m)
/*
#define MY_offsetof(type, m) FIELD_OFFSET(type, m)
*/
#else
#define MY_offsetof(type, m) ((size_t)&(((type *)0)->m))
#endif
#endif
#ifndef Z7_container_of
/*
#define Z7_container_of(ptr, type, m) container_of(ptr, type, m)
#define Z7_container_of(ptr, type, m) CONTAINING_RECORD(ptr, type, m)
#define Z7_container_of(ptr, type, m) ((type *)((char *)(ptr) - offsetof(type, m)))
#define Z7_container_of(ptr, type, m) (&((type *)0)->m == (ptr), ((type *)(((char *)(ptr)) - MY_offsetof(type, m))))
*/
/*
GCC shows warning: "perhaps the 'offsetof' macro was used incorrectly"
GCC 3.4.4 : classes with constructor
GCC 4.8.1 : classes with non-public variable members"
*/
#define Z7_container_of(ptr, type, m) \
((type *)(void *)((char *)(void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
#define Z7_container_of_CONST(ptr, type, m) \
((const type *)(const void *)((const char *)(const void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
/*
#define Z7_container_of_NON_CONST_FROM_CONST(ptr, type, m) \
((type *)(void *)(const void *)((const char *)(const void *) \
(1 ? (ptr) : &((type *)NULL)->m) - MY_offsetof(type, m)))
*/
#endif
#define Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m) ((type *)(void *)(ptr))
// #define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_container_of(ptr, type, m)
// #define Z7_CONTAINER_FROM_VTBL(ptr, type, m) Z7_container_of_NON_CONST_FROM_CONST(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL_CONST(ptr, type, m) Z7_container_of_CONST(ptr, type, m)
#define Z7_CONTAINER_FROM_VTBL_CLS(ptr, type, m) Z7_CONTAINER_FROM_VTBL_SIMPLE(ptr, type, m)
/*
#define Z7_CONTAINER_FROM_VTBL_CLS(ptr, type, m) Z7_CONTAINER_FROM_VTBL(ptr, type, m)
*/
#if defined (__clang__) || defined(__GNUC__)
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wcast-qual\"")
#define Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL \
_Pragma("GCC diagnostic pop")
#else
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL
#define Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL
#endif
#define Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR(ptr, type, m, p) \
Z7_DIAGNOSCTIC_IGNORE_BEGIN_CAST_QUAL \
type *p = Z7_CONTAINER_FROM_VTBL(ptr, type, m); \
Z7_DIAGNOSCTIC_IGNORE_END_CAST_QUAL
#define Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(type) \
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR(pp, type, vt, p)
// #define ZIP7_DECLARE_HANDLE(name) typedef void *name;
#define Z7_DECLARE_HANDLE(name) struct name##_dummy{int unused;}; typedef struct name##_dummy *name;
#define Z7_memset_0_ARRAY(a) memset((a), 0, sizeof(a))
#ifndef Z7_ARRAY_SIZE
#define Z7_ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#endif
#ifdef _WIN32
#define CHAR_PATH_SEPARATOR '\\'
#define WCHAR_PATH_SEPARATOR L'\\'
#define STRING_PATH_SEPARATOR "\\"
#define WSTRING_PATH_SEPARATOR L"\\"
#else
#define CHAR_PATH_SEPARATOR '/'
#define WCHAR_PATH_SEPARATOR L'/'
#define STRING_PATH_SEPARATOR "/"
#define WSTRING_PATH_SEPARATOR L"/"
#endif
#define k_PropVar_TimePrec_0 0
#define k_PropVar_TimePrec_Unix 1
#define k_PropVar_TimePrec_DOS 2
#define k_PropVar_TimePrec_HighPrec 3
#define k_PropVar_TimePrec_Base 16
#define k_PropVar_TimePrec_100ns (k_PropVar_TimePrec_Base + 7)
#define k_PropVar_TimePrec_1ns (k_PropVar_TimePrec_Base + 9)
EXTERN_C_END
#endif
/*
#ifndef Z7_ST
#ifdef _7ZIP_ST
#define Z7_ST
#endif
#endif
*/

View File

@ -1,27 +0,0 @@
#define MY_VER_MAJOR 23
#define MY_VER_MINOR 01
#define MY_VER_BUILD 0
#define MY_VERSION_NUMBERS "23.01"
#define MY_VERSION MY_VERSION_NUMBERS
#ifdef MY_CPU_NAME
#define MY_VERSION_CPU MY_VERSION " (" MY_CPU_NAME ")"
#else
#define MY_VERSION_CPU MY_VERSION
#endif
#define MY_DATE "2023-06-20"
#undef MY_COPYRIGHT
#undef MY_VERSION_COPYRIGHT_DATE
#define MY_AUTHOR_NAME "Igor Pavlov"
#define MY_COPYRIGHT_PD "Igor Pavlov : Public domain"
#define MY_COPYRIGHT_CR "Copyright (c) 1999-2023 Igor Pavlov"
#ifdef USE_COPYRIGHT_CR
#define MY_COPYRIGHT MY_COPYRIGHT_CR
#else
#define MY_COPYRIGHT MY_COPYRIGHT_PD
#endif
#define MY_COPYRIGHT_DATE MY_COPYRIGHT " : " MY_DATE
#define MY_VERSION_COPYRIGHT_DATE MY_VERSION_CPU " : " MY_COPYRIGHT " : " MY_DATE

View File

@ -1,55 +0,0 @@
#define MY_VS_FFI_FILEFLAGSMASK 0x0000003FL
#define MY_VOS_NT_WINDOWS32 0x00040004L
#define MY_VOS_CE_WINDOWS32 0x00050004L
#define MY_VFT_APP 0x00000001L
#define MY_VFT_DLL 0x00000002L
// #include <WinVer.h>
#ifndef MY_VERSION
#include "7zVersion.h"
#endif
#define MY_VER MY_VER_MAJOR,MY_VER_MINOR,MY_VER_BUILD,0
#ifdef DEBUG
#define DBG_FL VS_FF_DEBUG
#else
#define DBG_FL 0
#endif
#define MY_VERSION_INFO(fileType, descr, intName, origName) \
LANGUAGE 9, 1 \
1 VERSIONINFO \
FILEVERSION MY_VER \
PRODUCTVERSION MY_VER \
FILEFLAGSMASK MY_VS_FFI_FILEFLAGSMASK \
FILEFLAGS DBG_FL \
FILEOS MY_VOS_NT_WINDOWS32 \
FILETYPE fileType \
FILESUBTYPE 0x0L \
BEGIN \
BLOCK "StringFileInfo" \
BEGIN \
BLOCK "040904b0" \
BEGIN \
VALUE "CompanyName", "Igor Pavlov" \
VALUE "FileDescription", descr \
VALUE "FileVersion", MY_VERSION \
VALUE "InternalName", intName \
VALUE "LegalCopyright", MY_COPYRIGHT \
VALUE "OriginalFilename", origName \
VALUE "ProductName", "7-Zip" \
VALUE "ProductVersion", MY_VERSION \
END \
END \
BLOCK "VarFileInfo" \
BEGIN \
VALUE "Translation", 0x409, 1200 \
END \
END
#define MY_VERSION_INFO_APP(descr, intName) MY_VERSION_INFO(MY_VFT_APP, descr, intName, intName ".exe")
#define MY_VERSION_INFO_DLL(descr, intName) MY_VERSION_INFO(MY_VFT_DLL, descr, intName, intName ".dll")

View File

@ -1,101 +0,0 @@
/* 7zWindows.h -- StdAfx
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_7Z_WINDOWS_H
#define ZIP7_INC_7Z_WINDOWS_H
#ifdef _WIN32
#if defined(__clang__)
# pragma clang diagnostic push
#endif
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4668) // '_WIN32_WINNT' is not defined as a preprocessor macro, replacing with '0' for '#if/#elif'
#if _MSC_VER == 1900
// for old kit10 versions
// #pragma warning(disable : 4255) // winuser.h(13979): warning C4255: 'GetThreadDpiAwarenessContext':
#endif
// win10 Windows Kit:
#endif // _MSC_VER
#if defined(_MSC_VER) && _MSC_VER <= 1200 && !defined(_WIN64)
// for msvc6 without sdk2003
#define RPC_NO_WINDOWS_H
#endif
#if defined(__MINGW32__) || defined(__MINGW64__)
// #if defined(__GNUC__) && !defined(__clang__)
#include <windows.h>
#else
#include <Windows.h>
#endif
// #include <basetsd.h>
// #include <wtypes.h>
// but if precompiled with clang-cl then we need
// #include <windows.h>
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#if defined(__clang__)
# pragma clang diagnostic pop
#endif
#if defined(_MSC_VER) && _MSC_VER <= 1200 && !defined(_WIN64)
#ifndef _W64
typedef long LONG_PTR, *PLONG_PTR;
typedef unsigned long ULONG_PTR, *PULONG_PTR;
typedef ULONG_PTR DWORD_PTR, *PDWORD_PTR;
#define Z7_OLD_WIN_SDK
#endif // _W64
#endif // _MSC_VER == 1200
#ifdef Z7_OLD_WIN_SDK
#ifndef INVALID_FILE_ATTRIBUTES
#define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
#ifndef INVALID_SET_FILE_POINTER
#define INVALID_SET_FILE_POINTER ((DWORD)-1)
#endif
#ifndef FILE_SPECIAL_ACCESS
#define FILE_SPECIAL_ACCESS (FILE_ANY_ACCESS)
#endif
// ShlObj.h:
// #define BIF_NEWDIALOGSTYLE 0x0040
#pragma warning(disable : 4201)
// #pragma warning(disable : 4115)
#undef VARIANT_TRUE
#define VARIANT_TRUE ((VARIANT_BOOL)-1)
#endif
#endif // Z7_OLD_WIN_SDK
#ifdef UNDER_CE
#undef VARIANT_TRUE
#define VARIANT_TRUE ((VARIANT_BOOL)-1)
#endif
#if defined(_MSC_VER)
#if _MSC_VER >= 1400 && _MSC_VER <= 1600
// BaseTsd.h(148) : 'HandleToULong' : unreferenced inline function has been removed
// string.h
// #pragma warning(disable : 4514)
#endif
#endif
/* #include "7zTypes.h" */
#endif

393
3rdparty/7z/src/Aes.c vendored
View File

@ -1,393 +0,0 @@
/* Aes.c -- AES encryption / decryption
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "Aes.h"
AES_CODE_FUNC g_AesCbc_Decode;
#ifndef Z7_SFX
AES_CODE_FUNC g_AesCbc_Encode;
AES_CODE_FUNC g_AesCtr_Code;
UInt32 g_Aes_SupportedFunctions_Flags;
#endif
static UInt32 T[256 * 4];
static const Byte Sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
static UInt32 D[256 * 4];
static Byte InvS[256];
#define xtime(x) ((((x) << 1) ^ (((x) & 0x80) != 0 ? 0x1B : 0)) & 0xFF)
#define Ui32(a0, a1, a2, a3) ((UInt32)(a0) | ((UInt32)(a1) << 8) | ((UInt32)(a2) << 16) | ((UInt32)(a3) << 24))
#define gb0(x) ( (x) & 0xFF)
#define gb1(x) (((x) >> ( 8)) & 0xFF)
#define gb2(x) (((x) >> (16)) & 0xFF)
#define gb3(x) (((x) >> (24)))
#define gb(n, x) gb ## n(x)
#define TT(x) (T + (x << 8))
#define DD(x) (D + (x << 8))
// #define Z7_SHOW_AES_STATUS
#ifdef MY_CPU_X86_OR_AMD64
#define USE_HW_AES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#endif
#ifdef USE_HW_AES
#ifdef Z7_SHOW_AES_STATUS
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
#endif
void AesGenTables(void)
{
unsigned i;
for (i = 0; i < 256; i++)
InvS[Sbox[i]] = (Byte)i;
for (i = 0; i < 256; i++)
{
{
const UInt32 a1 = Sbox[i];
const UInt32 a2 = xtime(a1);
const UInt32 a3 = a2 ^ a1;
TT(0)[i] = Ui32(a2, a1, a1, a3);
TT(1)[i] = Ui32(a3, a2, a1, a1);
TT(2)[i] = Ui32(a1, a3, a2, a1);
TT(3)[i] = Ui32(a1, a1, a3, a2);
}
{
const UInt32 a1 = InvS[i];
const UInt32 a2 = xtime(a1);
const UInt32 a4 = xtime(a2);
const UInt32 a8 = xtime(a4);
const UInt32 a9 = a8 ^ a1;
const UInt32 aB = a8 ^ a2 ^ a1;
const UInt32 aD = a8 ^ a4 ^ a1;
const UInt32 aE = a8 ^ a4 ^ a2;
DD(0)[i] = Ui32(aE, a9, aD, aB);
DD(1)[i] = Ui32(aB, aE, a9, aD);
DD(2)[i] = Ui32(aD, aB, aE, a9);
DD(3)[i] = Ui32(a9, aD, aB, aE);
}
}
{
AES_CODE_FUNC d = AesCbc_Decode;
#ifndef Z7_SFX
AES_CODE_FUNC e = AesCbc_Encode;
AES_CODE_FUNC c = AesCtr_Code;
UInt32 flags = 0;
#endif
#ifdef USE_HW_AES
if (CPU_IsSupported_AES())
{
// #pragma message ("AES HW")
PRF(printf("\n===AES HW\n"));
d = AesCbc_Decode_HW;
#ifndef Z7_SFX
e = AesCbc_Encode_HW;
c = AesCtr_Code_HW;
flags = k_Aes_SupportedFunctions_HW;
#endif
#ifdef MY_CPU_X86_OR_AMD64
if (CPU_IsSupported_VAES_AVX2())
{
PRF(printf("\n===vaes avx2\n"));
d = AesCbc_Decode_HW_256;
#ifndef Z7_SFX
c = AesCtr_Code_HW_256;
flags |= k_Aes_SupportedFunctions_HW_256;
#endif
}
#endif
}
#endif
g_AesCbc_Decode = d;
#ifndef Z7_SFX
g_AesCbc_Encode = e;
g_AesCtr_Code = c;
g_Aes_SupportedFunctions_Flags = flags;
#endif
}
}
#define HT(i, x, s) TT(x)[gb(x, s[(i + x) & 3])]
#define HT4(m, i, s, p) m[i] = \
HT(i, 0, s) ^ \
HT(i, 1, s) ^ \
HT(i, 2, s) ^ \
HT(i, 3, s) ^ w[p + i]
#define HT16(m, s, p) \
HT4(m, 0, s, p); \
HT4(m, 1, s, p); \
HT4(m, 2, s, p); \
HT4(m, 3, s, p); \
#define FT(i, x) Sbox[gb(x, m[(i + x) & 3])]
#define FT4(i) dest[i] = Ui32(FT(i, 0), FT(i, 1), FT(i, 2), FT(i, 3)) ^ w[i];
#define HD(i, x, s) DD(x)[gb(x, s[(i - x) & 3])]
#define HD4(m, i, s, p) m[i] = \
HD(i, 0, s) ^ \
HD(i, 1, s) ^ \
HD(i, 2, s) ^ \
HD(i, 3, s) ^ w[p + i];
#define HD16(m, s, p) \
HD4(m, 0, s, p); \
HD4(m, 1, s, p); \
HD4(m, 2, s, p); \
HD4(m, 3, s, p); \
#define FD(i, x) InvS[gb(x, m[(i - x) & 3])]
#define FD4(i) dest[i] = Ui32(FD(i, 0), FD(i, 1), FD(i, 2), FD(i, 3)) ^ w[i];
void Z7_FASTCALL Aes_SetKey_Enc(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, m;
const UInt32 *wLim;
UInt32 t;
UInt32 rcon = 1;
keySize /= 4;
w[0] = ((UInt32)keySize / 2) + 3;
w += 4;
for (i = 0; i < keySize; i++, key += 4)
w[i] = GetUi32(key);
t = w[(size_t)keySize - 1];
wLim = w + (size_t)keySize * 3 + 28;
m = 0;
do
{
if (m == 0)
{
t = Ui32(Sbox[gb1(t)] ^ rcon, Sbox[gb2(t)], Sbox[gb3(t)], Sbox[gb0(t)]);
rcon <<= 1;
if (rcon & 0x100)
rcon = 0x1b;
m = keySize;
}
else if (m == 4 && keySize > 6)
t = Ui32(Sbox[gb0(t)], Sbox[gb1(t)], Sbox[gb2(t)], Sbox[gb3(t)]);
m--;
t ^= w[0];
w[keySize] = t;
}
while (++w != wLim);
}
void Z7_FASTCALL Aes_SetKey_Dec(UInt32 *w, const Byte *key, unsigned keySize)
{
unsigned i, num;
Aes_SetKey_Enc(w, key, keySize);
num = keySize + 20;
w += 8;
for (i = 0; i < num; i++)
{
UInt32 r = w[i];
w[i] =
DD(0)[Sbox[gb0(r)]] ^
DD(1)[Sbox[gb1(r)]] ^
DD(2)[Sbox[gb2(r)]] ^
DD(3)[Sbox[gb3(r)]];
}
}
/* Aes_Encode and Aes_Decode functions work with little-endian words.
src and dest are pointers to 4 UInt32 words.
src and dest can point to same block */
// Z7_FORCE_INLINE
static void Aes_Encode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
w += 4;
for (;;)
{
HT16(m, s, 0)
if (--numRounds2 == 0)
break;
HT16(s, m, 4)
w += 8;
}
w += 4;
FT4(0)
FT4(1)
FT4(2)
FT4(3)
}
Z7_FORCE_INLINE
static void Aes_Decode(const UInt32 *w, UInt32 *dest, const UInt32 *src)
{
UInt32 s[4];
UInt32 m[4];
UInt32 numRounds2 = w[0];
w += 4 + numRounds2 * 8;
s[0] = src[0] ^ w[0];
s[1] = src[1] ^ w[1];
s[2] = src[2] ^ w[2];
s[3] = src[3] ^ w[3];
for (;;)
{
w -= 8;
HD16(m, s, 4)
if (--numRounds2 == 0)
break;
HD16(s, m, 0)
}
FD4(0)
FD4(1)
FD4(2)
FD4(3)
}
void AesCbc_Init(UInt32 *p, const Byte *iv)
{
unsigned i;
for (i = 0; i < 4; i++)
p[i] = GetUi32(iv + i * 4);
}
void Z7_FASTCALL AesCbc_Encode(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
p[0] ^= GetUi32(data);
p[1] ^= GetUi32(data + 4);
p[2] ^= GetUi32(data + 8);
p[3] ^= GetUi32(data + 12);
Aes_Encode(p + 4, p, p);
SetUi32(data, p[0])
SetUi32(data + 4, p[1])
SetUi32(data + 8, p[2])
SetUi32(data + 12, p[3])
}
}
void Z7_FASTCALL AesCbc_Decode(UInt32 *p, Byte *data, size_t numBlocks)
{
UInt32 in[4], out[4];
for (; numBlocks != 0; numBlocks--, data += AES_BLOCK_SIZE)
{
in[0] = GetUi32(data);
in[1] = GetUi32(data + 4);
in[2] = GetUi32(data + 8);
in[3] = GetUi32(data + 12);
Aes_Decode(p + 4, out, in);
SetUi32(data, p[0] ^ out[0])
SetUi32(data + 4, p[1] ^ out[1])
SetUi32(data + 8, p[2] ^ out[2])
SetUi32(data + 12, p[3] ^ out[3])
p[0] = in[0];
p[1] = in[1];
p[2] = in[2];
p[3] = in[3];
}
}
void Z7_FASTCALL AesCtr_Code(UInt32 *p, Byte *data, size_t numBlocks)
{
for (; numBlocks != 0; numBlocks--)
{
UInt32 temp[4];
unsigned i;
if (++p[0] == 0)
p[1]++;
Aes_Encode(p + 4, temp, p);
for (i = 0; i < 4; i++, data += 4)
{
const UInt32 t = temp[i];
#ifdef MY_CPU_LE_UNALIGN
*((UInt32 *)(void *)data) ^= t;
#else
data[0] = (Byte)(data[0] ^ (t & 0xFF));
data[1] = (Byte)(data[1] ^ ((t >> 8) & 0xFF));
data[2] = (Byte)(data[2] ^ ((t >> 16) & 0xFF));
data[3] = (Byte)(data[3] ^ ((t >> 24)));
#endif
}
}
}
#undef xtime
#undef Ui32
#undef gb0
#undef gb1
#undef gb2
#undef gb3
#undef gb
#undef TT
#undef DD
#undef USE_HW_AES
#undef PRF

60
3rdparty/7z/src/Aes.h vendored
View File

@ -1,60 +0,0 @@
/* Aes.h -- AES encryption / decryption
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_AES_H
#define ZIP7_INC_AES_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define AES_BLOCK_SIZE 16
/* Call AesGenTables one time before other AES functions */
void AesGenTables(void);
/* UInt32 pointers must be 16-byte aligned */
/* 16-byte (4 * 32-bit words) blocks: 1 (IV) + 1 (keyMode) + 15 (AES-256 roundKeys) */
#define AES_NUM_IVMRK_WORDS ((1 + 1 + 15) * 4)
/* aes - 16-byte aligned pointer to keyMode+roundKeys sequence */
/* keySize = 16 or 24 or 32 (bytes) */
typedef void (Z7_FASTCALL *AES_SET_KEY_FUNC)(UInt32 *aes, const Byte *key, unsigned keySize);
void Z7_FASTCALL Aes_SetKey_Enc(UInt32 *aes, const Byte *key, unsigned keySize);
void Z7_FASTCALL Aes_SetKey_Dec(UInt32 *aes, const Byte *key, unsigned keySize);
/* ivAes - 16-byte aligned pointer to iv+keyMode+roundKeys sequence: UInt32[AES_NUM_IVMRK_WORDS] */
void AesCbc_Init(UInt32 *ivAes, const Byte *iv); /* iv size is AES_BLOCK_SIZE */
/* data - 16-byte aligned pointer to data */
/* numBlocks - the number of 16-byte blocks in data array */
typedef void (Z7_FASTCALL *AES_CODE_FUNC)(UInt32 *ivAes, Byte *data, size_t numBlocks);
extern AES_CODE_FUNC g_AesCbc_Decode;
#ifndef Z7_SFX
extern AES_CODE_FUNC g_AesCbc_Encode;
extern AES_CODE_FUNC g_AesCtr_Code;
#define k_Aes_SupportedFunctions_HW (1 << 2)
#define k_Aes_SupportedFunctions_HW_256 (1 << 3)
extern UInt32 g_Aes_SupportedFunctions_Flags;
#endif
#define Z7_DECLARE_AES_CODE_FUNC(funcName) \
void Z7_FASTCALL funcName(UInt32 *ivAes, Byte *data, size_t numBlocks);
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Encode)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Encode_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code_HW)
Z7_DECLARE_AES_CODE_FUNC (AesCbc_Decode_HW_256)
Z7_DECLARE_AES_CODE_FUNC (AesCtr_Code_HW_256)
EXTERN_C_END
#endif

View File

@ -1,840 +0,0 @@
/* AesOpt.c -- AES optimized code for x86 AES hardware instructions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Aes.h"
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1110)
#define USE_INTEL_AES
#if (__INTEL_COMPILER >= 1900)
#define USE_INTEL_VAES
#endif
#endif
#elif defined(__clang__) && (__clang_major__ > 3 || __clang_major__ == 3 && __clang_minor__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ > 4 || __GNUC__ == 4 && __GNUC_MINOR__ >= 4)
#define USE_INTEL_AES
#if !defined(__AES__)
#define ATTRIB_AES __attribute__((__target__("aes")))
#endif
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 8)
#define USE_INTEL_VAES
#if !defined(__AES__) || !defined(__VAES__) || !defined(__AVX__) || !defined(__AVX2__)
#define ATTRIB_VAES __attribute__((__target__("aes,vaes,avx,avx2")))
#endif
#endif
#elif defined(_MSC_VER)
#if (_MSC_VER > 1500) || (_MSC_FULL_VER >= 150030729)
#define USE_INTEL_AES
#if (_MSC_VER >= 1910)
#define USE_INTEL_VAES
#endif
#endif
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#ifndef ATTRIB_VAES
#define ATTRIB_VAES
#endif
#ifdef USE_INTEL_AES
#include <wmmintrin.h>
#ifndef USE_INTEL_VAES
#define AES_TYPE_keys UInt32
#define AES_TYPE_data Byte
// #define AES_TYPE_keys __m128i
// #define AES_TYPE_data __m128i
#endif
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *ivAes, Byte *data8, size_t numBlocks)
// void Z7_FASTCALL name(__m128i *p, __m128i *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src)
#define MM_XOR( dest, src) MM_OP(_mm_xor_si128, dest, src)
#define AVX_XOR(dest, src) MM_OP(_mm256_xor_si256, dest, src)
AES_FUNC_START2 (AesCbc_Encode_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i m = *p;
const __m128i k0 = p[2];
const __m128i k1 = p[3];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1) - 1;
for (; numBlocks != 0; numBlocks--, data++)
{
UInt32 r = numRounds2;
const __m128i *w = p + 4;
__m128i temp = *data;
MM_XOR (temp, k0)
MM_XOR (m, temp)
MM_OP_m (_mm_aesenc_si128, k1)
do
{
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--r);
MM_OP_m (_mm_aesenclast_si128, w[0])
*data = m;
}
*p = m;
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1)
#define WOP_3(op) WOP_2 (op) op (m2, 2)
#define WOP_4(op) WOP_3 (op) op (m3, 3)
#ifdef MY_CPU_AMD64
#define WOP_5(op) WOP_4 (op) op (m4, 4)
#define WOP_6(op) WOP_5 (op) op (m5, 5)
#define WOP_7(op) WOP_6 (op) op (m6, 6)
#define WOP_8(op) WOP_7 (op) op (m7, 7)
#endif
/*
#define WOP_9(op) WOP_8 (op) op (m8, 8);
#define WOP_10(op) WOP_9 (op) op (m9, 9);
#define WOP_11(op) WOP_10(op) op (m10, 10);
#define WOP_12(op) WOP_11(op) op (m11, 11);
#define WOP_13(op) WOP_12(op) op (m12, 12);
#define WOP_14(op) WOP_13(op) op (m13, 13);
*/
#ifdef MY_CPU_AMD64
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#else
#define NUM_WAYS 4
#define WOP_M1 WOP_4
#endif
#define WOP(op) op (m0, 0) WOP_M1(op)
#define DECLARE_VAR(reg, ii) __m128i reg;
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1])
#endif
#define AVX_DECLARE_VAR(reg, ii) __m256i reg;
#define AVX_LOAD_data( reg, ii) reg = ((const __m256i *)(const void *)data)[ii];
#define AVX_STORE_data( reg, ii) ((__m256i *)(void *)data)[ii] = reg;
#define AVX_XOR_data_M1(reg, ii) AVX_XOR (reg, (((const __m256i *)(const void *)(data - 1))[ii]))
#define MM_OP_key(op, reg) MM_OP(op, reg, key);
#define AES_DEC( reg, ii) MM_OP_key (_mm_aesdec_si128, reg)
#define AES_DEC_LAST( reg, ii) MM_OP_key (_mm_aesdeclast_si128, reg)
#define AES_ENC( reg, ii) MM_OP_key (_mm_aesenc_si128, reg)
#define AES_ENC_LAST( reg, ii) MM_OP_key (_mm_aesenclast_si128, reg)
#define AES_XOR( reg, ii) MM_OP_key (_mm_xor_si128, reg)
#define AVX_AES_DEC( reg, ii) MM_OP_key (_mm256_aesdec_epi128, reg)
#define AVX_AES_DEC_LAST( reg, ii) MM_OP_key (_mm256_aesdeclast_epi128, reg)
#define AVX_AES_ENC( reg, ii) MM_OP_key (_mm256_aesenc_epi128, reg)
#define AVX_AES_ENC_LAST( reg, ii) MM_OP_key (_mm256_aesenclast_epi128, reg)
#define AVX_AES_XOR( reg, ii) MM_OP_key (_mm256_xor_si256, reg)
#define CTR_START(reg, ii) MM_OP (_mm_add_epi64, ctr, one) reg = ctr;
#define CTR_END( reg, ii) MM_XOR (data[ii], reg)
#define AVX_CTR_START(reg, ii) MM_OP (_mm256_add_epi64, ctr2, two) reg = _mm256_xor_si256(ctr2, key);
#define AVX_CTR_END( reg, ii) AVX_XOR (((__m256i *)(void *)data)[ii], reg)
#define WOP_KEY(op, n) { \
const __m128i key = w[n]; \
WOP(op); }
#define AVX_WOP_KEY(op, n) { \
const __m256i key = w[n]; \
WOP(op); }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
#define NUM_AES_KEYS_MAX 15
#define WIDE_LOOP_START_AVX(OP) \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS * 2) \
{ __m256i keys[NUM_AES_KEYS_MAX]; \
UInt32 ii; \
OP \
for (ii = 0; ii < numRounds; ii++) \
keys[ii] = _mm256_broadcastsi128_si256(p[ii]); \
dataEnd -= NUM_WAYS * 2; do { \
#define WIDE_LOOP_END_AVX(OP) \
data += NUM_WAYS * 2; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS * 2; \
OP \
_mm256_zeroupper(); \
} \
/* MSVC for x86: If we don't call _mm256_zeroupper(), and -arch:IA32 is not specified,
MSVC still can insert vzeroupper instruction. */
AES_FUNC_START2 (AesCbc_Decode_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i iv = *p;
const __m128i *wStart = p + *(const UInt32 *)(p + 1) * 2 + 2 - 1;
const __m128i *dataEnd;
p += 2;
WIDE_LOOP_START
{
const __m128i *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data)
WOP_KEY (AES_XOR, 1)
do
{
WOP_KEY (AES_DEC, 0)
w--;
}
while (w != p);
WOP_KEY (AES_DEC_LAST, 0)
MM_XOR (m0, iv)
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data)
}
WIDE_LOOP_END
SINGLE_LOOP
{
const __m128i *w = wStart - 1;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdec_si128, w[0])
w -= 2;
}
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdeclast_si128, w[0])
MM_XOR (m, iv)
iv = *data;
*data = m;
}
p[-2] = iv;
}
AES_FUNC_START2 (AesCtr_Code_HW)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i ctr = *p;
UInt32 numRoundsMinus2 = *(const UInt32 *)(p + 1) * 2 - 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
p += 2;
WIDE_LOOP_START
{
const __m128i *w = p;
UInt32 r = numRoundsMinus2;
WOP (DECLARE_VAR)
WOP (CTR_START)
WOP_KEY (AES_XOR, 0)
w += 1;
do
{
WOP_KEY (AES_ENC, 0)
w += 1;
}
while (--r);
WOP_KEY (AES_ENC_LAST, 0)
WOP (CTR_END)
}
WIDE_LOOP_END
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
MM_OP (_mm_add_epi64, ctr, one)
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenclast_si128, w[1])
MM_XOR (*data, m)
}
p[-2] = ctr;
}
#ifdef USE_INTEL_VAES
/*
GCC before 2013-Jun:
<immintrin.h>:
#ifdef __AVX__
#include <avxintrin.h>
#endif
GCC after 2013-Jun:
<immintrin.h>:
#include <avxintrin.h>
CLANG 3.8+:
{
<immintrin.h>:
#if !defined(_MSC_VER) || defined(__AVX__)
#include <avxintrin.h>
#endif
if (the compiler is clang for Windows and if global arch is not set for __AVX__)
[ if (defined(_MSC_VER) && !defined(__AVX__)) ]
{
<immintrin.h> doesn't include <avxintrin.h>
and we have 2 ways to fix it:
1) we can define required __AVX__ before <immintrin.h>
or
2) we can include <avxintrin.h> after <immintrin.h>
}
}
If we include <avxintrin.h> manually for GCC/CLANG, it's
required that <immintrin.h> must be included before <avxintrin.h>.
*/
/*
#if defined(__clang__) && defined(_MSC_VER)
#define __AVX__
#define __AVX2__
#define __VAES__
#endif
*/
#include <immintrin.h>
#if defined(__clang__) && defined(_MSC_VER)
#if !defined(__AVX__)
#include <avxintrin.h>
#endif
#if !defined(__AVX2__)
#include <avx2intrin.h>
#endif
#if !defined(__VAES__)
#include <vaesintrin.h>
#endif
#endif // __clang__ && _MSC_VER
#define VAES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_VAES \
AES_FUNC_START (name)
VAES_FUNC_START2 (AesCbc_Decode_HW_256)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i iv = *p;
const __m128i *dataEnd;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
p += 2;
WIDE_LOOP_START_AVX(;)
{
const __m256i *w = keys + numRounds - 2;
WOP (AVX_DECLARE_VAR)
WOP (AVX_LOAD_data)
AVX_WOP_KEY (AVX_AES_XOR, 1)
do
{
AVX_WOP_KEY (AVX_AES_DEC, 0)
w--;
}
while (w != keys);
AVX_WOP_KEY (AVX_AES_DEC_LAST, 0)
AVX_XOR (m0, _mm256_setr_m128i(iv, data[0]))
WOP_M1 (AVX_XOR_data_M1)
iv = data[NUM_WAYS * 2 - 1];
WOP (AVX_STORE_data)
}
WIDE_LOOP_END_AVX(;)
SINGLE_LOOP
{
const __m128i *w = p + *(const UInt32 *)(p + 1 - 2) * 2 + 1 - 3;
__m128i m = _mm_xor_si128 (w[2], *data);
do
{
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdec_si128, w[0])
w -= 2;
}
while (w != p);
MM_OP_m (_mm_aesdec_si128, w[1])
MM_OP_m (_mm_aesdeclast_si128, w[0])
MM_XOR (m, iv)
iv = *data;
*data = m;
}
p[-2] = iv;
}
/*
SSE2: _mm_cvtsi32_si128 : movd
AVX: _mm256_setr_m128i : vinsertf128
AVX2: _mm256_add_epi64 : vpaddq ymm, ymm, ymm
_mm256_extracti128_si256 : vextracti128
_mm256_broadcastsi128_si256 : vbroadcasti128
*/
#define AVX_CTR_LOOP_START \
ctr2 = _mm256_setr_m128i(_mm_sub_epi64(ctr, one), ctr); \
two = _mm256_setr_m128i(one, one); \
two = _mm256_add_epi64(two, two); \
// two = _mm256_setr_epi64x(2, 0, 2, 0);
#define AVX_CTR_LOOP_ENC \
ctr = _mm256_extracti128_si256 (ctr2, 1); \
VAES_FUNC_START2 (AesCtr_Code_HW_256)
{
__m128i *p = (__m128i *)(void *)ivAes;
__m128i *data = (__m128i *)(void *)data8;
__m128i ctr = *p;
UInt32 numRounds = *(const UInt32 *)(p + 1) * 2 + 1;
const __m128i *dataEnd;
__m128i one = _mm_cvtsi32_si128(1);
__m256i ctr2, two;
p += 2;
WIDE_LOOP_START_AVX (AVX_CTR_LOOP_START)
{
const __m256i *w = keys;
UInt32 r = numRounds - 2;
WOP (AVX_DECLARE_VAR)
AVX_WOP_KEY (AVX_CTR_START, 0)
w += 1;
do
{
AVX_WOP_KEY (AVX_AES_ENC, 0)
w += 1;
}
while (--r);
AVX_WOP_KEY (AVX_AES_ENC_LAST, 0)
WOP (AVX_CTR_END)
}
WIDE_LOOP_END_AVX (AVX_CTR_LOOP_ENC)
SINGLE_LOOP
{
UInt32 numRounds2 = *(const UInt32 *)(p - 2 + 1) - 1;
const __m128i *w = p;
__m128i m;
MM_OP (_mm_add_epi64, ctr, one)
m = _mm_xor_si128 (ctr, p[0]);
w += 1;
do
{
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenc_si128, w[1])
w += 2;
}
while (--numRounds2);
MM_OP_m (_mm_aesenc_si128, w[0])
MM_OP_m (_mm_aesenclast_si128, w[1])
MM_XOR (*data, m)
}
p[-2] = ctr;
}
#endif // USE_INTEL_VAES
#else // USE_INTEL_AES
/* no USE_INTEL_AES */
#pragma message("AES HW_SW stub was used")
#define AES_TYPE_keys UInt32
#define AES_TYPE_data Byte
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *p, Byte *data, size_t numBlocks) \
#define AES_COMPAT_STUB(name) \
AES_FUNC_START(name); \
AES_FUNC_START(name ## _HW) \
{ name(p, data, numBlocks); }
AES_COMPAT_STUB (AesCbc_Encode)
AES_COMPAT_STUB (AesCbc_Decode)
AES_COMPAT_STUB (AesCtr_Code)
#endif // USE_INTEL_AES
#ifndef USE_INTEL_VAES
#pragma message("VAES HW_SW stub was used")
#define VAES_COMPAT_STUB(name) \
void Z7_FASTCALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks); \
void Z7_FASTCALL name ## _256(UInt32 *p, Byte *data, size_t numBlocks) \
{ name((AES_TYPE_keys *)(void *)p, (AES_TYPE_data *)(void *)data, numBlocks); }
VAES_COMPAT_STUB (AesCbc_Decode_HW)
VAES_COMPAT_STUB (AesCtr_Code_HW)
#endif // ! USE_INTEL_VAES
#elif defined(MY_CPU_ARM_OR_ARM64) && defined(MY_CPU_LE)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_AES
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_AES
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_AES
#endif
#endif
#ifdef USE_HW_AES
// #pragma message("=== AES HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_AES __attribute__((__target__("+crypto")))
#else
#define ATTRIB_AES __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#ifndef ATTRIB_AES
#define ATTRIB_AES
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint8x16_t v128;
#define AES_FUNC_START(name) \
void Z7_FASTCALL name(UInt32 *ivAes, Byte *data8, size_t numBlocks)
// void Z7_FASTCALL name(v128 *p, v128 *data, size_t numBlocks)
#define AES_FUNC_START2(name) \
AES_FUNC_START (name); \
ATTRIB_AES \
AES_FUNC_START (name)
#define MM_OP(op, dest, src) dest = op(dest, src);
#define MM_OP_m(op, src) MM_OP(op, m, src)
#define MM_OP1_m(op) m = op(m);
#define MM_XOR( dest, src) MM_OP(veorq_u8, dest, src)
#define MM_XOR_m( src) MM_XOR(m, src)
#define AES_E_m(k) MM_OP_m (vaeseq_u8, k)
#define AES_E_MC_m(k) AES_E_m (k) MM_OP1_m(vaesmcq_u8)
AES_FUNC_START2 (AesCbc_Encode_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
v128 m = *p;
const v128 k0 = p[2];
const v128 k1 = p[3];
const v128 k2 = p[4];
const v128 k3 = p[5];
const v128 k4 = p[6];
const v128 k5 = p[7];
const v128 k6 = p[8];
const v128 k7 = p[9];
const v128 k8 = p[10];
const v128 k9 = p[11];
const UInt32 numRounds2 = *(const UInt32 *)(p + 1);
const v128 *w = p + ((size_t)numRounds2 * 2);
const v128 k_z1 = w[1];
const v128 k_z0 = w[2];
for (; numBlocks != 0; numBlocks--, data++)
{
MM_XOR_m (*data);
AES_E_MC_m (k0)
AES_E_MC_m (k1)
AES_E_MC_m (k2)
AES_E_MC_m (k3)
AES_E_MC_m (k4)
AES_E_MC_m (k5)
AES_E_MC_m (k6)
AES_E_MC_m (k7)
AES_E_MC_m (k8)
if (numRounds2 >= 6)
{
AES_E_MC_m (k9)
AES_E_MC_m (p[12])
if (numRounds2 != 6)
{
AES_E_MC_m (p[13])
AES_E_MC_m (p[14])
}
}
AES_E_m (k_z1)
MM_XOR_m (k_z0);
*data = m;
}
*p = m;
}
#define WOP_1(op)
#define WOP_2(op) WOP_1 (op) op (m1, 1)
#define WOP_3(op) WOP_2 (op) op (m2, 2)
#define WOP_4(op) WOP_3 (op) op (m3, 3)
#define WOP_5(op) WOP_4 (op) op (m4, 4)
#define WOP_6(op) WOP_5 (op) op (m5, 5)
#define WOP_7(op) WOP_6 (op) op (m6, 6)
#define WOP_8(op) WOP_7 (op) op (m7, 7)
#define NUM_WAYS 8
#define WOP_M1 WOP_8
#define WOP(op) op (m0, 0) WOP_M1(op)
#define DECLARE_VAR(reg, ii) v128 reg;
#define LOAD_data( reg, ii) reg = data[ii];
#define STORE_data( reg, ii) data[ii] = reg;
#if (NUM_WAYS > 1)
#define XOR_data_M1(reg, ii) MM_XOR (reg, data[ii- 1])
#endif
#define MM_OP_key(op, reg) MM_OP (op, reg, key)
#define AES_D_m(k) MM_OP_m (vaesdq_u8, k)
#define AES_D_IMC_m(k) AES_D_m (k) MM_OP1_m (vaesimcq_u8)
#define AES_XOR( reg, ii) MM_OP_key (veorq_u8, reg)
#define AES_D( reg, ii) MM_OP_key (vaesdq_u8, reg)
#define AES_E( reg, ii) MM_OP_key (vaeseq_u8, reg)
#define AES_D_IMC( reg, ii) AES_D (reg, ii) reg = vaesimcq_u8(reg);
#define AES_E_MC( reg, ii) AES_E (reg, ii) reg = vaesmcq_u8(reg);
#define CTR_START(reg, ii) MM_OP (vaddq_u64, ctr, one) reg = vreinterpretq_u8_u64(ctr);
#define CTR_END( reg, ii) MM_XOR (data[ii], reg)
#define WOP_KEY(op, n) { \
const v128 key = w[n]; \
WOP(op) }
#define WIDE_LOOP_START \
dataEnd = data + numBlocks; \
if (numBlocks >= NUM_WAYS) \
{ dataEnd -= NUM_WAYS; do { \
#define WIDE_LOOP_END \
data += NUM_WAYS; \
} while (data <= dataEnd); \
dataEnd += NUM_WAYS; } \
#define SINGLE_LOOP \
for (; data < dataEnd; data++)
AES_FUNC_START2 (AesCbc_Decode_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
v128 iv = *p;
const v128 *wStart = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
p += 2;
WIDE_LOOP_START
{
const v128 *w = wStart;
WOP (DECLARE_VAR)
WOP (LOAD_data)
WOP_KEY (AES_D_IMC, 2)
do
{
WOP_KEY (AES_D_IMC, 1)
WOP_KEY (AES_D_IMC, 0)
w -= 2;
}
while (w != p);
WOP_KEY (AES_D, 1)
WOP_KEY (AES_XOR, 0)
MM_XOR (m0, iv);
WOP_M1 (XOR_data_M1)
iv = data[NUM_WAYS - 1];
WOP (STORE_data)
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = wStart;
v128 m = *data;
AES_D_IMC_m (w[2])
do
{
AES_D_IMC_m (w[1]);
AES_D_IMC_m (w[0]);
w -= 2;
}
while (w != p);
AES_D_m (w[1]);
MM_XOR_m (w[0]);
MM_XOR_m (iv);
iv = *data;
*data = m;
}
p[-2] = iv;
}
AES_FUNC_START2 (AesCtr_Code_HW)
{
v128 *p = (v128*)(void*)ivAes;
v128 *data = (v128*)(void*)data8;
uint64x2_t ctr = vreinterpretq_u64_u8(*p);
const v128 *wEnd = p + ((size_t)*(const UInt32 *)(p + 1)) * 2;
const v128 *dataEnd;
uint64x2_t one = vdupq_n_u64(0);
one = vsetq_lane_u64(1, one, 0);
p += 2;
WIDE_LOOP_START
{
const v128 *w = p;
WOP (DECLARE_VAR)
WOP (CTR_START)
do
{
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E_MC, 1)
w += 2;
}
while (w != wEnd);
WOP_KEY (AES_E_MC, 0)
WOP_KEY (AES_E, 1)
WOP_KEY (AES_XOR, 2)
WOP (CTR_END)
}
WIDE_LOOP_END
SINGLE_LOOP
{
const v128 *w = p;
v128 m;
CTR_START (m, 0);
do
{
AES_E_MC_m (w[0]);
AES_E_MC_m (w[1]);
w += 2;
}
while (w != wEnd);
AES_E_MC_m (w[0])
AES_E_m (w[1])
MM_XOR_m (w[2])
CTR_END (m, 0)
}
p[-2] = vreinterpretq_u8_u64(ctr);
}
#endif // USE_HW_AES
#endif // MY_CPU_ARM_OR_ARM64
#undef NUM_WAYS
#undef WOP_M1
#undef WOP
#undef DECLARE_VAR
#undef LOAD_data
#undef STORE_data
#undef USE_INTEL_AES
#undef USE_HW_AES

View File

@ -1,535 +0,0 @@
/* Alloc.c -- Memory allocation functions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include "7zWindows.h"
#endif
#include <stdlib.h>
#include "Alloc.h"
#ifdef _WIN32
#ifdef Z7_LARGE_PAGES
#if defined(__clang__) || defined(__GNUC__)
typedef void (*Z7_voidFunction)(void);
#define MY_CAST_FUNC (Z7_voidFunction)
#elif defined(_MSC_VER) && _MSC_VER > 1920
#define MY_CAST_FUNC (void *)
// #pragma warning(disable : 4191) // 'type cast': unsafe conversion from 'FARPROC' to 'void (__cdecl *)()'
#else
#define MY_CAST_FUNC
#endif
#endif // Z7_LARGE_PAGES
#endif // _WIN32
// #define SZ_ALLOC_DEBUG
/* #define SZ_ALLOC_DEBUG */
/* use SZ_ALLOC_DEBUG to debug alloc/free operations */
#ifdef SZ_ALLOC_DEBUG
#include <string.h>
#include <stdio.h>
static int g_allocCount = 0;
#ifdef _WIN32
static int g_allocCountMid = 0;
static int g_allocCountBig = 0;
#endif
#define CONVERT_INT_TO_STR(charType, tempSize) \
char temp[tempSize]; unsigned i = 0; \
while (val >= 10) { temp[i++] = (char)('0' + (unsigned)(val % 10)); val /= 10; } \
*s++ = (charType)('0' + (unsigned)val); \
while (i != 0) { i--; *s++ = temp[i]; } \
*s = 0;
static void ConvertUInt64ToString(UInt64 val, char *s)
{
CONVERT_INT_TO_STR(char, 24)
}
#define GET_HEX_CHAR(t) ((char)(((t < 10) ? ('0' + t) : ('A' + (t - 10)))))
static void ConvertUInt64ToHex(UInt64 val, char *s)
{
UInt64 v = val;
unsigned i;
for (i = 1;; i++)
{
v >>= 4;
if (v == 0)
break;
}
s[i] = 0;
do
{
unsigned t = (unsigned)(val & 0xF);
val >>= 4;
s[--i] = GET_HEX_CHAR(t);
}
while (i);
}
#define DEBUG_OUT_STREAM stderr
static void Print(const char *s)
{
fputs(s, DEBUG_OUT_STREAM);
}
static void PrintAligned(const char *s, size_t align)
{
size_t len = strlen(s);
for(;;)
{
fputc(' ', DEBUG_OUT_STREAM);
if (len >= align)
break;
++len;
}
Print(s);
}
static void PrintLn(void)
{
Print("\n");
}
static void PrintHex(UInt64 v, size_t align)
{
char s[32];
ConvertUInt64ToHex(v, s);
PrintAligned(s, align);
}
static void PrintDec(int v, size_t align)
{
char s[32];
ConvertUInt64ToString((unsigned)v, s);
PrintAligned(s, align);
}
static void PrintAddr(void *p)
{
PrintHex((UInt64)(size_t)(ptrdiff_t)p, 12);
}
#define PRINT_REALLOC(name, cnt, size, ptr) { \
Print(name " "); \
if (!ptr) PrintDec(cnt++, 10); \
PrintHex(size, 10); \
PrintAddr(ptr); \
PrintLn(); }
#define PRINT_ALLOC(name, cnt, size, ptr) { \
Print(name " "); \
PrintDec(cnt++, 10); \
PrintHex(size, 10); \
PrintAddr(ptr); \
PrintLn(); }
#define PRINT_FREE(name, cnt, ptr) if (ptr) { \
Print(name " "); \
PrintDec(--cnt, 10); \
PrintAddr(ptr); \
PrintLn(); }
#else
#ifdef _WIN32
#define PRINT_ALLOC(name, cnt, size, ptr)
#endif
#define PRINT_FREE(name, cnt, ptr)
#define Print(s)
#define PrintLn()
#define PrintHex(v, align)
#define PrintAddr(p)
#endif
/*
by specification:
malloc(non_NULL, 0) : returns NULL or a unique pointer value that can later be successfully passed to free()
realloc(NULL, size) : the call is equivalent to malloc(size)
realloc(non_NULL, 0) : the call is equivalent to free(ptr)
in main compilers:
malloc(0) : returns non_NULL
realloc(NULL, 0) : returns non_NULL
realloc(non_NULL, 0) : returns NULL
*/
void *MyAlloc(size_t size)
{
if (size == 0)
return NULL;
// PRINT_ALLOC("Alloc ", g_allocCount, size, NULL)
#ifdef SZ_ALLOC_DEBUG
{
void *p = malloc(size);
if (p)
{
PRINT_ALLOC("Alloc ", g_allocCount, size, p)
}
return p;
}
#else
return malloc(size);
#endif
}
void MyFree(void *address)
{
PRINT_FREE("Free ", g_allocCount, address)
free(address);
}
void *MyRealloc(void *address, size_t size)
{
if (size == 0)
{
MyFree(address);
return NULL;
}
// PRINT_REALLOC("Realloc ", g_allocCount, size, address)
#ifdef SZ_ALLOC_DEBUG
{
void *p = realloc(address, size);
if (p)
{
PRINT_REALLOC("Realloc ", g_allocCount, size, address)
}
return p;
}
#else
return realloc(address, size);
#endif
}
#ifdef _WIN32
void *MidAlloc(size_t size)
{
if (size == 0)
return NULL;
#ifdef SZ_ALLOC_DEBUG
{
void *p = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
if (p)
{
PRINT_ALLOC("Alloc-Mid", g_allocCountMid, size, p)
}
return p;
}
#else
return VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
#endif
}
void MidFree(void *address)
{
PRINT_FREE("Free-Mid", g_allocCountMid, address)
if (!address)
return;
VirtualFree(address, 0, MEM_RELEASE);
}
#ifdef Z7_LARGE_PAGES
#ifdef MEM_LARGE_PAGES
#define MY__MEM_LARGE_PAGES MEM_LARGE_PAGES
#else
#define MY__MEM_LARGE_PAGES 0x20000000
#endif
extern
SIZE_T g_LargePageSize;
SIZE_T g_LargePageSize = 0;
typedef SIZE_T (WINAPI *Func_GetLargePageMinimum)(VOID);
void SetLargePageSize(void)
{
#ifdef Z7_LARGE_PAGES
SIZE_T size;
const
Func_GetLargePageMinimum fn =
(Func_GetLargePageMinimum) MY_CAST_FUNC GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")),
"GetLargePageMinimum");
if (!fn)
return;
size = fn();
if (size == 0 || (size & (size - 1)) != 0)
return;
g_LargePageSize = size;
#endif
}
#endif // Z7_LARGE_PAGES
void *BigAlloc(size_t size)
{
if (size == 0)
return NULL;
PRINT_ALLOC("Alloc-Big", g_allocCountBig, size, NULL)
#ifdef Z7_LARGE_PAGES
{
SIZE_T ps = g_LargePageSize;
if (ps != 0 && ps <= (1 << 30) && size > (ps / 2))
{
size_t size2;
ps--;
size2 = (size + ps) & ~ps;
if (size2 >= size)
{
void *p = VirtualAlloc(NULL, size2, MEM_COMMIT | MY__MEM_LARGE_PAGES, PAGE_READWRITE);
if (p)
{
PRINT_ALLOC("Alloc-BM ", g_allocCountMid, size2, p)
return p;
}
}
}
}
#endif
return MidAlloc(size);
}
void BigFree(void *address)
{
PRINT_FREE("Free-Big", g_allocCountBig, address)
MidFree(address);
}
#endif // _WIN32
static void *SzAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return MyAlloc(size); }
static void SzFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) MyFree(address); }
const ISzAlloc g_Alloc = { SzAlloc, SzFree };
#ifdef _WIN32
static void *SzMidAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return MidAlloc(size); }
static void SzMidFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) MidFree(address); }
static void *SzBigAlloc(ISzAllocPtr p, size_t size) { UNUSED_VAR(p) return BigAlloc(size); }
static void SzBigFree(ISzAllocPtr p, void *address) { UNUSED_VAR(p) BigFree(address); }
const ISzAlloc g_MidAlloc = { SzMidAlloc, SzMidFree };
const ISzAlloc g_BigAlloc = { SzBigAlloc, SzBigFree };
#endif
/*
uintptr_t : <stdint.h> C99 (optional)
: unsupported in VS6
*/
#ifdef _WIN32
typedef UINT_PTR UIntPtr;
#else
/*
typedef uintptr_t UIntPtr;
*/
typedef ptrdiff_t UIntPtr;
#endif
#define ADJUST_ALLOC_SIZE 0
/*
#define ADJUST_ALLOC_SIZE (sizeof(void *) - 1)
*/
/*
Use (ADJUST_ALLOC_SIZE = (sizeof(void *) - 1)), if
MyAlloc() can return address that is NOT multiple of sizeof(void *).
*/
/*
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((char *)(p) - ((size_t)(UIntPtr)(p) & ((align) - 1))))
*/
#define MY_ALIGN_PTR_DOWN(p, align) ((void *)((((UIntPtr)(p)) & ~((UIntPtr)(align) - 1))))
#if !defined(_WIN32) && defined(_POSIX_C_SOURCE) && (_POSIX_C_SOURCE >= 200112L)
#define USE_posix_memalign
#endif
#ifndef USE_posix_memalign
#define MY_ALIGN_PTR_UP_PLUS(p, align) MY_ALIGN_PTR_DOWN(((char *)(p) + (align) + ADJUST_ALLOC_SIZE), align)
#endif
/*
This posix_memalign() is for test purposes only.
We also need special Free() function instead of free(),
if this posix_memalign() is used.
*/
/*
static int posix_memalign(void **ptr, size_t align, size_t size)
{
size_t newSize = size + align;
void *p;
void *pAligned;
*ptr = NULL;
if (newSize < size)
return 12; // ENOMEM
p = MyAlloc(newSize);
if (!p)
return 12; // ENOMEM
pAligned = MY_ALIGN_PTR_UP_PLUS(p, align);
((void **)pAligned)[-1] = p;
*ptr = pAligned;
return 0;
}
*/
/*
ALLOC_ALIGN_SIZE >= sizeof(void *)
ALLOC_ALIGN_SIZE >= cache_line_size
*/
#define ALLOC_ALIGN_SIZE ((size_t)1 << 7)
static void *SzAlignedAlloc(ISzAllocPtr pp, size_t size)
{
#ifndef USE_posix_memalign
void *p;
void *pAligned;
size_t newSize;
UNUSED_VAR(pp)
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
newSize = size + ALLOC_ALIGN_SIZE * 1 + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
p = MyAlloc(newSize);
if (!p)
return NULL;
pAligned = MY_ALIGN_PTR_UP_PLUS(p, ALLOC_ALIGN_SIZE);
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(p);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
((void **)pAligned)[-1] = p;
return pAligned;
#else
void *p;
UNUSED_VAR(pp)
if (posix_memalign(&p, ALLOC_ALIGN_SIZE, size))
return NULL;
Print(" posix_memalign="); PrintAddr(p);
PrintLn();
return p;
#endif
}
static void SzAlignedFree(ISzAllocPtr pp, void *address)
{
UNUSED_VAR(pp)
#ifndef USE_posix_memalign
if (address)
MyFree(((void **)address)[-1]);
#else
free(address);
#endif
}
const ISzAlloc g_AlignedAlloc = { SzAlignedAlloc, SzAlignedFree };
#define MY_ALIGN_PTR_DOWN_1(p) MY_ALIGN_PTR_DOWN(p, sizeof(void *))
/* we align ptr to support cases where CAlignOffsetAlloc::offset is not multiply of sizeof(void *) */
#define REAL_BLOCK_PTR_VAR(p) ((void **)MY_ALIGN_PTR_DOWN_1(p))[-1]
/*
#define REAL_BLOCK_PTR_VAR(p) ((void **)(p))[-1]
*/
static void *AlignOffsetAlloc_Alloc(ISzAllocPtr pp, size_t size)
{
const CAlignOffsetAlloc *p = Z7_CONTAINER_FROM_VTBL_CONST(pp, CAlignOffsetAlloc, vt);
void *adr;
void *pAligned;
size_t newSize;
size_t extra;
size_t alignSize = (size_t)1 << p->numAlignBits;
if (alignSize < sizeof(void *))
alignSize = sizeof(void *);
if (p->offset >= alignSize)
return NULL;
/* also we can allocate additional dummy ALLOC_ALIGN_SIZE bytes after aligned
block to prevent cache line sharing with another allocated blocks */
extra = p->offset & (sizeof(void *) - 1);
newSize = size + alignSize + extra + ADJUST_ALLOC_SIZE;
if (newSize < size)
return NULL;
adr = ISzAlloc_Alloc(p->baseAlloc, newSize);
if (!adr)
return NULL;
pAligned = (char *)MY_ALIGN_PTR_DOWN((char *)adr +
alignSize - p->offset + extra + ADJUST_ALLOC_SIZE, alignSize) + p->offset;
PrintLn();
Print("- Aligned: ");
Print(" size="); PrintHex(size, 8);
Print(" a_size="); PrintHex(newSize, 8);
Print(" ptr="); PrintAddr(adr);
Print(" a_ptr="); PrintAddr(pAligned);
PrintLn();
REAL_BLOCK_PTR_VAR(pAligned) = adr;
return pAligned;
}
static void AlignOffsetAlloc_Free(ISzAllocPtr pp, void *address)
{
if (address)
{
const CAlignOffsetAlloc *p = Z7_CONTAINER_FROM_VTBL_CONST(pp, CAlignOffsetAlloc, vt);
PrintLn();
Print("- Aligned Free: ");
PrintLn();
ISzAlloc_Free(p->baseAlloc, REAL_BLOCK_PTR_VAR(address));
}
}
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p)
{
p->vt.Alloc = AlignOffsetAlloc_Alloc;
p->vt.Free = AlignOffsetAlloc_Free;
}

View File

@ -1,71 +0,0 @@
/* Alloc.h -- Memory allocation functions
2023-03-04 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_ALLOC_H
#define ZIP7_INC_ALLOC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MyFree(NULL) : is allowed, as free(NULL)
MyAlloc(0) : returns NULL : but malloc(0) is allowed to return NULL or non_NULL
MyRealloc(NULL, 0) : returns NULL : but realloc(NULL, 0) is allowed to return NULL or non_NULL
MyRealloc() is similar to realloc() for the following cases:
MyRealloc(non_NULL, 0) : returns NULL and always calls MyFree(ptr)
MyRealloc(NULL, non_ZERO) : returns NULL, if allocation failed
MyRealloc(non_NULL, non_ZERO) : returns NULL, if reallocation failed
*/
void *MyAlloc(size_t size);
void MyFree(void *address);
void *MyRealloc(void *address, size_t size);
#ifdef _WIN32
#ifdef Z7_LARGE_PAGES
void SetLargePageSize(void);
#endif
void *MidAlloc(size_t size);
void MidFree(void *address);
void *BigAlloc(size_t size);
void BigFree(void *address);
#else
#define MidAlloc(size) MyAlloc(size)
#define MidFree(address) MyFree(address)
#define BigAlloc(size) MyAlloc(size)
#define BigFree(address) MyFree(address)
#endif
extern const ISzAlloc g_Alloc;
#ifdef _WIN32
extern const ISzAlloc g_BigAlloc;
extern const ISzAlloc g_MidAlloc;
#else
#define g_BigAlloc g_AlignedAlloc
#define g_MidAlloc g_AlignedAlloc
#endif
extern const ISzAlloc g_AlignedAlloc;
typedef struct
{
ISzAlloc vt;
ISzAllocPtr baseAlloc;
unsigned numAlignBits; /* ((1 << numAlignBits) >= sizeof(void *)) */
size_t offset; /* (offset == (k * sizeof(void *)) && offset < (1 << numAlignBits) */
} CAlignOffsetAlloc;
void AlignOffsetAlloc_CreateVTable(CAlignOffsetAlloc *p);
EXTERN_C_END
#endif

290
3rdparty/7z/src/Bcj2.c vendored
View File

@ -1,290 +0,0 @@
/* Bcj2.c -- BCJ2 Decoder (Converter for x86 code)
2023-03-01 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bcj2.h"
#include "CpuArch.h"
#define kTopValue ((UInt32)1 << 24)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
// UInt32 bcj2_stats[256 + 2][2];
void Bcj2Dec_Init(CBcj2Dec *p)
{
unsigned i;
p->state = BCJ2_STREAM_RC; // BCJ2_DEC_STATE_OK;
p->ip = 0;
p->temp = 0;
p->range = 0;
p->code = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
SRes Bcj2Dec_Decode(CBcj2Dec *p)
{
UInt32 v = p->temp;
// const Byte *src;
if (p->range <= 5)
{
UInt32 code = p->code;
p->state = BCJ2_DEC_STATE_ERROR; /* for case if we return SZ_ERROR_DATA; */
for (; p->range != 5; p->range++)
{
if (p->range == 1 && code != 0)
return SZ_ERROR_DATA;
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
return SZ_OK;
}
code = (code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
p->code = code;
}
if (code == 0xffffffff)
return SZ_ERROR_DATA;
p->range = 0xffffffff;
}
// else
{
unsigned state = p->state;
// we check BCJ2_IS_32BIT_STREAM() here instead of check in the main loop
if (BCJ2_IS_32BIT_STREAM(state))
{
const Byte *cur = p->bufs[state];
if (cur == p->lims[state])
return SZ_OK;
p->bufs[state] = cur + 4;
{
const UInt32 ip = p->ip + 4;
v = GetBe32a(cur) - ip;
p->ip = ip;
}
state = BCJ2_DEC_STATE_ORIG_0;
}
if ((unsigned)(state - BCJ2_DEC_STATE_ORIG_0) < 4)
{
Byte *dest = p->dest;
for (;;)
{
if (dest == p->destLim)
{
p->state = state;
p->temp = v;
return SZ_OK;
}
*dest++ = (Byte)v;
p->dest = dest;
if (++state == BCJ2_DEC_STATE_ORIG_3 + 1)
break;
v >>= 8;
}
}
}
// src = p->bufs[BCJ2_STREAM_MAIN];
for (;;)
{
/*
if (BCJ2_IS_32BIT_STREAM(p->state))
p->state = BCJ2_DEC_STATE_OK;
else
*/
{
if (p->range < kTopValue)
{
if (p->bufs[BCJ2_STREAM_RC] == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
p->temp = v;
return SZ_OK;
}
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
{
const Byte *src = p->bufs[BCJ2_STREAM_MAIN];
const Byte *srcLim;
Byte *dest = p->dest;
{
const SizeT rem = (SizeT)(p->lims[BCJ2_STREAM_MAIN] - src);
SizeT num = (SizeT)(p->destLim - dest);
if (num >= rem)
num = rem;
#define NUM_ITERS 4
#if (NUM_ITERS & (NUM_ITERS - 1)) == 0
num &= ~((SizeT)NUM_ITERS - 1); // if (NUM_ITERS == (1 << x))
#else
num -= num % NUM_ITERS; // if (NUM_ITERS != (1 << x))
#endif
srcLim = src + num;
}
#define NUM_SHIFT_BITS 24
#define ONE_ITER(indx) { \
const unsigned b = src[indx]; \
*dest++ = (Byte)b; \
v = (v << NUM_SHIFT_BITS) | b; \
if (((b + (0x100 - 0xe8)) & 0xfe) == 0) break; \
if (((v - (((UInt32)0x0f << (NUM_SHIFT_BITS)) + 0x80)) & \
((((UInt32)1 << (4 + NUM_SHIFT_BITS)) - 0x1) << 4)) == 0) break; \
/* ++dest */; /* v = b; */ }
if (src != srcLim)
for (;;)
{
/* The dependency chain of 2-cycle for (v) calculation is not big problem here.
But we can remove dependency chain with v = b in the end of loop. */
ONE_ITER(0)
#if (NUM_ITERS > 1)
ONE_ITER(1)
#if (NUM_ITERS > 2)
ONE_ITER(2)
#if (NUM_ITERS > 3)
ONE_ITER(3)
#if (NUM_ITERS > 4)
ONE_ITER(4)
#if (NUM_ITERS > 5)
ONE_ITER(5)
#if (NUM_ITERS > 6)
ONE_ITER(6)
#if (NUM_ITERS > 7)
ONE_ITER(7)
#endif
#endif
#endif
#endif
#endif
#endif
#endif
src += NUM_ITERS;
if (src == srcLim)
break;
}
if (src == srcLim)
#if (NUM_ITERS > 1)
for (;;)
#endif
{
#if (NUM_ITERS > 1)
if (src == p->lims[BCJ2_STREAM_MAIN] || dest == p->destLim)
#endif
{
const SizeT num = (SizeT)(src - p->bufs[BCJ2_STREAM_MAIN]);
p->bufs[BCJ2_STREAM_MAIN] = src;
p->dest = dest;
p->ip += (UInt32)num;
/* state BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
p->state =
src == p->lims[BCJ2_STREAM_MAIN] ?
(unsigned)BCJ2_STREAM_MAIN :
(unsigned)BCJ2_DEC_STATE_ORIG;
p->temp = v;
return SZ_OK;
}
#if (NUM_ITERS > 1)
ONE_ITER(0)
src++;
#endif
}
{
const SizeT num = (SizeT)(dest - p->dest);
p->dest = dest; // p->dest += num;
p->bufs[BCJ2_STREAM_MAIN] += num; // = src;
p->ip += (UInt32)num;
}
{
UInt32 bound, ttt;
CBcj2Prob *prob; // unsigned index;
/*
prob = p->probs + (unsigned)((Byte)v == 0xe8 ?
2 + (Byte)(v >> 8) :
((v >> 5) & 1)); // ((Byte)v < 0xe8 ? 0 : 1));
*/
{
const unsigned c = ((v + 0x17) >> 6) & 1;
prob = p->probs + (unsigned)
(((0 - c) & (Byte)(v >> NUM_SHIFT_BITS)) + c + ((v >> 5) & 1));
// (Byte)
// 8x->0 : e9->1 : xxe8->xx+2
// 8x->0x100 : e9->0x101 : xxe8->xx
// (((0x100 - (e & ~v)) & (0x100 | (v >> 8))) + (e & v));
// (((0x101 + (~e | v)) & (0x100 | (v >> 8))) + (e & v));
}
ttt = *prob;
bound = (p->range >> kNumBitModelTotalBits) * ttt;
if (p->code < bound)
{
// bcj2_stats[prob - p->probs][0]++;
p->range = bound;
*prob = (CBcj2Prob)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
continue;
}
{
// bcj2_stats[prob - p->probs][1]++;
p->range -= bound;
p->code -= bound;
*prob = (CBcj2Prob)(ttt - (ttt >> kNumMoveBits));
}
}
}
}
{
/* (v == 0xe8 ? 0 : 1) uses setcc instruction with additional zero register usage in x64 MSVC. */
// const unsigned cj = ((Byte)v == 0xe8) ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP;
const unsigned cj = (((v + 0x57) >> 6) & 1) + BCJ2_STREAM_CALL;
const Byte *cur = p->bufs[cj];
Byte *dest;
SizeT rem;
if (cur == p->lims[cj])
{
p->state = cj;
break;
}
v = GetBe32a(cur);
p->bufs[cj] = cur + 4;
{
const UInt32 ip = p->ip + 4;
v -= ip;
p->ip = ip;
}
dest = p->dest;
rem = (SizeT)(p->destLim - dest);
if (rem < 4)
{
if ((unsigned)rem > 0) { dest[0] = (Byte)v; v >>= 8;
if ((unsigned)rem > 1) { dest[1] = (Byte)v; v >>= 8;
if ((unsigned)rem > 2) { dest[2] = (Byte)v; v >>= 8; }}}
p->temp = v;
p->dest = dest + rem;
p->state = BCJ2_DEC_STATE_ORIG_0 + (unsigned)rem;
break;
}
SetUi32(dest, v)
v >>= 24;
p->dest = dest + 4;
}
}
if (p->range < kTopValue && p->bufs[BCJ2_STREAM_RC] != p->lims[BCJ2_STREAM_RC])
{
p->range <<= 8;
p->code = (p->code << 8) | *(p->bufs[BCJ2_STREAM_RC])++;
}
return SZ_OK;
}
#undef NUM_ITERS
#undef ONE_ITER
#undef NUM_SHIFT_BITS
#undef kTopValue
#undef kNumBitModelTotalBits
#undef kBitModelTotal
#undef kNumMoveBits

332
3rdparty/7z/src/Bcj2.h vendored
View File

@ -1,332 +0,0 @@
/* Bcj2.h -- BCJ2 converter for x86 code (Branch CALL/JUMP variant2)
2023-03-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_BCJ2_H
#define ZIP7_INC_BCJ2_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define BCJ2_NUM_STREAMS 4
enum
{
BCJ2_STREAM_MAIN,
BCJ2_STREAM_CALL,
BCJ2_STREAM_JUMP,
BCJ2_STREAM_RC
};
enum
{
BCJ2_DEC_STATE_ORIG_0 = BCJ2_NUM_STREAMS,
BCJ2_DEC_STATE_ORIG_1,
BCJ2_DEC_STATE_ORIG_2,
BCJ2_DEC_STATE_ORIG_3,
BCJ2_DEC_STATE_ORIG,
BCJ2_DEC_STATE_ERROR /* after detected data error */
};
enum
{
BCJ2_ENC_STATE_ORIG = BCJ2_NUM_STREAMS,
BCJ2_ENC_STATE_FINISHED /* it's state after fully encoded stream */
};
/* #define BCJ2_IS_32BIT_STREAM(s) ((s) == BCJ2_STREAM_CALL || (s) == BCJ2_STREAM_JUMP) */
#define BCJ2_IS_32BIT_STREAM(s) ((unsigned)((unsigned)(s) - (unsigned)BCJ2_STREAM_CALL) < 2)
/*
CBcj2Dec / CBcj2Enc
bufs sizes:
BUF_SIZE(n) = lims[n] - bufs[n]
bufs sizes for BCJ2_STREAM_CALL and BCJ2_STREAM_JUMP must be multiply of 4:
(BUF_SIZE(BCJ2_STREAM_CALL) & 3) == 0
(BUF_SIZE(BCJ2_STREAM_JUMP) & 3) == 0
*/
// typedef UInt32 CBcj2Prob;
typedef UInt16 CBcj2Prob;
/*
BCJ2 encoder / decoder internal requirements:
- If last bytes of stream contain marker (e8/e8/0f8x), then
there is also encoded symbol (0 : no conversion) in RC stream.
- One case of overlapped instructions is supported,
if last byte of converted instruction is (0f) and next byte is (8x):
marker [xx xx xx 0f] 8x
then the pair (0f 8x) is treated as marker.
*/
/* ---------- BCJ2 Decoder ---------- */
/*
CBcj2Dec:
(dest) is allowed to overlap with bufs[BCJ2_STREAM_MAIN], with the following conditions:
bufs[BCJ2_STREAM_MAIN] >= dest &&
bufs[BCJ2_STREAM_MAIN] - dest >=
BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP)
reserve = bufs[BCJ2_STREAM_MAIN] - dest -
( BUF_SIZE(BCJ2_STREAM_CALL) +
BUF_SIZE(BCJ2_STREAM_JUMP) )
and additional conditions:
if (it's first call of Bcj2Dec_Decode() after Bcj2Dec_Init())
{
(reserve != 1) : if (ver < v23.00)
}
else // if there are more than one calls of Bcj2Dec_Decode() after Bcj2Dec_Init())
{
(reserve >= 6) : if (ver < v23.00)
(reserve >= 4) : if (ver >= v23.00)
We need that (reserve) because after first call of Bcj2Dec_Decode(),
CBcj2Dec::temp can contain up to 4 bytes for writing to (dest).
}
(reserve == 0) is allowed, if we decode full stream via single call of Bcj2Dec_Decode().
(reserve == 0) also is allowed in case of multi-call, if we use fixed buffers,
and (reserve) is calculated from full (final) sizes of all streams before first call.
*/
typedef struct
{
const Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
Byte *dest;
const Byte *destLim;
unsigned state; /* BCJ2_STREAM_MAIN has more priority than BCJ2_STATE_ORIG */
UInt32 ip; /* property of starting base for decoding */
UInt32 temp; /* Byte temp[4]; */
UInt32 range;
UInt32 code;
CBcj2Prob probs[2 + 256];
} CBcj2Dec;
/* Note:
Bcj2Dec_Init() sets (CBcj2Dec::ip = 0)
if (ip != 0) property is required, the caller must set CBcj2Dec::ip after Bcj2Dec_Init()
*/
void Bcj2Dec_Init(CBcj2Dec *p);
/* Bcj2Dec_Decode():
returns:
SZ_OK
SZ_ERROR_DATA : if data in 5 starting bytes of BCJ2_STREAM_RC stream are not correct
*/
SRes Bcj2Dec_Decode(CBcj2Dec *p);
/* To check that decoding was finished you can compare
sizes of processed streams with sizes known from another sources.
You must do at least one mandatory check from the two following options:
- the check for size of processed output (ORIG) stream.
- the check for size of processed input (MAIN) stream.
additional optional checks:
- the checks for processed sizes of all input streams (MAIN, CALL, JUMP, RC)
- the checks Bcj2Dec_IsMaybeFinished*()
also before actual decoding you can check that the
following condition is met for stream sizes:
( size(ORIG) == size(MAIN) + size(CALL) + size(JUMP) )
*/
/* (state == BCJ2_STREAM_MAIN) means that decoder is ready for
additional input data in BCJ2_STREAM_MAIN stream.
Note that (state == BCJ2_STREAM_MAIN) is allowed for non-finished decoding.
*/
#define Bcj2Dec_IsMaybeFinished_state_MAIN(_p_) ((_p_)->state == BCJ2_STREAM_MAIN)
/* if the stream decoding was finished correctly, then range decoder
part of CBcj2Dec also was finished, and then (CBcj2Dec::code == 0).
Note that (CBcj2Dec::code == 0) is allowed for non-finished decoding.
*/
#define Bcj2Dec_IsMaybeFinished_code(_p_) ((_p_)->code == 0)
/* use Bcj2Dec_IsMaybeFinished() only as additional check
after at least one mandatory check from the two following options:
- the check for size of processed output (ORIG) stream.
- the check for size of processed input (MAIN) stream.
*/
#define Bcj2Dec_IsMaybeFinished(_p_) ( \
Bcj2Dec_IsMaybeFinished_state_MAIN(_p_) && \
Bcj2Dec_IsMaybeFinished_code(_p_))
/* ---------- BCJ2 Encoder ---------- */
typedef enum
{
BCJ2_ENC_FINISH_MODE_CONTINUE,
BCJ2_ENC_FINISH_MODE_END_BLOCK,
BCJ2_ENC_FINISH_MODE_END_STREAM
} EBcj2Enc_FinishMode;
/*
BCJ2_ENC_FINISH_MODE_CONTINUE:
process non finished encoding.
It notifies the encoder that additional further calls
can provide more input data (src) than provided by current call.
In that case the CBcj2Enc encoder still can move (src) pointer
up to (srcLim), but CBcj2Enc encoder can store some of the last
processed bytes (up to 4 bytes) from src to internal CBcj2Enc::temp[] buffer.
at return:
(CBcj2Enc::src will point to position that includes
processed data and data copied to (temp[]) buffer)
That data from (temp[]) buffer will be used in further calls.
BCJ2_ENC_FINISH_MODE_END_BLOCK:
finish encoding of current block (ended at srcLim) without RC flushing.
at return: if (CBcj2Enc::state == BCJ2_ENC_STATE_ORIG) &&
CBcj2Enc::src == CBcj2Enc::srcLim)
: it shows that block encoding was finished. And the encoder is
ready for new (src) data or for stream finish operation.
finished block means
{
CBcj2Enc has completed block encoding up to (srcLim).
(1 + 4 bytes) or (2 + 4 bytes) CALL/JUMP cortages will
not cross block boundary at (srcLim).
temporary CBcj2Enc buffer for (ORIG) src data is empty.
3 output uncompressed streams (MAIN, CALL, JUMP) were flushed.
RC stream was not flushed. And RC stream will cross block boundary.
}
Note: some possible implementation of BCJ2 encoder could
write branch marker (e8/e8/0f8x) in one call of Bcj2Enc_Encode(),
and it could calculate symbol for RC in another call of Bcj2Enc_Encode().
BCJ2 encoder uses ip/fileIp/fileSize/relatLimit values to calculate RC symbol.
And these CBcj2Enc variables can have different values in different Bcj2Enc_Encode() calls.
So caller must finish each block with BCJ2_ENC_FINISH_MODE_END_BLOCK
to ensure that RC symbol is calculated and written in proper block.
BCJ2_ENC_FINISH_MODE_END_STREAM
finish encoding of stream (ended at srcLim) fully including RC flushing.
at return: if (CBcj2Enc::state == BCJ2_ENC_STATE_FINISHED)
: it shows that stream encoding was finished fully,
and all output streams were flushed fully.
also Bcj2Enc_IsFinished() can be called.
*/
/*
32-bit relative offset in JUMP/CALL commands is
- (mod 4 GiB) for 32-bit x86 code
- signed Int32 for 64-bit x86-64 code
BCJ2 encoder also does internal relative to absolute address conversions.
And there are 2 possible ways to do it:
before v23: we used 32-bit variables and (mod 4 GiB) conversion
since v23: we use 64-bit variables and (signed Int32 offset) conversion.
The absolute address condition for conversion in v23:
((UInt64)((Int64)ip64 - (Int64)fileIp64 + 5 + (Int32)offset) < (UInt64)fileSize64)
note that if (fileSize64 > 2 GiB). there is difference between
old (mod 4 GiB) way (v22) and new (signed Int32 offset) way (v23).
And new (v23) way is more suitable to encode 64-bit x86-64 code for (fileSize64 > 2 GiB) cases.
*/
/*
// for old (v22) way for conversion:
typedef UInt32 CBcj2Enc_ip_unsigned;
typedef Int32 CBcj2Enc_ip_signed;
#define BCJ2_ENC_FileSize_MAX ((UInt32)1 << 31)
*/
typedef UInt64 CBcj2Enc_ip_unsigned;
typedef Int64 CBcj2Enc_ip_signed;
/* maximum size of file that can be used for conversion condition */
#define BCJ2_ENC_FileSize_MAX ((CBcj2Enc_ip_unsigned)0 - 2)
/* default value of fileSize64_minus1 variable that means
that absolute address limitation will not be used */
#define BCJ2_ENC_FileSizeField_UNLIMITED ((CBcj2Enc_ip_unsigned)0 - 1)
/* calculate value that later can be set to CBcj2Enc::fileSize64_minus1 */
#define BCJ2_ENC_GET_FileSizeField_VAL_FROM_FileSize(fileSize) \
((CBcj2Enc_ip_unsigned)(fileSize) - 1)
/* set CBcj2Enc::fileSize64_minus1 variable from size of file */
#define Bcj2Enc_SET_FileSize(p, fileSize) \
(p)->fileSize64_minus1 = BCJ2_ENC_GET_FileSizeField_VAL_FROM_FileSize(fileSize);
typedef struct
{
Byte *bufs[BCJ2_NUM_STREAMS];
const Byte *lims[BCJ2_NUM_STREAMS];
const Byte *src;
const Byte *srcLim;
unsigned state;
EBcj2Enc_FinishMode finishMode;
Byte context;
Byte flushRem;
Byte isFlushState;
Byte cache;
UInt32 range;
UInt64 low;
UInt64 cacheSize;
// UInt32 context; // for marker version, it can include marker flag.
/* (ip64) and (fileIp64) correspond to virtual source stream position
that doesn't include data in temp[] */
CBcj2Enc_ip_unsigned ip64; /* current (ip) position */
CBcj2Enc_ip_unsigned fileIp64; /* start (ip) position of current file */
CBcj2Enc_ip_unsigned fileSize64_minus1; /* size of current file (for conversion limitation) */
UInt32 relatLimit; /* (relatLimit <= ((UInt32)1 << 31)) : 0 means disable_conversion */
// UInt32 relatExcludeBits;
UInt32 tempTarget;
unsigned tempPos; /* the number of bytes that were copied to temp[] buffer
(tempPos <= 4) outside of Bcj2Enc_Encode() */
// Byte temp[4]; // for marker version
Byte temp[8];
CBcj2Prob probs[2 + 256];
} CBcj2Enc;
void Bcj2Enc_Init(CBcj2Enc *p);
/*
Bcj2Enc_Encode(): at exit:
p->State < BCJ2_NUM_STREAMS : we need more buffer space for output stream
(bufs[p->State] == lims[p->State])
p->State == BCJ2_ENC_STATE_ORIG : we need more data in input src stream
(src == srcLim)
p->State == BCJ2_ENC_STATE_FINISHED : after fully encoded stream
*/
void Bcj2Enc_Encode(CBcj2Enc *p);
/* Bcj2Enc encoder can look ahead for up 4 bytes of source stream.
CBcj2Enc::tempPos : is the number of bytes that were copied from input stream to temp[] buffer.
(CBcj2Enc::src) after Bcj2Enc_Encode() is starting position after
fully processed data and after data copied to temp buffer.
So if the caller needs to get real number of fully processed input
bytes (without look ahead data in temp buffer),
the caller must subtruct (CBcj2Enc::tempPos) value from processed size
value that is calculated based on current (CBcj2Enc::src):
cur_processed_pos = Calc_Big_Processed_Pos(enc.src)) -
Bcj2Enc_Get_AvailInputSize_in_Temp(&enc);
*/
/* get the size of input data that was stored in temp[] buffer: */
#define Bcj2Enc_Get_AvailInputSize_in_Temp(p) ((p)->tempPos)
#define Bcj2Enc_IsFinished(p) ((p)->flushRem == 0)
/* Note : the decoder supports overlapping of marker (0f 80).
But we can eliminate such overlapping cases by setting
the limit for relative offset conversion as
CBcj2Enc::relatLimit <= (0x0f << 24) == (240 MiB)
*/
/* default value for CBcj2Enc::relatLimit */
#define BCJ2_ENC_RELAT_LIMIT_DEFAULT ((UInt32)0x0f << 24)
#define BCJ2_ENC_RELAT_LIMIT_MAX ((UInt32)1 << 31)
// #define BCJ2_RELAT_EXCLUDE_NUM_BITS 5
EXTERN_C_END
#endif

View File

@ -1,506 +0,0 @@
/* Bcj2Enc.c -- BCJ2 Encoder converter for x86 code (Branch CALL/JUMP variant2)
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
/* #define SHOW_STAT */
#ifdef SHOW_STAT
#include <stdio.h>
#define PRF2(s) printf("%s ip=%8x tempPos=%d src= %8x\n", s, (unsigned)p->ip64, p->tempPos, (unsigned)(p->srcLim - p->src));
#else
#define PRF2(s)
#endif
#include "Bcj2.h"
#include "CpuArch.h"
#define kTopValue ((UInt32)1 << 24)
#define kNumBitModelTotalBits 11
#define kBitModelTotal (1 << kNumBitModelTotalBits)
#define kNumMoveBits 5
void Bcj2Enc_Init(CBcj2Enc *p)
{
unsigned i;
p->state = BCJ2_ENC_STATE_ORIG;
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
p->context = 0;
p->flushRem = 5;
p->isFlushState = 0;
p->cache = 0;
p->range = 0xffffffff;
p->low = 0;
p->cacheSize = 1;
p->ip64 = 0;
p->fileIp64 = 0;
p->fileSize64_minus1 = BCJ2_ENC_FileSizeField_UNLIMITED;
p->relatLimit = BCJ2_ENC_RELAT_LIMIT_DEFAULT;
// p->relatExcludeBits = 0;
p->tempPos = 0;
for (i = 0; i < sizeof(p->probs) / sizeof(p->probs[0]); i++)
p->probs[i] = kBitModelTotal >> 1;
}
// Z7_NO_INLINE
Z7_FORCE_INLINE
static BoolInt Bcj2_RangeEnc_ShiftLow(CBcj2Enc *p)
{
const UInt32 low = (UInt32)p->low;
const unsigned high = (unsigned)
#if defined(Z7_MSC_VER_ORIGINAL) \
&& defined(MY_CPU_X86) \
&& defined(MY_CPU_LE) \
&& !defined(MY_CPU_64BIT)
// we try to rid of __aullshr() call in MSVS-x86
(((const UInt32 *)&p->low)[1]); // [1] : for little-endian only
#else
(p->low >> 32);
#endif
if (low < (UInt32)0xff000000 || high != 0)
{
Byte *buf = p->bufs[BCJ2_STREAM_RC];
do
{
if (buf == p->lims[BCJ2_STREAM_RC])
{
p->state = BCJ2_STREAM_RC;
p->bufs[BCJ2_STREAM_RC] = buf;
return True;
}
*buf++ = (Byte)(p->cache + high);
p->cache = 0xff;
}
while (--p->cacheSize);
p->bufs[BCJ2_STREAM_RC] = buf;
p->cache = (Byte)(low >> 24);
}
p->cacheSize++;
p->low = low << 8;
return False;
}
/*
We can use 2 alternative versions of code:
1) non-marker version:
Byte CBcj2Enc::context
Byte temp[8];
Last byte of marker (e8/e9/[0f]8x) can be written to temp[] buffer.
Encoder writes last byte of marker (e8/e9/[0f]8x) to dest, only in conjunction
with writing branch symbol to range coder in same Bcj2Enc_Encode_2() call.
2) marker version:
UInt32 CBcj2Enc::context
Byte CBcj2Enc::temp[4];
MARKER_FLAG in CBcj2Enc::context shows that CBcj2Enc::context contains finded marker.
it's allowed that
one call of Bcj2Enc_Encode_2() writes last byte of marker (e8/e9/[0f]8x) to dest,
and another call of Bcj2Enc_Encode_2() does offset conversion.
So different values of (fileIp) and (fileSize) are possible
in these different Bcj2Enc_Encode_2() calls.
Also marker version requires additional if((v & MARKER_FLAG) == 0) check in main loop.
So we use non-marker version.
*/
/*
Corner cases with overlap in multi-block.
before v23: there was one corner case, where converted instruction
could start in one sub-stream and finish in next sub-stream.
If multi-block (solid) encoding is used,
and BCJ2_ENC_FINISH_MODE_END_BLOCK is used for each sub-stream.
and (0f) is last byte of previous sub-stream
and (8x) is first byte of current sub-stream
then (0f 8x) pair is treated as marker by BCJ2 encoder and decoder.
BCJ2 encoder can converts 32-bit offset for that (0f 8x) cortage,
if that offset meets limit requirements.
If encoder allows 32-bit offset conversion for such overlap case,
then the data in 3 uncompressed BCJ2 streams for some sub-stream
can depend from data of previous sub-stream.
That corner case is not big problem, and it's rare case.
Since v23.00 we do additional check to prevent conversions in such overlap cases.
*/
/*
Bcj2Enc_Encode_2() output variables at exit:
{
if (Bcj2Enc_Encode_2() exits with (p->state == BCJ2_ENC_STATE_ORIG))
{
it means that encoder needs more input data.
if (p->srcLim == p->src) at exit, then
{
(p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
all input data were read and processed, and we are ready for
new input data.
}
else
{
(p->srcLim != p->src)
(p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
The encoder have found e8/e9/0f_8x marker,
and p->src points to last byte of that marker,
Bcj2Enc_Encode_2() needs more input data to get totally
5 bytes (last byte of marker and 32-bit branch offset)
as continuous array starting from p->src.
(p->srcLim - p->src < 5) requirement is met after exit.
So non-processed resedue from p->src to p->srcLim is always less than 5 bytes.
}
}
}
*/
Z7_NO_INLINE
static void Bcj2Enc_Encode_2(CBcj2Enc *p)
{
if (!p->isFlushState)
{
const Byte *src;
UInt32 v;
{
const unsigned state = p->state;
if (BCJ2_IS_32BIT_STREAM(state))
{
Byte *cur = p->bufs[state];
if (cur == p->lims[state])
return;
SetBe32a(cur, p->tempTarget)
p->bufs[state] = cur + 4;
}
}
p->state = BCJ2_ENC_STATE_ORIG; // for main reason of exit
src = p->src;
v = p->context;
// #define WRITE_CONTEXT p->context = v; // for marker version
#define WRITE_CONTEXT p->context = (Byte)v;
#define WRITE_CONTEXT_AND_SRC p->src = src; WRITE_CONTEXT
for (;;)
{
// const Byte *src;
// UInt32 v;
CBcj2Enc_ip_unsigned ip;
if (p->range < kTopValue)
{
// to reduce register pressure and code size: we save and restore local variables.
WRITE_CONTEXT_AND_SRC
if (Bcj2_RangeEnc_ShiftLow(p))
return;
p->range <<= 8;
src = p->src;
v = p->context;
}
// src = p->src;
// #define MARKER_FLAG ((UInt32)1 << 17)
// if ((v & MARKER_FLAG) == 0) // for marker version
{
const Byte *srcLim;
Byte *dest = p->bufs[BCJ2_STREAM_MAIN];
{
const SizeT remSrc = (SizeT)(p->srcLim - src);
SizeT rem = (SizeT)(p->lims[BCJ2_STREAM_MAIN] - dest);
if (rem >= remSrc)
rem = remSrc;
srcLim = src + rem;
}
/* p->context contains context of previous byte:
bits [0 : 7] : src[-1], if (src) was changed in this call
bits [8 : 31] : are undefined for non-marker version
*/
// v = p->context;
#define NUM_SHIFT_BITS 24
#define CONV_FLAG ((UInt32)1 << 16)
#define ONE_ITER { \
b = src[0]; \
*dest++ = (Byte)b; \
v = (v << NUM_SHIFT_BITS) | b; \
if (((b + (0x100 - 0xe8)) & 0xfe) == 0) break; \
if (((v - (((UInt32)0x0f << (NUM_SHIFT_BITS)) + 0x80)) & \
((((UInt32)1 << (4 + NUM_SHIFT_BITS)) - 0x1) << 4)) == 0) break; \
src++; if (src == srcLim) { break; } }
if (src != srcLim)
for (;;)
{
/* clang can generate ineffective code with setne instead of two jcc instructions.
we can use 2 iterations and external (unsigned b) to avoid that ineffective code genaration. */
unsigned b;
ONE_ITER
ONE_ITER
}
ip = p->ip64 + (CBcj2Enc_ip_unsigned)(SizeT)(dest - p->bufs[BCJ2_STREAM_MAIN]);
p->bufs[BCJ2_STREAM_MAIN] = dest;
p->ip64 = ip;
if (src == srcLim)
{
WRITE_CONTEXT_AND_SRC
if (src != p->srcLim)
{
p->state = BCJ2_STREAM_MAIN;
return;
}
/* (p->src == p->srcLim)
(p->state == BCJ2_ENC_STATE_ORIG) */
if (p->finishMode != BCJ2_ENC_FINISH_MODE_END_STREAM)
return;
/* (p->finishMode == BCJ2_ENC_FINISH_MODE_END_STREAM */
// (p->flushRem == 5);
p->isFlushState = 1;
break;
}
src++;
// p->src = src;
}
// ip = p->ip; // for marker version
/* marker was found */
/* (v) contains marker that was found:
bits [NUM_SHIFT_BITS : NUM_SHIFT_BITS + 7]
: value of src[-2] : xx/xx/0f
bits [0 : 7] : value of src[-1] : e8/e9/8x
*/
{
{
#if NUM_SHIFT_BITS != 24
v &= ~(UInt32)CONV_FLAG;
#endif
// UInt32 relat = 0;
if ((SizeT)(p->srcLim - src) >= 4)
{
/*
if (relat != 0 || (Byte)v != 0xe8)
BoolInt isBigOffset = True;
*/
const UInt32 relat = GetUi32(src);
/*
#define EXCLUDE_FLAG ((UInt32)1 << 4)
#define NEED_CONVERT(rel) ((((rel) + EXCLUDE_FLAG) & (0 - EXCLUDE_FLAG * 2)) != 0)
if (p->relatExcludeBits != 0)
{
const UInt32 flag = (UInt32)1 << (p->relatExcludeBits - 1);
isBigOffset = (((relat + flag) & (0 - flag * 2)) != 0);
}
// isBigOffset = False; // for debug
*/
ip -= p->fileIp64;
// Use the following if check, if (ip) is 64-bit:
if (ip > (((v + 0x20) >> 5) & 1)) // 23.00 : we eliminate milti-block overlap for (Of 80) and (e8/e9)
if ((CBcj2Enc_ip_unsigned)((CBcj2Enc_ip_signed)ip + 4 + (Int32)relat) <= p->fileSize64_minus1)
if (((UInt32)(relat + p->relatLimit) >> 1) < p->relatLimit)
v |= CONV_FLAG;
}
else if (p->finishMode == BCJ2_ENC_FINISH_MODE_CONTINUE)
{
// (p->srcLim - src < 4)
// /*
// for non-marker version
p->ip64--; // p->ip = ip - 1;
p->bufs[BCJ2_STREAM_MAIN]--;
src--;
v >>= NUM_SHIFT_BITS;
// (0 < p->srcLim - p->src <= 4)
// */
// v |= MARKER_FLAG; // for marker version
/* (p->state == BCJ2_ENC_STATE_ORIG) */
WRITE_CONTEXT_AND_SRC
return;
}
{
const unsigned c = ((v + 0x17) >> 6) & 1;
CBcj2Prob *prob = p->probs + (unsigned)
(((0 - c) & (Byte)(v >> NUM_SHIFT_BITS)) + c + ((v >> 5) & 1));
/*
((Byte)v == 0xe8 ? 2 + ((Byte)(v >> 8)) :
((Byte)v < 0xe8 ? 0 : 1)); // ((v >> 5) & 1));
*/
const unsigned ttt = *prob;
const UInt32 bound = (p->range >> kNumBitModelTotalBits) * ttt;
if ((v & CONV_FLAG) == 0)
{
// static int yyy = 0; yyy++; printf("\n!needConvert = %d\n", yyy);
// v = (Byte)v; // for marker version
p->range = bound;
*prob = (CBcj2Prob)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
// WRITE_CONTEXT_AND_SRC
continue;
}
p->low += bound;
p->range -= bound;
*prob = (CBcj2Prob)(ttt - (ttt >> kNumMoveBits));
}
// p->context = src[3];
{
// const unsigned cj = ((Byte)v == 0xe8 ? BCJ2_STREAM_CALL : BCJ2_STREAM_JUMP);
const unsigned cj = (((v + 0x57) >> 6) & 1) + BCJ2_STREAM_CALL;
ip = p->ip64;
v = GetUi32(src); // relat
ip += 4;
p->ip64 = ip;
src += 4;
// p->src = src;
{
const UInt32 absol = (UInt32)ip + v;
Byte *cur = p->bufs[cj];
v >>= 24;
// WRITE_CONTEXT
if (cur == p->lims[cj])
{
p->state = cj;
p->tempTarget = absol;
WRITE_CONTEXT_AND_SRC
return;
}
SetBe32a(cur, absol)
p->bufs[cj] = cur + 4;
}
}
}
}
} // end of loop
}
for (; p->flushRem != 0; p->flushRem--)
if (Bcj2_RangeEnc_ShiftLow(p))
return;
p->state = BCJ2_ENC_STATE_FINISHED;
}
/*
BCJ2 encoder needs look ahead for up to 4 bytes in (src) buffer.
So base function Bcj2Enc_Encode_2()
in BCJ2_ENC_FINISH_MODE_CONTINUE mode can return with
(p->state == BCJ2_ENC_STATE_ORIG && p->src < p->srcLim)
Bcj2Enc_Encode() solves that look ahead problem by using p->temp[] buffer.
so if (p->state == BCJ2_ENC_STATE_ORIG) after Bcj2Enc_Encode(),
then (p->src == p->srcLim).
And the caller's code is simpler with Bcj2Enc_Encode().
*/
Z7_NO_INLINE
void Bcj2Enc_Encode(CBcj2Enc *p)
{
PRF2("\n----")
if (p->tempPos != 0)
{
/* extra: number of bytes that were copied from (src) to (temp) buffer in this call */
unsigned extra = 0;
/* We will touch only minimal required number of bytes in input (src) stream.
So we will add input bytes from (src) stream to temp[] with step of 1 byte.
We don't add new bytes to temp[] before Bcj2Enc_Encode_2() call
in first loop iteration because
- previous call of Bcj2Enc_Encode() could use another (finishMode),
- previous call could finish with (p->state != BCJ2_ENC_STATE_ORIG).
the case with full temp[] buffer (p->tempPos == 4) is possible here.
*/
for (;;)
{
// (0 < p->tempPos <= 5) // in non-marker version
/* p->src : the current src data position including extra bytes
that were copied to temp[] buffer in this call */
const Byte *src = p->src;
const Byte *srcLim = p->srcLim;
const EBcj2Enc_FinishMode finishMode = p->finishMode;
if (src != srcLim)
{
/* if there are some src data after the data copied to temp[],
then we use MODE_CONTINUE for temp data */
p->finishMode = BCJ2_ENC_FINISH_MODE_CONTINUE;
}
p->src = p->temp;
p->srcLim = p->temp + p->tempPos;
PRF2(" ")
Bcj2Enc_Encode_2(p);
{
const unsigned num = (unsigned)(p->src - p->temp);
const unsigned tempPos = p->tempPos - num;
unsigned i;
p->tempPos = tempPos;
for (i = 0; i < tempPos; i++)
p->temp[i] = p->temp[(SizeT)i + num];
// tempPos : number of bytes in temp buffer
p->src = src;
p->srcLim = srcLim;
p->finishMode = finishMode;
if (p->state != BCJ2_ENC_STATE_ORIG)
{
// (p->tempPos <= 4) // in non-marker version
/* if (the reason of exit from Bcj2Enc_Encode_2()
is not BCJ2_ENC_STATE_ORIG),
then we exit from Bcj2Enc_Encode() with same reason */
// optional code begin : we rollback (src) and tempPos, if it's possible:
if (extra >= tempPos)
extra = tempPos;
p->src = src - extra;
p->tempPos = tempPos - extra;
// optional code end : rollback of (src) and tempPos
return;
}
/* (p->tempPos <= 4)
(p->state == BCJ2_ENC_STATE_ORIG)
so encoder needs more data than in temp[] */
if (src == srcLim)
return; // src buffer has no more input data.
/* (src != srcLim)
so we can provide more input data from src for Bcj2Enc_Encode_2() */
if (extra >= tempPos)
{
/* (extra >= tempPos) means that temp buffer contains
only data from src buffer of this call.
So now we can encode without temp buffer */
p->src = src - tempPos; // rollback (src)
p->tempPos = 0;
break;
}
// we append one additional extra byte from (src) to temp[] buffer:
p->temp[tempPos] = *src;
p->tempPos = tempPos + 1;
// (0 < p->tempPos <= 5) // in non-marker version
p->src = src + 1;
extra++;
}
}
}
PRF2("++++")
// (p->tempPos == 0)
Bcj2Enc_Encode_2(p);
PRF2("====")
if (p->state == BCJ2_ENC_STATE_ORIG)
{
const Byte *src = p->src;
const Byte *srcLim = p->srcLim;
const unsigned rem = (unsigned)(srcLim - src);
/* (rem <= 4) here.
if (p->src != p->srcLim), then
- we copy non-processed bytes from (p->src) to temp[] buffer,
- we set p->src equal to p->srcLim.
*/
if (rem)
{
unsigned i = 0;
p->src = srcLim;
p->tempPos = rem;
// (0 < p->tempPos <= 4)
do
p->temp[i] = src[i];
while (++i != rem);
}
// (p->tempPos <= 4)
// (p->src == p->srcLim)
}
}
#undef PRF2
#undef CONV_FLAG
#undef MARKER_FLAG
#undef WRITE_CONTEXT
#undef WRITE_CONTEXT_AND_SRC
#undef ONE_ITER
#undef NUM_SHIFT_BITS
#undef kTopValue
#undef kNumBitModelTotalBits
#undef kBitModelTotal
#undef kNumMoveBits

View File

@ -1,48 +0,0 @@
/* Blake2.h -- BLAKE2 Hash
2023-03-04 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#ifndef ZIP7_INC_BLAKE2_H
#define ZIP7_INC_BLAKE2_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define BLAKE2S_BLOCK_SIZE 64
#define BLAKE2S_DIGEST_SIZE 32
#define BLAKE2SP_PARALLEL_DEGREE 8
typedef struct
{
UInt32 h[8];
UInt32 t[2];
UInt32 f[2];
Byte buf[BLAKE2S_BLOCK_SIZE];
UInt32 bufPos;
UInt32 lastNode_f1;
UInt32 dummy[2]; /* for sizeof(CBlake2s) alignment */
} CBlake2s;
/* You need to xor CBlake2s::h[i] with input parameter block after Blake2s_Init0() */
/*
void Blake2s_Init0(CBlake2s *p);
void Blake2s_Update(CBlake2s *p, const Byte *data, size_t size);
void Blake2s_Final(CBlake2s *p, Byte *digest);
*/
typedef struct
{
CBlake2s S[BLAKE2SP_PARALLEL_DEGREE];
unsigned bufPos;
} CBlake2sp;
void Blake2sp_Init(CBlake2sp *p);
void Blake2sp_Update(CBlake2sp *p, const Byte *data, size_t size);
void Blake2sp_Final(CBlake2sp *p, Byte *digest);
EXTERN_C_END
#endif

View File

@ -1,250 +0,0 @@
/* Blake2s.c -- BLAKE2s and BLAKE2sp Hash
2023-03-04 : Igor Pavlov : Public domain
2015 : Samuel Neves : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Blake2.h"
#include "CpuArch.h"
#include "RotateDefs.h"
#define rotr32 rotrFixed
#define BLAKE2S_NUM_ROUNDS 10
#define BLAKE2S_FINAL_FLAG (~(UInt32)0)
static const UInt32 k_Blake2s_IV[8] =
{
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
static const Byte k_Blake2s_Sigma[BLAKE2S_NUM_ROUNDS][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
static void Blake2s_Init0(CBlake2s *p)
{
unsigned i;
for (i = 0; i < 8; i++)
p->h[i] = k_Blake2s_IV[i];
p->t[0] = 0;
p->t[1] = 0;
p->f[0] = 0;
p->f[1] = 0;
p->bufPos = 0;
p->lastNode_f1 = 0;
}
static void Blake2s_Compress(CBlake2s *p)
{
UInt32 m[16];
UInt32 v[16];
{
unsigned i;
for (i = 0; i < 16; i++)
m[i] = GetUi32(p->buf + i * sizeof(m[i]));
for (i = 0; i < 8; i++)
v[i] = p->h[i];
}
v[ 8] = k_Blake2s_IV[0];
v[ 9] = k_Blake2s_IV[1];
v[10] = k_Blake2s_IV[2];
v[11] = k_Blake2s_IV[3];
v[12] = p->t[0] ^ k_Blake2s_IV[4];
v[13] = p->t[1] ^ k_Blake2s_IV[5];
v[14] = p->f[0] ^ k_Blake2s_IV[6];
v[15] = p->f[1] ^ k_Blake2s_IV[7];
#define G(r,i,a,b,c,d) \
a += b + m[sigma[2*i+0]]; d ^= a; d = rotr32(d, 16); c += d; b ^= c; b = rotr32(b, 12); \
a += b + m[sigma[2*i+1]]; d ^= a; d = rotr32(d, 8); c += d; b ^= c; b = rotr32(b, 7); \
#define R(r) \
G(r,0,v[ 0],v[ 4],v[ 8],v[12]) \
G(r,1,v[ 1],v[ 5],v[ 9],v[13]) \
G(r,2,v[ 2],v[ 6],v[10],v[14]) \
G(r,3,v[ 3],v[ 7],v[11],v[15]) \
G(r,4,v[ 0],v[ 5],v[10],v[15]) \
G(r,5,v[ 1],v[ 6],v[11],v[12]) \
G(r,6,v[ 2],v[ 7],v[ 8],v[13]) \
G(r,7,v[ 3],v[ 4],v[ 9],v[14]) \
{
unsigned r;
for (r = 0; r < BLAKE2S_NUM_ROUNDS; r++)
{
const Byte *sigma = k_Blake2s_Sigma[r];
R(r)
}
/* R(0); R(1); R(2); R(3); R(4); R(5); R(6); R(7); R(8); R(9); */
}
#undef G
#undef R
{
unsigned i;
for (i = 0; i < 8; i++)
p->h[i] ^= v[i] ^ v[i + 8];
}
}
#define Blake2s_Increment_Counter(S, inc) \
{ p->t[0] += (inc); p->t[1] += (p->t[0] < (inc)); }
#define Blake2s_Set_LastBlock(p) \
{ p->f[0] = BLAKE2S_FINAL_FLAG; p->f[1] = p->lastNode_f1; }
static void Blake2s_Update(CBlake2s *p, const Byte *data, size_t size)
{
while (size != 0)
{
unsigned pos = (unsigned)p->bufPos;
unsigned rem = BLAKE2S_BLOCK_SIZE - pos;
if (size <= rem)
{
memcpy(p->buf + pos, data, size);
p->bufPos += (UInt32)size;
return;
}
memcpy(p->buf + pos, data, rem);
Blake2s_Increment_Counter(S, BLAKE2S_BLOCK_SIZE)
Blake2s_Compress(p);
p->bufPos = 0;
data += rem;
size -= rem;
}
}
static void Blake2s_Final(CBlake2s *p, Byte *digest)
{
unsigned i;
Blake2s_Increment_Counter(S, (UInt32)p->bufPos)
Blake2s_Set_LastBlock(p)
memset(p->buf + p->bufPos, 0, BLAKE2S_BLOCK_SIZE - p->bufPos);
Blake2s_Compress(p);
for (i = 0; i < 8; i++)
{
SetUi32(digest + sizeof(p->h[i]) * i, p->h[i])
}
}
/* ---------- BLAKE2s ---------- */
/* we need to xor CBlake2s::h[i] with input parameter block after Blake2s_Init0() */
/*
typedef struct
{
Byte digest_length;
Byte key_length;
Byte fanout;
Byte depth;
UInt32 leaf_length;
Byte node_offset[6];
Byte node_depth;
Byte inner_length;
Byte salt[BLAKE2S_SALTBYTES];
Byte personal[BLAKE2S_PERSONALBYTES];
} CBlake2sParam;
*/
static void Blake2sp_Init_Spec(CBlake2s *p, unsigned node_offset, unsigned node_depth)
{
Blake2s_Init0(p);
p->h[0] ^= (BLAKE2S_DIGEST_SIZE | ((UInt32)BLAKE2SP_PARALLEL_DEGREE << 16) | ((UInt32)2 << 24));
p->h[2] ^= ((UInt32)node_offset);
p->h[3] ^= ((UInt32)node_depth << 16) | ((UInt32)BLAKE2S_DIGEST_SIZE << 24);
/*
P->digest_length = BLAKE2S_DIGEST_SIZE;
P->key_length = 0;
P->fanout = BLAKE2SP_PARALLEL_DEGREE;
P->depth = 2;
P->leaf_length = 0;
store48(P->node_offset, node_offset);
P->node_depth = node_depth;
P->inner_length = BLAKE2S_DIGEST_SIZE;
*/
}
void Blake2sp_Init(CBlake2sp *p)
{
unsigned i;
p->bufPos = 0;
for (i = 0; i < BLAKE2SP_PARALLEL_DEGREE; i++)
Blake2sp_Init_Spec(&p->S[i], i, 0);
p->S[BLAKE2SP_PARALLEL_DEGREE - 1].lastNode_f1 = BLAKE2S_FINAL_FLAG;
}
void Blake2sp_Update(CBlake2sp *p, const Byte *data, size_t size)
{
unsigned pos = p->bufPos;
while (size != 0)
{
unsigned index = pos / BLAKE2S_BLOCK_SIZE;
unsigned rem = BLAKE2S_BLOCK_SIZE - (pos & (BLAKE2S_BLOCK_SIZE - 1));
if (rem > size)
rem = (unsigned)size;
Blake2s_Update(&p->S[index], data, rem);
size -= rem;
data += rem;
pos += rem;
pos &= (BLAKE2S_BLOCK_SIZE * BLAKE2SP_PARALLEL_DEGREE - 1);
}
p->bufPos = pos;
}
void Blake2sp_Final(CBlake2sp *p, Byte *digest)
{
CBlake2s R;
unsigned i;
Blake2sp_Init_Spec(&R, 0, 1);
R.lastNode_f1 = BLAKE2S_FINAL_FLAG;
for (i = 0; i < BLAKE2SP_PARALLEL_DEGREE; i++)
{
Byte hash[BLAKE2S_DIGEST_SIZE];
Blake2s_Final(&p->S[i], hash);
Blake2s_Update(&R, hash, BLAKE2S_DIGEST_SIZE);
}
Blake2s_Final(&R, digest);
}
#undef rotr32

420
3rdparty/7z/src/Bra.c vendored
View File

@ -1,420 +0,0 @@
/* Bra.c -- Branch converters for RISC code
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
#include "CpuArch.h"
#include "RotateDefs.h"
#if defined(MY_CPU_SIZEOF_POINTER) \
&& ( MY_CPU_SIZEOF_POINTER == 4 \
|| MY_CPU_SIZEOF_POINTER == 8)
#define BR_CONV_USE_OPT_PC_PTR
#endif
#ifdef BR_CONV_USE_OPT_PC_PTR
#define BR_PC_INIT pc -= (UInt32)(SizeT)p;
#define BR_PC_GET (pc + (UInt32)(SizeT)p)
#else
#define BR_PC_INIT pc += (UInt32)size;
#define BR_PC_GET (pc - (UInt32)(SizeT)(lim - p))
// #define BR_PC_INIT
// #define BR_PC_GET (pc + (UInt32)(SizeT)(p - data))
#endif
#define BR_CONVERT_VAL(v, c) if (encoding) v += c; else v -= c;
// #define BR_CONVERT_VAL(v, c) if (!encoding) c = (UInt32)0 - c; v += c;
#define Z7_BRANCH_CONV(name) z7_BranchConv_ ## name
#define Z7_BRANCH_FUNC_MAIN(name) \
static \
Z7_FORCE_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *Z7_BRANCH_CONV(name)(Byte *p, SizeT size, UInt32 pc, int encoding)
#define Z7_BRANCH_FUNC_IMP(name, m, encoding) \
Z7_NO_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *m(name)(Byte *data, SizeT size, UInt32 pc) \
{ return Z7_BRANCH_CONV(name)(data, size, pc, encoding); } \
#ifdef Z7_EXTRACT_ONLY
#define Z7_BRANCH_FUNCS_IMP(name) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_DEC, 0)
#else
#define Z7_BRANCH_FUNCS_IMP(name) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_DEC, 0) \
Z7_BRANCH_FUNC_IMP(name, Z7_BRANCH_CONV_ENC, 1)
#endif
#if defined(__clang__)
#define BR_EXTERNAL_FOR
#define BR_NEXT_ITERATION continue;
#else
#define BR_EXTERNAL_FOR for (;;)
#define BR_NEXT_ITERATION break;
#endif
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 1000) \
// GCC is not good for __builtin_expect() here
/* || defined(_MSC_VER) && (_MSC_VER >= 1920) */
// #define Z7_unlikely [[unlikely]]
// #define Z7_LIKELY(x) (__builtin_expect((x), 1))
#define Z7_UNLIKELY(x) (__builtin_expect((x), 0))
// #define Z7_likely [[likely]]
#else
// #define Z7_LIKELY(x) (x)
#define Z7_UNLIKELY(x) (x)
// #define Z7_likely
#endif
Z7_BRANCH_FUNC_MAIN(ARM64)
{
// Byte *p = data;
const Byte *lim;
const UInt32 flag = (UInt32)1 << (24 - 4);
const UInt32 mask = ((UInt32)1 << 24) - (flag << 1);
size &= ~(SizeT)3;
// if (size == 0) return p;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
BR_EXTERNAL_FOR
{
// Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (;;)
{
UInt32 v;
if Z7_UNLIKELY(p == lim)
return p;
v = GetUi32a(p);
p += 4;
if Z7_UNLIKELY(((v - 0x94000000) & 0xfc000000) == 0)
{
UInt32 c = BR_PC_GET >> 2;
BR_CONVERT_VAL(v, c)
v &= 0x03ffffff;
v |= 0x94000000;
SetUi32a(p - 4, v)
BR_NEXT_ITERATION
}
// v = rotlFixed(v, 8); v += (flag << 8) - 0x90; if Z7_UNLIKELY((v & ((mask << 8) + 0x9f)) == 0)
v -= 0x90000000; if Z7_UNLIKELY((v & 0x9f000000) == 0)
{
UInt32 z, c;
// v = rotrFixed(v, 8);
v += flag; if Z7_UNLIKELY(v & mask) continue;
z = (v & 0xffffffe0) | (v >> 26);
c = (BR_PC_GET >> (12 - 3)) & ~(UInt32)7;
BR_CONVERT_VAL(z, c)
v &= 0x1f;
v |= 0x90000000;
v |= z << 26;
v |= 0x00ffffe0 & ((z & (((flag << 1) - 1))) - flag);
SetUi32a(p - 4, v)
}
}
}
}
Z7_BRANCH_FUNCS_IMP(ARM64)
Z7_BRANCH_FUNC_MAIN(ARM)
{
// Byte *p = data;
const Byte *lim;
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
/* in ARM: branch offset is relative to the +2 instructions from current instruction.
(p) will point to next instruction */
pc += 8 - 4;
for (;;)
{
for (;;)
{
if Z7_UNLIKELY(p >= lim) { return p; } p += 4; if Z7_UNLIKELY(p[-1] == 0xeb) break;
if Z7_UNLIKELY(p >= lim) { return p; } p += 4; if Z7_UNLIKELY(p[-1] == 0xeb) break;
}
{
UInt32 v = GetUi32a(p - 4);
UInt32 c = BR_PC_GET >> 2;
BR_CONVERT_VAL(v, c)
v &= 0x00ffffff;
v |= 0xeb000000;
SetUi32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(ARM)
Z7_BRANCH_FUNC_MAIN(PPC)
{
// Byte *p = data;
const Byte *lim;
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
for (;;)
{
UInt32 v;
for (;;)
{
if Z7_UNLIKELY(p == lim)
return p;
// v = GetBe32a(p);
v = *(UInt32 *)(void *)p;
p += 4;
// if ((v & 0xfc000003) == 0x48000001) break;
// if ((p[-4] & 0xFC) == 0x48 && (p[-1] & 3) == 1) break;
if Z7_UNLIKELY(
((v - Z7_CONV_BE_TO_NATIVE_CONST32(0x48000001))
& Z7_CONV_BE_TO_NATIVE_CONST32(0xfc000003)) == 0) break;
}
{
v = Z7_CONV_NATIVE_TO_BE_32(v);
{
UInt32 c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
}
v &= 0x03ffffff;
v |= 0x48000000;
SetBe32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(PPC)
#ifdef Z7_CPU_FAST_ROTATE_SUPPORTED
#define BR_SPARC_USE_ROTATE
#endif
Z7_BRANCH_FUNC_MAIN(SPARC)
{
// Byte *p = data;
const Byte *lim;
const UInt32 flag = (UInt32)1 << 22;
size &= ~(SizeT)3;
lim = p + size;
BR_PC_INIT
pc -= 4; // because (p) will point to next instruction
for (;;)
{
UInt32 v;
for (;;)
{
if Z7_UNLIKELY(p == lim)
return p;
/* // the code without GetBe32a():
{ const UInt32 v = GetUi16a(p) & 0xc0ff; p += 4; if (v == 0x40 || v == 0xc07f) break; }
*/
v = GetBe32a(p);
p += 4;
#ifdef BR_SPARC_USE_ROTATE
v = rotlFixed(v, 2);
v += (flag << 2) - 1;
if Z7_UNLIKELY((v & (3 - (flag << 3))) == 0)
#else
v += (UInt32)5 << 29;
v ^= (UInt32)7 << 29;
v += flag;
if Z7_UNLIKELY((v & (0 - (flag << 1))) == 0)
#endif
break;
}
{
// UInt32 v = GetBe32a(p - 4);
#ifndef BR_SPARC_USE_ROTATE
v <<= 2;
#endif
{
UInt32 c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
}
v &= (flag << 3) - 1;
#ifdef BR_SPARC_USE_ROTATE
v -= (flag << 2) - 1;
v = rotrFixed(v, 2);
#else
v -= (flag << 2);
v >>= 2;
v |= (UInt32)1 << 30;
#endif
SetBe32a(p - 4, v)
}
}
}
Z7_BRANCH_FUNCS_IMP(SPARC)
Z7_BRANCH_FUNC_MAIN(ARMT)
{
// Byte *p = data;
Byte *lim;
size &= ~(SizeT)1;
// if (size == 0) return p;
if (size <= 2) return p;
size -= 2;
lim = p + size;
BR_PC_INIT
/* in ARM: branch offset is relative to the +2 instructions from current instruction.
(p) will point to the +2 instructions from current instruction */
// pc += 4 - 4;
// if (encoding) pc -= 0xf800 << 1; else pc += 0xf800 << 1;
// #define ARMT_TAIL_PROC { goto armt_tail; }
#define ARMT_TAIL_PROC { return p; }
do
{
/* in MSVC 32-bit x86 compilers:
UInt32 version : it loads value from memory with movzx
Byte version : it loads value to 8-bit register (AL/CL)
movzx version is slightly faster in some cpus
*/
unsigned b1;
// Byte / unsigned
b1 = p[1];
// optimized version to reduce one (p >= lim) check:
// unsigned a1 = p[1]; b1 = p[3]; p += 2; if Z7_LIKELY((b1 & (a1 ^ 8)) < 0xf8)
for (;;)
{
unsigned b3; // Byte / UInt32
/* (Byte)(b3) normalization can use low byte computations in MSVC.
It gives smaller code, and no loss of speed in some compilers/cpus.
But new MSVC 32-bit x86 compilers use more slow load
from memory to low byte register in that case.
So we try to use full 32-bit computations for faster code.
*/
// if (p >= lim) { ARMT_TAIL_PROC } b3 = b1 + 8; b1 = p[3]; p += 2; if ((b3 & b1) >= 0xf8) break;
if Z7_UNLIKELY(p >= lim) { ARMT_TAIL_PROC } b3 = p[3]; p += 2; if Z7_UNLIKELY((b3 & (b1 ^ 8)) >= 0xf8) break;
if Z7_UNLIKELY(p >= lim) { ARMT_TAIL_PROC } b1 = p[3]; p += 2; if Z7_UNLIKELY((b1 & (b3 ^ 8)) >= 0xf8) break;
}
{
/* we can adjust pc for (0xf800) to rid of (& 0x7FF) operation.
But gcc/clang for arm64 can use bfi instruction for full code here */
UInt32 v =
((UInt32)GetUi16a(p - 2) << 11) |
((UInt32)GetUi16a(p) & 0x7FF);
/*
UInt32 v =
((UInt32)p[1 - 2] << 19)
+ (((UInt32)p[1] & 0x7) << 8)
+ (((UInt32)p[-2] << 11))
+ (p[0]);
*/
p += 2;
{
UInt32 c = BR_PC_GET >> 1;
BR_CONVERT_VAL(v, c)
}
SetUi16a(p - 4, (UInt16)(((v >> 11) & 0x7ff) | 0xf000))
SetUi16a(p - 2, (UInt16)(v | 0xf800))
/*
p[-4] = (Byte)(v >> 11);
p[-3] = (Byte)(0xf0 | ((v >> 19) & 0x7));
p[-2] = (Byte)v;
p[-1] = (Byte)(0xf8 | (v >> 8));
*/
}
}
while (p < lim);
return p;
// armt_tail:
// if ((Byte)((lim[1] & 0xf8)) != 0xf0) { lim += 2; } return lim;
// return (Byte *)(lim + ((Byte)((lim[1] ^ 0xf0) & 0xf8) == 0 ? 0 : 2));
// return (Byte *)(lim + (((lim[1] ^ ~0xfu) & ~7u) == 0 ? 0 : 2));
// return (Byte *)(lim + 2 - (((((unsigned)lim[1] ^ 8) + 8) >> 7) & 2));
}
Z7_BRANCH_FUNCS_IMP(ARMT)
// #define BR_IA64_NO_INLINE
Z7_BRANCH_FUNC_MAIN(IA64)
{
// Byte *p = data;
const Byte *lim;
size &= ~(SizeT)15;
lim = p + size;
pc -= 1 << 4;
pc >>= 4 - 1;
// pc -= 1 << 1;
for (;;)
{
unsigned m;
for (;;)
{
if Z7_UNLIKELY(p == lim)
return p;
m = (unsigned)((UInt32)0x334b0000 >> (*p & 0x1e));
p += 16;
pc += 1 << 1;
if (m &= 3)
break;
}
{
p += (ptrdiff_t)m * 5 - 20; // negative value is expected here.
do
{
const UInt32 t =
#if defined(MY_CPU_X86_OR_AMD64)
// we use 32-bit load here to reduce code size on x86:
GetUi32(p);
#else
GetUi16(p);
#endif
UInt32 z = GetUi32(p + 1) >> m;
p += 5;
if (((t >> m) & (0x70 << 1)) == 0
&& ((z - (0x5000000 << 1)) & (0xf000000 << 1)) == 0)
{
UInt32 v = (UInt32)((0x8fffff << 1) | 1) & z;
z ^= v;
#ifdef BR_IA64_NO_INLINE
v |= (v & ((UInt32)1 << (23 + 1))) >> 3;
{
UInt32 c = pc;
BR_CONVERT_VAL(v, c)
}
v &= (0x1fffff << 1) | 1;
#else
{
if (encoding)
{
// pc &= ~(0xc00000 << 1); // we just need to clear at least 2 bits
pc &= (0x1fffff << 1) | 1;
v += pc;
}
else
{
// pc |= 0xc00000 << 1; // we need to set at least 2 bits
pc |= ~(UInt32)((0x1fffff << 1) | 1);
v -= pc;
}
}
v &= ~(UInt32)(0x600000 << 1);
#endif
v += (0x700000 << 1);
v &= (0x8fffff << 1) | 1;
z |= v;
z <<= m;
SetUi32(p + 1 - 5, z)
}
m++;
}
while (m &= 3); // while (m < 4);
}
}
}
Z7_BRANCH_FUNCS_IMP(IA64)

99
3rdparty/7z/src/Bra.h vendored
View File

@ -1,99 +0,0 @@
/* Bra.h -- Branch converters for executables
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_BRA_H
#define ZIP7_INC_BRA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define Z7_BRANCH_CONV_DEC(name) z7_BranchConv_ ## name ## _Dec
#define Z7_BRANCH_CONV_ENC(name) z7_BranchConv_ ## name ## _Enc
#define Z7_BRANCH_CONV_ST_DEC(name) z7_BranchConvSt_ ## name ## _Dec
#define Z7_BRANCH_CONV_ST_ENC(name) z7_BranchConvSt_ ## name ## _Enc
#define Z7_BRANCH_CONV_DECL(name) Byte * name(Byte *data, SizeT size, UInt32 pc)
#define Z7_BRANCH_CONV_ST_DECL(name) Byte * name(Byte *data, SizeT size, UInt32 pc, UInt32 *state)
typedef Z7_BRANCH_CONV_DECL( (*z7_Func_BranchConv));
typedef Z7_BRANCH_CONV_ST_DECL((*z7_Func_BranchConvSt));
#define Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL 0
Z7_BRANCH_CONV_ST_DECL(Z7_BRANCH_CONV_ST_DEC(X86));
Z7_BRANCH_CONV_ST_DECL(Z7_BRANCH_CONV_ST_ENC(X86));
#define Z7_BRANCH_FUNCS_DECL(name) \
Z7_BRANCH_CONV_DECL(Z7_BRANCH_CONV_DEC(name)); \
Z7_BRANCH_CONV_DECL(Z7_BRANCH_CONV_ENC(name));
Z7_BRANCH_FUNCS_DECL(ARM64)
Z7_BRANCH_FUNCS_DECL(ARM)
Z7_BRANCH_FUNCS_DECL(ARMT)
Z7_BRANCH_FUNCS_DECL(PPC)
Z7_BRANCH_FUNCS_DECL(SPARC)
Z7_BRANCH_FUNCS_DECL(IA64)
/*
These functions convert data that contain CPU instructions.
Each such function converts relative addresses to absolute addresses in some
branch instructions: CALL (in all converters) and JUMP (X86 converter only).
Such conversion allows to increase compression ratio, if we compress that data.
There are 2 types of converters:
Byte * Conv_RISC (Byte *data, SizeT size, UInt32 pc);
Byte * ConvSt_X86(Byte *data, SizeT size, UInt32 pc, UInt32 *state);
Each Converter supports 2 versions: one for encoding
and one for decoding (_Enc/_Dec postfixes in function name).
In params:
data : data buffer
size : size of data
pc : current virtual Program Counter (Instruction Pinter) value
In/Out param:
state : pointer to state variable (for X86 converter only)
Return:
The pointer to position in (data) buffer after last byte that was processed.
If the caller calls converter again, it must call it starting with that position.
But the caller is allowed to move data in buffer. so pointer to
current processed position also will be changed for next call.
Also the caller must increase internal (pc) value for next call.
Each converter has some characteristics: Endian, Alignment, LookAhead.
Type Endian Alignment LookAhead
X86 little 1 4
ARMT little 2 2
ARM little 4 0
ARM64 little 4 0
PPC big 4 0
SPARC big 4 0
IA64 little 16 0
(data) must be aligned for (Alignment).
processed size can be calculated as:
SizeT processed = Conv(data, size, pc) - data;
if (processed == 0)
it means that converter needs more data for processing.
If (size < Alignment + LookAhead)
then (processed == 0) is allowed.
Example code for conversion in loop:
UInt32 pc = 0;
size = 0;
for (;;)
{
size += Load_more_input_data(data + size);
SizeT processed = Conv(data, size, pc) - data;
if (processed == 0 && no_more_input_data_after_size)
break; // we stop convert loop
data += processed;
size -= processed;
pc += processed;
}
*/
EXTERN_C_END
#endif

View File

@ -1,187 +0,0 @@
/* Bra86.c -- Branch converter for X86 code (BCJ)
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Bra.h"
#include "CpuArch.h"
#if defined(MY_CPU_SIZEOF_POINTER) \
&& ( MY_CPU_SIZEOF_POINTER == 4 \
|| MY_CPU_SIZEOF_POINTER == 8)
#define BR_CONV_USE_OPT_PC_PTR
#endif
#ifdef BR_CONV_USE_OPT_PC_PTR
#define BR_PC_INIT pc -= (UInt32)(SizeT)p; // (MY_uintptr_t)
#define BR_PC_GET (pc + (UInt32)(SizeT)p)
#else
#define BR_PC_INIT pc += (UInt32)size;
#define BR_PC_GET (pc - (UInt32)(SizeT)(lim - p))
// #define BR_PC_INIT
// #define BR_PC_GET (pc + (UInt32)(SizeT)(p - data))
#endif
#define BR_CONVERT_VAL(v, c) if (encoding) v += c; else v -= c;
// #define BR_CONVERT_VAL(v, c) if (!encoding) c = (UInt32)0 - c; v += c;
#define Z7_BRANCH_CONV_ST(name) z7_BranchConvSt_ ## name
#define BR86_NEED_CONV_FOR_MS_BYTE(b) ((((b) + 1) & 0xfe) == 0)
#ifdef MY_CPU_LE_UNALIGN
#define BR86_PREPARE_BCJ_SCAN const UInt32 v = GetUi32(p) ^ 0xe8e8e8e8;
#define BR86_IS_BCJ_BYTE(n) ((v & ((UInt32)0xfe << (n) * 8)) == 0)
#else
#define BR86_PREPARE_BCJ_SCAN
// bad for MSVC X86 (partial write to byte reg):
#define BR86_IS_BCJ_BYTE(n) ((p[n - 4] & 0xfe) == 0xe8)
// bad for old MSVC (partial write to byte reg):
// #define BR86_IS_BCJ_BYTE(n) (((*p ^ 0xe8) & 0xfe) == 0)
#endif
static
Z7_FORCE_INLINE
Z7_ATTRIB_NO_VECTOR
Byte *Z7_BRANCH_CONV_ST(X86)(Byte *p, SizeT size, UInt32 pc, UInt32 *state, int encoding)
{
if (size < 5)
return p;
{
// Byte *p = data;
const Byte *lim = p + size - 4;
unsigned mask = (unsigned)*state; // & 7;
#ifdef BR_CONV_USE_OPT_PC_PTR
/* if BR_CONV_USE_OPT_PC_PTR is defined: we need to adjust (pc) for (+4),
because call/jump offset is relative to the next instruction.
if BR_CONV_USE_OPT_PC_PTR is not defined : we don't need to adjust (pc) for (+4),
because BR_PC_GET uses (pc - (lim - p)), and lim was adjusted for (-4) before.
*/
pc += 4;
#endif
BR_PC_INIT
goto start;
for (;; mask |= 4)
{
// cont: mask |= 4;
start:
if (p >= lim)
goto fin;
{
BR86_PREPARE_BCJ_SCAN
p += 4;
if (BR86_IS_BCJ_BYTE(0)) { goto m0; } mask >>= 1;
if (BR86_IS_BCJ_BYTE(1)) { goto m1; } mask >>= 1;
if (BR86_IS_BCJ_BYTE(2)) { goto m2; } mask = 0;
if (BR86_IS_BCJ_BYTE(3)) { goto a3; }
}
goto main_loop;
m0: p--;
m1: p--;
m2: p--;
if (mask == 0)
goto a3;
if (p > lim)
goto fin_p;
// if (((0x17u >> mask) & 1) == 0)
if (mask > 4 || mask == 3)
{
mask >>= 1;
continue; // goto cont;
}
mask >>= 1;
if (BR86_NEED_CONV_FOR_MS_BYTE(p[mask]))
continue; // goto cont;
// if (!BR86_NEED_CONV_FOR_MS_BYTE(p[3])) continue; // goto cont;
{
UInt32 v = GetUi32(p);
UInt32 c;
v += (1 << 24); if (v & 0xfe000000) continue; // goto cont;
c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
{
mask <<= 3;
if (BR86_NEED_CONV_FOR_MS_BYTE(v >> mask))
{
v ^= (((UInt32)0x100 << mask) - 1);
#ifdef MY_CPU_X86
// for X86 : we can recalculate (c) to reduce register pressure
c = BR_PC_GET;
#endif
BR_CONVERT_VAL(v, c)
}
mask = 0;
}
// v = (v & ((1 << 24) - 1)) - (v & (1 << 24));
v &= (1 << 25) - 1; v -= (1 << 24);
SetUi32(p, v)
p += 4;
goto main_loop;
}
main_loop:
if (p >= lim)
goto fin;
for (;;)
{
BR86_PREPARE_BCJ_SCAN
p += 4;
if (BR86_IS_BCJ_BYTE(0)) { goto a0; }
if (BR86_IS_BCJ_BYTE(1)) { goto a1; }
if (BR86_IS_BCJ_BYTE(2)) { goto a2; }
if (BR86_IS_BCJ_BYTE(3)) { goto a3; }
if (p >= lim)
goto fin;
}
a0: p--;
a1: p--;
a2: p--;
a3:
if (p > lim)
goto fin_p;
// if (!BR86_NEED_CONV_FOR_MS_BYTE(p[3])) continue; // goto cont;
{
UInt32 v = GetUi32(p);
UInt32 c;
v += (1 << 24); if (v & 0xfe000000) continue; // goto cont;
c = BR_PC_GET;
BR_CONVERT_VAL(v, c)
// v = (v & ((1 << 24) - 1)) - (v & (1 << 24));
v &= (1 << 25) - 1; v -= (1 << 24);
SetUi32(p, v)
p += 4;
goto main_loop;
}
}
fin_p:
p--;
fin:
// the following processing for tail is optional and can be commented
/*
lim += 4;
for (; p < lim; p++, mask >>= 1)
if ((*p & 0xfe) == 0xe8)
break;
*/
*state = (UInt32)mask;
return p;
}
}
#define Z7_BRANCH_CONV_ST_FUNC_IMP(name, m, encoding) \
Z7_NO_INLINE \
Z7_ATTRIB_NO_VECTOR \
Byte *m(name)(Byte *data, SizeT size, UInt32 pc, UInt32 *state) \
{ return Z7_BRANCH_CONV_ST(name)(data, size, pc, state, encoding); }
Z7_BRANCH_CONV_ST_FUNC_IMP(X86, Z7_BRANCH_CONV_ST_DEC, 0)
#ifndef Z7_EXTRACT_ONLY
Z7_BRANCH_CONV_ST_FUNC_IMP(X86, Z7_BRANCH_CONV_ST_ENC, 1)
#endif

View File

@ -1,14 +0,0 @@
/* BraIA64.c -- Converter for IA-64 code
2023-02-20 : Igor Pavlov : Public domain */
#include "Precomp.h"
// the code was moved to Bra.c
#ifdef _MSC_VER
#pragma warning(disable : 4206) // nonstandard extension used : translation unit is empty
#endif
#if defined(__clang__)
#pragma GCC diagnostic ignored "-Wempty-translation-unit"
#endif

View File

@ -1,516 +0,0 @@
/* BwtSort.c -- BWT block sorting
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "BwtSort.h"
#include "Sort.h"
/* #define BLOCK_SORT_USE_HEAP_SORT */
/* Don't change it !!! */
#define kNumHashBytes 2
#define kNumHashValues (1 << (kNumHashBytes * 8))
/* kNumRefBitsMax must be < (kNumHashBytes * 8) = 16 */
#define kNumRefBitsMax 12
#define BS_TEMP_SIZE kNumHashValues
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
/* 32 Flags in UInt32 word */
#define kNumFlagsBits 5
#define kNumFlagsInWord (1 << kNumFlagsBits)
#define kFlagsMask (kNumFlagsInWord - 1)
#define kAllFlags 0xFFFFFFFF
#else
#define kNumBitsMax 20
#define kIndexMask ((1 << kNumBitsMax) - 1)
#define kNumExtraBits (32 - kNumBitsMax)
#define kNumExtra0Bits (kNumExtraBits - 2)
#define kNumExtra0Mask ((1 << kNumExtra0Bits) - 1)
#define SetFinishedGroupSize(p, size) \
{ *(p) |= ((((size) - 1) & kNumExtra0Mask) << kNumBitsMax); \
if ((size) > (1 << kNumExtra0Bits)) { \
*(p) |= 0x40000000; *((p) + 1) |= ((((size) - 1)>> kNumExtra0Bits) << kNumBitsMax); } } \
static void SetGroupSize(UInt32 *p, UInt32 size)
{
if (--size == 0)
return;
*p |= 0x80000000 | ((size & kNumExtra0Mask) << kNumBitsMax);
if (size >= (1 << kNumExtra0Bits))
{
*p |= 0x40000000;
p[1] |= ((size >> kNumExtra0Bits) << kNumBitsMax);
}
}
#endif
/*
SortGroup - is recursive Range-Sort function with HeapSort optimization for small blocks
"range" is not real range. It's only for optimization.
returns: 1 - if there are groups, 0 - no more groups
*/
static
UInt32
Z7_FASTCALL
SortGroup(UInt32 BlockSize, UInt32 NumSortedBytes, UInt32 groupOffset, UInt32 groupSize, int NumRefBits, UInt32 *Indices
#ifndef BLOCK_SORT_USE_HEAP_SORT
, UInt32 left, UInt32 range
#endif
)
{
UInt32 *ind2 = Indices + groupOffset;
UInt32 *Groups;
if (groupSize <= 1)
{
/*
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetFinishedGroupSize(ind2, 1)
#endif
*/
return 0;
}
Groups = Indices + BlockSize + BS_TEMP_SIZE;
if (groupSize <= ((UInt32)1 << NumRefBits)
#ifndef BLOCK_SORT_USE_HEAP_SORT
&& groupSize <= range
#endif
)
{
UInt32 *temp = Indices + BlockSize;
UInt32 j;
UInt32 mask, thereAreGroups, group, cg;
{
UInt32 gPrev;
UInt32 gRes = 0;
{
UInt32 sp = ind2[0] + NumSortedBytes;
if (sp >= BlockSize) sp -= BlockSize;
gPrev = Groups[sp];
temp[0] = (gPrev << NumRefBits);
}
for (j = 1; j < groupSize; j++)
{
UInt32 sp = ind2[j] + NumSortedBytes;
UInt32 g;
if (sp >= BlockSize) sp -= BlockSize;
g = Groups[sp];
temp[j] = (g << NumRefBits) | j;
gRes |= (gPrev ^ g);
}
if (gRes == 0)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
}
HeapSort(temp, groupSize);
mask = (((UInt32)1 << NumRefBits) - 1);
thereAreGroups = 0;
group = groupOffset;
cg = (temp[0] >> NumRefBits);
temp[0] = ind2[temp[0] & mask];
{
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags = Groups + BlockSize;
#else
UInt32 prevGroupStart = 0;
#endif
for (j = 1; j < groupSize; j++)
{
UInt32 val = temp[j];
UInt32 cgCur = (val >> NumRefBits);
if (cgCur != cg)
{
cg = cgCur;
group = groupOffset + j;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = group - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#else
SetGroupSize(temp + prevGroupStart, j - prevGroupStart);
prevGroupStart = j;
#endif
}
else
thereAreGroups = 1;
{
UInt32 ind = ind2[val & mask];
temp[j] = ind;
Groups[ind] = group;
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(temp + prevGroupStart, j - prevGroupStart);
#endif
}
for (j = 0; j < groupSize; j++)
ind2[j] = temp[j];
return thereAreGroups;
}
/* Check that all strings are in one group (cannot sort) */
{
UInt32 group, j;
UInt32 sp = ind2[0] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
group = Groups[sp];
for (j = 1; j < groupSize; j++)
{
sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] != group)
break;
}
if (j == groupSize)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
}
#ifndef BLOCK_SORT_USE_HEAP_SORT
{
/* ---------- Range Sort ---------- */
UInt32 i;
UInt32 mid;
for (;;)
{
UInt32 j;
if (range <= 1)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2, groupSize);
#endif
return 1;
}
mid = left + ((range + 1) >> 1);
j = groupSize;
i = 0;
do
{
UInt32 sp = ind2[i] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] >= mid)
{
for (j--; j > i; j--)
{
sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
if (Groups[sp] < mid)
{
UInt32 temp = ind2[i]; ind2[i] = ind2[j]; ind2[j] = temp;
break;
}
}
if (i >= j)
break;
}
}
while (++i < j);
if (i == 0)
{
range = range - (mid - left);
left = mid;
}
else if (i == groupSize)
range = (mid - left);
else
break;
}
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = (groupOffset + i - 1);
UInt32 *Flags = Groups + BlockSize;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#endif
{
UInt32 j;
for (j = i; j < groupSize; j++)
Groups[ind2[j]] = groupOffset + i;
}
{
UInt32 res = SortGroup(BlockSize, NumSortedBytes, groupOffset, i, NumRefBits, Indices, left, mid - left);
return res | SortGroup(BlockSize, NumSortedBytes, groupOffset + i, groupSize - i, NumRefBits, Indices, mid, range - (mid - left));
}
}
#else
/* ---------- Heap Sort ---------- */
{
UInt32 j;
for (j = 0; j < groupSize; j++)
{
UInt32 sp = ind2[j] + NumSortedBytes; if (sp >= BlockSize) sp -= BlockSize;
ind2[j] = sp;
}
HeapSortRef(ind2, Groups, groupSize);
/* Write Flags */
{
UInt32 sp = ind2[0];
UInt32 group = Groups[sp];
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags = Groups + BlockSize;
#else
UInt32 prevGroupStart = 0;
#endif
for (j = 1; j < groupSize; j++)
{
sp = ind2[j];
if (Groups[sp] != group)
{
group = Groups[sp];
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 t = groupOffset + j - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
}
#else
SetGroupSize(ind2 + prevGroupStart, j - prevGroupStart);
prevGroupStart = j;
#endif
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
SetGroupSize(ind2 + prevGroupStart, j - prevGroupStart);
#endif
}
{
/* Write new Groups values and Check that there are groups */
UInt32 thereAreGroups = 0;
for (j = 0; j < groupSize; j++)
{
UInt32 group = groupOffset + j;
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 subGroupSize = ((ind2[j] & ~0xC0000000) >> kNumBitsMax);
if ((ind2[j] & 0x40000000) != 0)
subGroupSize += ((ind2[(size_t)j + 1] >> kNumBitsMax) << kNumExtra0Bits);
subGroupSize++;
for (;;)
{
UInt32 original = ind2[j];
UInt32 sp = original & kIndexMask;
if (sp < NumSortedBytes) sp += BlockSize; sp -= NumSortedBytes;
ind2[j] = sp | (original & ~kIndexMask);
Groups[sp] = group;
if (--subGroupSize == 0)
break;
j++;
thereAreGroups = 1;
}
#else
UInt32 *Flags = Groups + BlockSize;
for (;;)
{
UInt32 sp = ind2[j]; if (sp < NumSortedBytes) sp += BlockSize; sp -= NumSortedBytes;
ind2[j] = sp;
Groups[sp] = group;
if ((Flags[(groupOffset + j) >> kNumFlagsBits] & (1 << ((groupOffset + j) & kFlagsMask))) == 0)
break;
j++;
thereAreGroups = 1;
}
#endif
}
return thereAreGroups;
}
}
#endif
}
/* conditions: blockSize > 0 */
UInt32 BlockSort(UInt32 *Indices, const Byte *data, UInt32 blockSize)
{
UInt32 *counters = Indices + blockSize;
UInt32 i;
UInt32 *Groups;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 *Flags;
#endif
/* Radix-Sort for 2 bytes */
for (i = 0; i < kNumHashValues; i++)
counters[i] = 0;
for (i = 0; i < blockSize - 1; i++)
counters[((UInt32)data[i] << 8) | data[(size_t)i + 1]]++;
counters[((UInt32)data[i] << 8) | data[0]]++;
Groups = counters + BS_TEMP_SIZE;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
Flags = Groups + blockSize;
{
UInt32 numWords = (blockSize + kFlagsMask) >> kNumFlagsBits;
for (i = 0; i < numWords; i++)
Flags[i] = kAllFlags;
}
#endif
{
UInt32 sum = 0;
for (i = 0; i < kNumHashValues; i++)
{
UInt32 groupSize = counters[i];
if (groupSize > 0)
{
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 t = sum + groupSize - 1;
Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask));
#endif
sum += groupSize;
}
counters[i] = sum - groupSize;
}
for (i = 0; i < blockSize - 1; i++)
Groups[i] = counters[((UInt32)data[i] << 8) | data[(size_t)i + 1]];
Groups[i] = counters[((UInt32)data[i] << 8) | data[0]];
for (i = 0; i < blockSize - 1; i++)
Indices[counters[((UInt32)data[i] << 8) | data[(size_t)i + 1]]++] = i;
Indices[counters[((UInt32)data[i] << 8) | data[0]]++] = i;
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
{
UInt32 prev = 0;
for (i = 0; i < kNumHashValues; i++)
{
UInt32 prevGroupSize = counters[i] - prev;
if (prevGroupSize == 0)
continue;
SetGroupSize(Indices + prev, prevGroupSize);
prev = counters[i];
}
}
#endif
}
{
int NumRefBits;
UInt32 NumSortedBytes;
for (NumRefBits = 0; ((blockSize - 1) >> NumRefBits) != 0; NumRefBits++);
NumRefBits = 32 - NumRefBits;
if (NumRefBits > kNumRefBitsMax)
NumRefBits = kNumRefBitsMax;
for (NumSortedBytes = kNumHashBytes; ; NumSortedBytes <<= 1)
{
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
UInt32 finishedGroupSize = 0;
#endif
UInt32 newLimit = 0;
for (i = 0; i < blockSize;)
{
UInt32 groupSize;
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
if ((Flags[i >> kNumFlagsBits] & (1 << (i & kFlagsMask))) == 0)
{
i++;
continue;
}
for (groupSize = 1;
(Flags[(i + groupSize) >> kNumFlagsBits] & (1 << ((i + groupSize) & kFlagsMask))) != 0;
groupSize++);
groupSize++;
#else
groupSize = ((Indices[i] & ~0xC0000000) >> kNumBitsMax);
{
BoolInt finishedGroup = ((Indices[i] & 0x80000000) == 0);
if ((Indices[i] & 0x40000000) != 0)
{
groupSize += ((Indices[(size_t)i + 1] >> kNumBitsMax) << kNumExtra0Bits);
Indices[(size_t)i + 1] &= kIndexMask;
}
Indices[i] &= kIndexMask;
groupSize++;
if (finishedGroup || groupSize == 1)
{
Indices[i - finishedGroupSize] &= kIndexMask;
if (finishedGroupSize > 1)
Indices[(size_t)(i - finishedGroupSize) + 1] &= kIndexMask;
{
UInt32 newGroupSize = groupSize + finishedGroupSize;
SetFinishedGroupSize(Indices + i - finishedGroupSize, newGroupSize)
finishedGroupSize = newGroupSize;
}
i += groupSize;
continue;
}
finishedGroupSize = 0;
}
#endif
if (NumSortedBytes >= blockSize)
{
UInt32 j;
for (j = 0; j < groupSize; j++)
{
UInt32 t = (i + j);
/* Flags[t >> kNumFlagsBits] &= ~(1 << (t & kFlagsMask)); */
Groups[Indices[t]] = t;
}
}
else
if (SortGroup(blockSize, NumSortedBytes, i, groupSize, NumRefBits, Indices
#ifndef BLOCK_SORT_USE_HEAP_SORT
, 0, blockSize
#endif
) != 0)
newLimit = i + groupSize;
i += groupSize;
}
if (newLimit == 0)
break;
}
}
#ifndef BLOCK_SORT_EXTERNAL_FLAGS
for (i = 0; i < blockSize;)
{
UInt32 groupSize = ((Indices[i] & ~0xC0000000) >> kNumBitsMax);
if ((Indices[i] & 0x40000000) != 0)
{
groupSize += ((Indices[(size_t)i + 1] >> kNumBitsMax) << kNumExtra0Bits);
Indices[(size_t)i + 1] &= kIndexMask;
}
Indices[i] &= kIndexMask;
groupSize++;
i += groupSize;
}
#endif
return Groups[0];
}

View File

@ -1,26 +0,0 @@
/* BwtSort.h -- BWT block sorting
2023-03-03 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_BWT_SORT_H
#define ZIP7_INC_BWT_SORT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* use BLOCK_SORT_EXTERNAL_FLAGS if blockSize can be > 1M */
/* #define BLOCK_SORT_EXTERNAL_FLAGS */
#ifdef BLOCK_SORT_EXTERNAL_FLAGS
#define BLOCK_SORT_EXTERNAL_SIZE(blockSize) ((((blockSize) + 31) >> 5))
#else
#define BLOCK_SORT_EXTERNAL_SIZE(blockSize) 0
#endif
#define BLOCK_SORT_BUF_SIZE(blockSize) ((blockSize) * 2 + BLOCK_SORT_EXTERNAL_SIZE(blockSize) + (1 << 16))
UInt32 BlockSort(UInt32 *indices, const Byte *data, UInt32 blockSize);
EXTERN_C_END
#endif

View File

@ -1,159 +0,0 @@
/* Compiler.h : Compiler specific defines and pragmas
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_COMPILER_H
#define ZIP7_INC_COMPILER_H
#if defined(__clang__)
# define Z7_CLANG_VERSION (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__)
#endif
#if defined(__clang__) && defined(__apple_build_version__)
# define Z7_APPLE_CLANG_VERSION Z7_CLANG_VERSION
#elif defined(__clang__)
# define Z7_LLVM_CLANG_VERSION Z7_CLANG_VERSION
#elif defined(__GNUC__)
# define Z7_GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#endif
#ifdef _MSC_VER
#if !defined(__clang__) && !defined(__GNUC__)
#define Z7_MSC_VER_ORIGINAL _MSC_VER
#endif
#endif
#if defined(__MINGW32__) || defined(__MINGW64__)
#define Z7_MINGW
#endif
// #pragma GCC diagnostic ignored "-Wunknown-pragmas"
#ifdef __clang__
// padding size of '' with 4 bytes to alignment boundary
#pragma GCC diagnostic ignored "-Wpadded"
#endif
#ifdef _MSC_VER
#ifdef UNDER_CE
#define RPC_NO_WINDOWS_H
/* #pragma warning(disable : 4115) // '_RPC_ASYNC_STATE' : named type definition in parentheses */
#pragma warning(disable : 4201) // nonstandard extension used : nameless struct/union
#pragma warning(disable : 4214) // nonstandard extension used : bit field types other than int
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1800
#pragma warning(disable : 4464) // relative include path contains '..'
#endif
// == 1200 : -O1 : for __forceinline
// >= 1900 : -O1 : for printf
#pragma warning(disable : 4710) // function not inlined
#if _MSC_VER < 1900
// winnt.h: 'Int64ShllMod32'
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#endif
#if _MSC_VER < 1300
// #pragma warning(disable : 4702) // unreachable code
// Bra.c : -O1:
#pragma warning(disable : 4714) // function marked as __forceinline not inlined
#endif
/*
#if _MSC_VER > 1400 && _MSC_VER <= 1900
// strcat: This function or variable may be unsafe
// sysinfoapi.h: kit10: GetVersion was declared deprecated
#pragma warning(disable : 4996)
#endif
*/
#if _MSC_VER > 1200
// -Wall warnings
#pragma warning(disable : 4711) // function selected for automatic inline expansion
#pragma warning(disable : 4820) // '2' bytes padding added after data member
#if _MSC_VER >= 1400 && _MSC_VER < 1920
// 1400: string.h: _DBG_MEMCPY_INLINE_
// 1600 - 191x : smmintrin.h __cplusplus'
// is not defined as a preprocessor macro, replacing with '0' for '#if/#elif'
#pragma warning(disable : 4668)
// 1400 - 1600 : WinDef.h : 'FARPROC' :
// 1900 - 191x : immintrin.h: _readfsbase_u32
// no function prototype given : converting '()' to '(void)'
#pragma warning(disable : 4255)
#endif
#if _MSC_VER >= 1914
// Compiler will insert Spectre mitigation for memory load if /Qspectre switch specified
#pragma warning(disable : 5045)
#endif
#endif // _MSC_VER > 1200
#endif // _MSC_VER
#if defined(__clang__) && (__clang_major__ >= 4)
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE \
_Pragma("clang loop unroll(disable)") \
_Pragma("clang loop vectorize(disable)")
#define Z7_ATTRIB_NO_VECTORIZE
#elif defined(__GNUC__) && (__GNUC__ >= 5)
#define Z7_ATTRIB_NO_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
// __attribute__((optimize("no-unroll-loops")));
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
#elif defined(_MSC_VER) && (_MSC_VER >= 1920)
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE \
_Pragma("loop( no_vector )")
#define Z7_ATTRIB_NO_VECTORIZE
#else
#define Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
#define Z7_ATTRIB_NO_VECTORIZE
#endif
#if defined(MY_CPU_X86_OR_AMD64) && ( \
defined(__clang__) && (__clang_major__ >= 4) \
|| defined(__GNUC__) && (__GNUC__ >= 5))
#define Z7_ATTRIB_NO_SSE __attribute__((__target__("no-sse")))
#else
#define Z7_ATTRIB_NO_SSE
#endif
#define Z7_ATTRIB_NO_VECTOR \
Z7_ATTRIB_NO_VECTORIZE \
Z7_ATTRIB_NO_SSE
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 1000) \
/* || defined(_MSC_VER) && (_MSC_VER >= 1920) */
// GCC is not good for __builtin_expect()
#define Z7_LIKELY(x) (__builtin_expect((x), 1))
#define Z7_UNLIKELY(x) (__builtin_expect((x), 0))
// #define Z7_unlikely [[unlikely]]
// #define Z7_likely [[likely]]
#else
#define Z7_LIKELY(x) (x)
#define Z7_UNLIKELY(x) (x)
// #define Z7_likely
#endif
#if (defined(Z7_CLANG_VERSION) && (Z7_CLANG_VERSION >= 36000))
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_RESERVED_MACRO_IDENTIFIER \
_Pragma("GCC diagnostic push") \
_Pragma("GCC diagnostic ignored \"-Wreserved-macro-identifier\"")
#define Z7_DIAGNOSCTIC_IGNORE_END_RESERVED_MACRO_IDENTIFIER \
_Pragma("GCC diagnostic pop")
#else
#define Z7_DIAGNOSCTIC_IGNORE_BEGIN_RESERVED_MACRO_IDENTIFIER
#define Z7_DIAGNOSCTIC_IGNORE_END_RESERVED_MACRO_IDENTIFIER
#endif
#define UNUSED_VAR(x) (void)x;
/* #define UNUSED_VAR(x) x=x; */
#endif

View File

@ -1,823 +0,0 @@
/* CpuArch.c -- CPU specific code
2023-05-18 : Igor Pavlov : Public domain */
#include "Precomp.h"
// #include <stdio.h>
#include "CpuArch.h"
#ifdef MY_CPU_X86_OR_AMD64
#undef NEED_CHECK_FOR_CPUID
#if !defined(MY_CPU_AMD64)
#define NEED_CHECK_FOR_CPUID
#endif
/*
cpuid instruction supports (subFunction) parameter in ECX,
that is used only with some specific (function) parameter values.
But we always use only (subFunction==0).
*/
/*
__cpuid(): MSVC and GCC/CLANG use same function/macro name
but parameters are different.
We use MSVC __cpuid() parameters style for our z7_x86_cpuid() function.
*/
#if defined(__GNUC__) /* && (__GNUC__ >= 10) */ \
|| defined(__clang__) /* && (__clang_major__ >= 10) */
/* there was some CLANG/GCC compilers that have issues with
rbx(ebx) handling in asm blocks in -fPIC mode (__PIC__ is defined).
compiler's <cpuid.h> contains the macro __cpuid() that is similar to our code.
The history of __cpuid() changes in CLANG/GCC:
GCC:
2007: it preserved ebx for (__PIC__ && __i386__)
2013: it preserved rbx and ebx for __PIC__
2014: it doesn't preserves rbx and ebx anymore
we suppose that (__GNUC__ >= 5) fixed that __PIC__ ebx/rbx problem.
CLANG:
2014+: it preserves rbx, but only for 64-bit code. No __PIC__ check.
Why CLANG cares about 64-bit mode only, and doesn't care about ebx (in 32-bit)?
Do we need __PIC__ test for CLANG or we must care about rbx even if
__PIC__ is not defined?
*/
#define ASM_LN "\n"
#if defined(MY_CPU_AMD64) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%rbx, %q1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%rbx, %q1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
/* "=&r" selects free register. It can select even rbx, if that register is free.
"=&D" for (RDI) also works, but the code can be larger with "=&D"
"2"(0) means (subFunction = 0),
2 is (zero-based) index in the output constraint list "=c" (ECX). */
#elif defined(MY_CPU_X86) && defined(__PIC__) \
&& ((defined (__GNUC__) && (__GNUC__ < 5)) || defined(__clang__))
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "mov %%ebx, %k1" \
ASM_LN "cpuid" \
ASM_LN "xchg %%ebx, %k1" \
: "=a" ((p)[0]), "=&r" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#else
#define x86_cpuid_MACRO(p, func) { \
__asm__ __volatile__ ( \
ASM_LN "cpuid" \
: "=a" ((p)[0]), "=b" ((p)[1]), "=c" ((p)[2]), "=d" ((p)[3]) : "0" (func), "2"(0)); }
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
x86_cpuid_MACRO(p, func)
}
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
UInt32 a;
__asm__ __volatile__ (
ASM_LN "pushf"
ASM_LN "pushf"
ASM_LN "pop %0"
// ASM_LN "movl %0, %1"
// ASM_LN "xorl $0x200000, %0"
ASM_LN "btc %1, %0"
ASM_LN "push %0"
ASM_LN "popf"
ASM_LN "pushf"
ASM_LN "pop %0"
ASM_LN "xorl (%%esp), %0"
ASM_LN "popf"
ASM_LN
: "=&r" (a) // "=a"
: "i" (EFALGS_CPUID_BIT)
);
if ((a & (1 << EFALGS_CPUID_BIT)) == 0)
return 0;
#endif
{
UInt32 p[4];
x86_cpuid_MACRO(p, 0)
return p[0];
}
}
#undef ASM_LN
#elif !defined(_MSC_VER)
/*
// for gcc/clang and other: we can try to use __cpuid macro:
#include <cpuid.h>
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
__cpuid(func, p[0], p[1], p[2], p[3]);
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return (UInt32)__get_cpuid_max(0, NULL);
}
*/
// for unsupported cpuid:
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(func)
p[0] = p[1] = p[2] = p[3] = 0;
}
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
return 0;
}
#else // _MSC_VER
#if !defined(MY_CPU_AMD64)
UInt32 __declspec(naked) Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
#if defined(NEED_CHECK_FOR_CPUID)
#define EFALGS_CPUID_BIT 21
__asm pushfd
__asm pushfd
/*
__asm pop eax
// __asm mov edx, eax
__asm btc eax, EFALGS_CPUID_BIT
__asm push eax
*/
__asm btc dword ptr [esp], EFALGS_CPUID_BIT
__asm popfd
__asm pushfd
__asm pop eax
// __asm xor eax, edx
__asm xor eax, [esp]
// __asm push edx
__asm popfd
__asm and eax, (1 shl EFALGS_CPUID_BIT)
__asm jz end_func
#endif
__asm push ebx
__asm xor eax, eax // func
__asm xor ecx, ecx // subFunction (optional) for (func == 0)
__asm cpuid
__asm pop ebx
#if defined(NEED_CHECK_FOR_CPUID)
end_func:
#endif
__asm ret 0
}
void __declspec(naked) Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
UNUSED_VAR(p)
UNUSED_VAR(func)
__asm push ebx
__asm push edi
__asm mov edi, ecx // p
__asm mov eax, edx // func
__asm xor ecx, ecx // subfunction (optional) for (func == 0)
__asm cpuid
__asm mov [edi ], eax
__asm mov [edi + 4], ebx
__asm mov [edi + 8], ecx
__asm mov [edi + 12], edx
__asm pop edi
__asm pop ebx
__asm ret 0
}
#else // MY_CPU_AMD64
#if _MSC_VER >= 1600
#include <intrin.h>
#define MY_cpuidex __cpuidex
#else
/*
__cpuid (func == (0 or 7)) requires subfunction number in ECX.
MSDN: The __cpuid intrinsic clears the ECX register before calling the cpuid instruction.
__cpuid() in new MSVC clears ECX.
__cpuid() in old MSVC (14.00) x64 doesn't clear ECX
We still can use __cpuid for low (func) values that don't require ECX,
but __cpuid() in old MSVC will be incorrect for some func values: (func == 7).
So here we use the hack for old MSVC to send (subFunction) in ECX register to cpuid instruction,
where ECX value is first parameter for FASTCALL / NO_INLINE func,
So the caller of MY_cpuidex_HACK() sets ECX as subFunction, and
old MSVC for __cpuid() doesn't change ECX and cpuid instruction gets (subFunction) value.
DON'T remove Z7_NO_INLINE and Z7_FASTCALL for MY_cpuidex_HACK(): !!!
*/
static
Z7_NO_INLINE void Z7_FASTCALL MY_cpuidex_HACK(UInt32 subFunction, UInt32 func, int *CPUInfo)
{
UNUSED_VAR(subFunction)
__cpuid(CPUInfo, func);
}
#define MY_cpuidex(info, func, func2) MY_cpuidex_HACK(func2, func, info)
#pragma message("======== MY_cpuidex_HACK WAS USED ========")
#endif // _MSC_VER >= 1600
#if !defined(MY_CPU_AMD64)
/* inlining for __cpuid() in MSVC x86 (32-bit) produces big ineffective code,
so we disable inlining here */
Z7_NO_INLINE
#endif
void Z7_FASTCALL z7_x86_cpuid(UInt32 p[4], UInt32 func)
{
MY_cpuidex((int *)p, (int)func, 0);
}
Z7_NO_INLINE
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void)
{
int a[4];
MY_cpuidex(a, 0, 0);
return a[0];
}
#endif // MY_CPU_AMD64
#endif // _MSC_VER
#if defined(NEED_CHECK_FOR_CPUID)
#define CHECK_CPUID_IS_SUPPORTED { if (z7_x86_cpuid_GetMaxFunc() == 0) return 0; }
#else
#define CHECK_CPUID_IS_SUPPORTED
#endif
#undef NEED_CHECK_FOR_CPUID
static
BoolInt x86cpuid_Func_1(UInt32 *p)
{
CHECK_CPUID_IS_SUPPORTED
z7_x86_cpuid(p, 1);
return True;
}
/*
static const UInt32 kVendors[][1] =
{
{ 0x756E6547 }, // , 0x49656E69, 0x6C65746E },
{ 0x68747541 }, // , 0x69746E65, 0x444D4163 },
{ 0x746E6543 } // , 0x48727561, 0x736C7561 }
};
*/
/*
typedef struct
{
UInt32 maxFunc;
UInt32 vendor[3];
UInt32 ver;
UInt32 b;
UInt32 c;
UInt32 d;
} Cx86cpuid;
enum
{
CPU_FIRM_INTEL,
CPU_FIRM_AMD,
CPU_FIRM_VIA
};
int x86cpuid_GetFirm(const Cx86cpuid *p);
#define x86cpuid_ver_GetFamily(ver) (((ver >> 16) & 0xff0) | ((ver >> 8) & 0xf))
#define x86cpuid_ver_GetModel(ver) (((ver >> 12) & 0xf0) | ((ver >> 4) & 0xf))
#define x86cpuid_ver_GetStepping(ver) (ver & 0xf)
int x86cpuid_GetFirm(const Cx86cpuid *p)
{
unsigned i;
for (i = 0; i < sizeof(kVendors) / sizeof(kVendors[0]); i++)
{
const UInt32 *v = kVendors[i];
if (v[0] == p->vendor[0]
// && v[1] == p->vendor[1]
// && v[2] == p->vendor[2]
)
return (int)i;
}
return -1;
}
BoolInt CPU_Is_InOrder()
{
Cx86cpuid p;
UInt32 family, model;
if (!x86cpuid_CheckAndRead(&p))
return True;
family = x86cpuid_ver_GetFamily(p.ver);
model = x86cpuid_ver_GetModel(p.ver);
switch (x86cpuid_GetFirm(&p))
{
case CPU_FIRM_INTEL: return (family < 6 || (family == 6 && (
// In-Order Atom CPU
model == 0x1C // 45 nm, N4xx, D4xx, N5xx, D5xx, 230, 330
|| model == 0x26 // 45 nm, Z6xx
|| model == 0x27 // 32 nm, Z2460
|| model == 0x35 // 32 nm, Z2760
|| model == 0x36 // 32 nm, N2xxx, D2xxx
)));
case CPU_FIRM_AMD: return (family < 5 || (family == 5 && (model < 6 || model == 0xA)));
case CPU_FIRM_VIA: return (family < 6 || (family == 6 && model < 0xF));
}
return False; // v23 : unknown processors are not In-Order
}
*/
#ifdef _WIN32
#include "7zWindows.h"
#endif
#if !defined(MY_CPU_AMD64) && defined(_WIN32)
/* for legacy SSE ia32: there is no user-space cpu instruction to check
that OS supports SSE register storing/restoring on context switches.
So we need some OS-specific function to check that it's safe to use SSE registers.
*/
Z7_FORCE_INLINE
static BoolInt CPU_Sys_Is_SSE_Supported(void)
{
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4996) // `GetVersion': was declared deprecated
#endif
/* low byte is major version of Windows
We suppose that any Windows version since
Windows2000 (major == 5) supports SSE registers */
return (Byte)GetVersion() >= 5;
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
#define CHECK_SYS_SSE_SUPPORT if (!CPU_Sys_Is_SSE_Supported()) return False;
#else
#define CHECK_SYS_SSE_SUPPORT
#endif
#if !defined(MY_CPU_AMD64)
BoolInt CPU_IsSupported_CMOV(void)
{
UInt32 a[4];
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 15) & 1;
}
BoolInt CPU_IsSupported_SSE(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 25) & 1;
}
BoolInt CPU_IsSupported_SSE2(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return (a[3] >> 26) & 1;
}
#endif
static UInt32 x86cpuid_Func_1_ECX(void)
{
UInt32 a[4];
CHECK_SYS_SSE_SUPPORT
if (!x86cpuid_Func_1(&a[0]))
return 0;
return a[2];
}
BoolInt CPU_IsSupported_AES(void)
{
return (x86cpuid_Func_1_ECX() >> 25) & 1;
}
BoolInt CPU_IsSupported_SSSE3(void)
{
return (x86cpuid_Func_1_ECX() >> 9) & 1;
}
BoolInt CPU_IsSupported_SSE41(void)
{
return (x86cpuid_Func_1_ECX() >> 19) & 1;
}
BoolInt CPU_IsSupported_SHA(void)
{
CHECK_SYS_SSE_SUPPORT
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
return (d[1] >> 29) & 1;
}
}
/*
MSVC: _xgetbv() intrinsic is available since VS2010SP1.
MSVC also defines (_XCR_XFEATURE_ENABLED_MASK) macro in
<immintrin.h> that we can use or check.
For any 32-bit x86 we can use asm code in MSVC,
but MSVC asm code is huge after compilation.
So _xgetbv() is better
ICC: _xgetbv() intrinsic is available (in what version of ICC?)
ICC defines (__GNUC___) and it supports gnu assembler
also ICC supports MASM style code with -use-msasm switch.
but ICC doesn't support __attribute__((__target__))
GCC/CLANG 9:
_xgetbv() is macro that works via __builtin_ia32_xgetbv()
and we need __attribute__((__target__("xsave")).
But with __target__("xsave") the function will be not
inlined to function that has no __target__("xsave") attribute.
If we want _xgetbv() call inlining, then we should use asm version
instead of calling _xgetbv().
Note:intrinsic is broke before GCC 8.2:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85684
*/
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1100) \
|| defined(_MSC_VER) && (_MSC_VER >= 1600) && (_MSC_FULL_VER >= 160040219) \
|| defined(__GNUC__) && (__GNUC__ >= 9) \
|| defined(__clang__) && (__clang_major__ >= 9)
// we define ATTRIB_XGETBV, if we want to use predefined _xgetbv() from compiler
#if defined(__INTEL_COMPILER)
#define ATTRIB_XGETBV
#elif defined(__GNUC__) || defined(__clang__)
// we don't define ATTRIB_XGETBV here, because asm version is better for inlining.
// #define ATTRIB_XGETBV __attribute__((__target__("xsave")))
#else
#define ATTRIB_XGETBV
#endif
#endif
#if defined(ATTRIB_XGETBV)
#include <immintrin.h>
#endif
// XFEATURE_ENABLED_MASK/XCR0
#define MY_XCR_XFEATURE_ENABLED_MASK 0
#if defined(ATTRIB_XGETBV)
ATTRIB_XGETBV
#endif
static UInt64 x86_xgetbv_0(UInt32 num)
{
#if defined(ATTRIB_XGETBV)
{
return
#if (defined(_MSC_VER))
_xgetbv(num);
#else
__builtin_ia32_xgetbv(
#if !defined(__clang__)
(int)
#endif
num);
#endif
}
#elif defined(__GNUC__) || defined(__clang__) || defined(__SUNPRO_CC)
UInt32 a, d;
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 4))
__asm__
(
"xgetbv"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#else // is old gcc
__asm__
(
".byte 0x0f, 0x01, 0xd0" "\n\t"
: "=a"(a), "=d"(d) : "c"(num) : "cc"
);
#endif
return ((UInt64)d << 32) | a;
// return a;
#elif defined(_MSC_VER) && !defined(MY_CPU_AMD64)
UInt32 a, d;
__asm {
push eax
push edx
push ecx
mov ecx, num;
// xor ecx, ecx // = MY_XCR_XFEATURE_ENABLED_MASK
_emit 0x0f
_emit 0x01
_emit 0xd0
mov a, eax
mov d, edx
pop ecx
pop edx
pop eax
}
return ((UInt64)d << 32) | a;
// return a;
#else // it's unknown compiler
// #error "Need xgetbv function"
UNUSED_VAR(num)
// for MSVC-X64 we could call external function from external file.
/* Actually we had checked OSXSAVE/AVX in cpuid before.
So it's expected that OS supports at least AVX and below. */
// if (num != MY_XCR_XFEATURE_ENABLED_MASK) return 0; // if not XCR0
return
// (1 << 0) | // x87
(1 << 1) // SSE
| (1 << 2); // AVX
#endif
}
#ifdef _WIN32
/*
Windows versions do not know about new ISA extensions that
can be introduced. But we still can use new extensions,
even if Windows doesn't report about supporting them,
But we can use new extensions, only if Windows knows about new ISA extension
that changes the number or size of registers: SSE, AVX/XSAVE, AVX512
So it's enough to check
MY_PF_AVX_INSTRUCTIONS_AVAILABLE
instead of
MY_PF_AVX2_INSTRUCTIONS_AVAILABLE
*/
#define MY_PF_XSAVE_ENABLED 17
// #define MY_PF_SSSE3_INSTRUCTIONS_AVAILABLE 36
// #define MY_PF_SSE4_1_INSTRUCTIONS_AVAILABLE 37
// #define MY_PF_SSE4_2_INSTRUCTIONS_AVAILABLE 38
// #define MY_PF_AVX_INSTRUCTIONS_AVAILABLE 39
// #define MY_PF_AVX2_INSTRUCTIONS_AVAILABLE 40
// #define MY_PF_AVX512F_INSTRUCTIONS_AVAILABLE 41
#endif
BoolInt CPU_IsSupported_AVX(void)
{
#ifdef _WIN32
if (!IsProcessorFeaturePresent(MY_PF_XSAVE_ENABLED))
return False;
/* PF_AVX_INSTRUCTIONS_AVAILABLE probably is supported starting from
some latest Win10 revisions. But we need AVX in older Windows also.
So we don't use the following check: */
/*
if (!IsProcessorFeaturePresent(MY_PF_AVX_INSTRUCTIONS_AVAILABLE))
return False;
*/
#endif
/*
OS must use new special XSAVE/XRSTOR instructions to save
AVX registers when it required for context switching.
At OS statring:
OS sets CR4.OSXSAVE flag to signal the processor that OS supports the XSAVE extensions.
Also OS sets bitmask in XCR0 register that defines what
registers will be processed by XSAVE instruction:
XCR0.SSE[bit 0] - x87 registers and state
XCR0.SSE[bit 1] - SSE registers and state
XCR0.AVX[bit 2] - AVX registers and state
CR4.OSXSAVE is reflected to CPUID.1:ECX.OSXSAVE[bit 27].
So we can read that bit in user-space.
XCR0 is available for reading in user-space by new XGETBV instruction.
*/
{
const UInt32 c = x86cpuid_Func_1_ECX();
if (0 == (1
& (c >> 28) // AVX instructions are supported by hardware
& (c >> 27))) // OSXSAVE bit: XSAVE and related instructions are enabled by OS.
return False;
}
/* also we can check
CPUID.1:ECX.XSAVE [bit 26] : that shows that
XSAVE, XRESTOR, XSETBV, XGETBV instructions are supported by hardware.
But that check is redundant, because if OSXSAVE bit is set, then XSAVE is also set */
/* If OS have enabled XSAVE extension instructions (OSXSAVE == 1),
in most cases we expect that OS also will support storing/restoring
for AVX and SSE states at least.
But to be ensure for that we call user-space instruction
XGETBV(0) to get XCR0 value that contains bitmask that defines
what exact states(registers) OS have enabled for storing/restoring.
*/
{
const UInt32 bm = (UInt32)x86_xgetbv_0(MY_XCR_XFEATURE_ENABLED_MASK);
// printf("\n=== XGetBV=%d\n", bm);
return 1
& (bm >> 1) // SSE state is supported (set by OS) for storing/restoring
& (bm >> 2); // AVX state is supported (set by OS) for storing/restoring
}
// since Win7SP1: we can use GetEnabledXStateFeatures();
}
BoolInt CPU_IsSupported_AVX2(void)
{
if (!CPU_IsSupported_AVX())
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5); // avx2
}
}
BoolInt CPU_IsSupported_VAES_AVX2(void)
{
if (!CPU_IsSupported_AVX())
return False;
if (z7_x86_cpuid_GetMaxFunc() < 7)
return False;
{
UInt32 d[4];
z7_x86_cpuid(d, 7);
// printf("\ncpuid(7): ebx=%8x ecx=%8x\n", d[1], d[2]);
return 1
& (d[1] >> 5) // avx2
// & (d[1] >> 31) // avx512vl
& (d[2] >> 9); // vaes // VEX-256/EVEX
}
}
BoolInt CPU_IsSupported_PageGB(void)
{
CHECK_CPUID_IS_SUPPORTED
{
UInt32 d[4];
z7_x86_cpuid(d, 0x80000000);
if (d[0] < 0x80000001)
return False;
z7_x86_cpuid(d, 0x80000001);
return (d[3] >> 26) & 1;
}
}
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _WIN32
#include "7zWindows.h"
BoolInt CPU_IsSupported_CRC32(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_CRYPTO(void) { return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
BoolInt CPU_IsSupported_NEON(void) { return IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE) ? 1 : 0; }
#else
#if defined(__APPLE__)
/*
#include <stdio.h>
#include <string.h>
static void Print_sysctlbyname(const char *name)
{
size_t bufSize = 256;
char buf[256];
int res = sysctlbyname(name, &buf, &bufSize, NULL, 0);
{
int i;
printf("\nres = %d : %s : '%s' : bufSize = %d, numeric", res, name, buf, (unsigned)bufSize);
for (i = 0; i < 20; i++)
printf(" %2x", (unsigned)(Byte)buf[i]);
}
}
*/
/*
Print_sysctlbyname("hw.pagesize");
Print_sysctlbyname("machdep.cpu.brand_string");
*/
static BoolInt z7_sysctlbyname_Get_BoolInt(const char *name)
{
UInt32 val = 0;
if (z7_sysctlbyname_Get_UInt32(name, &val) == 0 && val == 1)
return 1;
return 0;
}
BoolInt CPU_IsSupported_CRC32(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.armv8_crc32");
}
BoolInt CPU_IsSupported_NEON(void)
{
return z7_sysctlbyname_Get_BoolInt("hw.optional.neon");
}
#ifdef MY_CPU_ARM64
#define APPLE_CRYPTO_SUPPORT_VAL 1
#else
#define APPLE_CRYPTO_SUPPORT_VAL 0
#endif
BoolInt CPU_IsSupported_SHA1(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_SHA2(void) { return APPLE_CRYPTO_SUPPORT_VAL; }
BoolInt CPU_IsSupported_AES (void) { return APPLE_CRYPTO_SUPPORT_VAL; }
#else // __APPLE__
#include <sys/auxv.h>
#define USE_HWCAP
#ifdef USE_HWCAP
#include <asm/hwcap.h>
#define MY_HWCAP_CHECK_FUNC_2(name1, name2) \
BoolInt CPU_IsSupported_ ## name1() { return (getauxval(AT_HWCAP) & (HWCAP_ ## name2)) ? 1 : 0; }
#ifdef MY_CPU_ARM64
#define MY_HWCAP_CHECK_FUNC(name) \
MY_HWCAP_CHECK_FUNC_2(name, name)
MY_HWCAP_CHECK_FUNC_2(NEON, ASIMD)
// MY_HWCAP_CHECK_FUNC (ASIMD)
#elif defined(MY_CPU_ARM)
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return (getauxval(AT_HWCAP2) & (HWCAP2_ ## name)) ? 1 : 0; }
MY_HWCAP_CHECK_FUNC_2(NEON, NEON)
#endif
#else // USE_HWCAP
#define MY_HWCAP_CHECK_FUNC(name) \
BoolInt CPU_IsSupported_ ## name() { return 0; }
MY_HWCAP_CHECK_FUNC(NEON)
#endif // USE_HWCAP
MY_HWCAP_CHECK_FUNC (CRC32)
MY_HWCAP_CHECK_FUNC (SHA1)
MY_HWCAP_CHECK_FUNC (SHA2)
MY_HWCAP_CHECK_FUNC (AES)
#endif // __APPLE__
#endif // _WIN32
#endif // MY_CPU_ARM_OR_ARM64
#ifdef __APPLE__
#include <sys/sysctl.h>
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize)
{
return sysctlbyname(name, buf, bufSize, NULL, 0);
}
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val)
{
size_t bufSize = sizeof(*val);
const int res = z7_sysctlbyname_Get(name, val, &bufSize);
if (res == 0 && bufSize != sizeof(*val))
return EFAULT;
return res;
}
#endif

View File

@ -1,523 +0,0 @@
/* CpuArch.h -- CPU specific code
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_CPU_ARCH_H
#define ZIP7_INC_CPU_ARCH_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
MY_CPU_LE means that CPU is LITTLE ENDIAN.
MY_CPU_BE means that CPU is BIG ENDIAN.
If MY_CPU_LE and MY_CPU_BE are not defined, we don't know about ENDIANNESS of platform.
MY_CPU_LE_UNALIGN means that CPU is LITTLE ENDIAN and CPU supports unaligned memory accesses.
MY_CPU_64BIT means that processor can work with 64-bit registers.
MY_CPU_64BIT can be used to select fast code branch
MY_CPU_64BIT doesn't mean that (sizeof(void *) == 8)
*/
#if defined(_M_X64) \
|| defined(_M_AMD64) \
|| defined(__x86_64__) \
|| defined(__AMD64__) \
|| defined(__amd64__)
#define MY_CPU_AMD64
#ifdef __ILP32__
#define MY_CPU_NAME "x32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "x64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
#if defined(_M_IX86) \
|| defined(__i386__)
#define MY_CPU_X86
#define MY_CPU_NAME "x86"
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
#if defined(_M_ARM64) \
|| defined(__AARCH64EL__) \
|| defined(__AARCH64EB__) \
|| defined(__aarch64__)
#define MY_CPU_ARM64
#ifdef __ILP32__
#define MY_CPU_NAME "arm64-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "arm64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#endif
#if defined(_M_ARM) \
|| defined(_M_ARM_NT) \
|| defined(_M_ARMT) \
|| defined(__arm__) \
|| defined(__thumb__) \
|| defined(__ARMEL__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEL__) \
|| defined(__THUMBEB__)
#define MY_CPU_ARM
#if defined(__thumb__) || defined(__THUMBEL__) || defined(_M_ARMT)
#define MY_CPU_ARMT
#define MY_CPU_NAME "armt"
#else
#define MY_CPU_ARM32
#define MY_CPU_NAME "arm"
#endif
/* #define MY_CPU_32BIT */
#define MY_CPU_SIZEOF_POINTER 4
#endif
#if defined(_M_IA64) \
|| defined(__ia64__)
#define MY_CPU_IA64
#define MY_CPU_NAME "ia64"
#define MY_CPU_64BIT
#endif
#if defined(__mips64) \
|| defined(__mips64__) \
|| (defined(__mips) && (__mips == 64 || __mips == 4 || __mips == 3))
#define MY_CPU_NAME "mips64"
#define MY_CPU_64BIT
#elif defined(__mips__)
#define MY_CPU_NAME "mips"
/* #define MY_CPU_32BIT */
#endif
#if defined(__ppc64__) \
|| defined(__powerpc64__) \
|| defined(__ppc__) \
|| defined(__powerpc__) \
|| defined(__PPC__) \
|| defined(_POWER)
#define MY_CPU_PPC_OR_PPC64
#if defined(__ppc64__) \
|| defined(__powerpc64__) \
|| defined(_LP64) \
|| defined(__64BIT__)
#ifdef __ILP32__
#define MY_CPU_NAME "ppc64-32"
#define MY_CPU_SIZEOF_POINTER 4
#else
#define MY_CPU_NAME "ppc64"
#define MY_CPU_SIZEOF_POINTER 8
#endif
#define MY_CPU_64BIT
#else
#define MY_CPU_NAME "ppc"
#define MY_CPU_SIZEOF_POINTER 4
/* #define MY_CPU_32BIT */
#endif
#endif
#if defined(__riscv) \
|| defined(__riscv__)
#if __riscv_xlen == 32
#define MY_CPU_NAME "riscv32"
#elif __riscv_xlen == 64
#define MY_CPU_NAME "riscv64"
#else
#define MY_CPU_NAME "riscv"
#endif
#endif
#if defined(MY_CPU_X86) || defined(MY_CPU_AMD64)
#define MY_CPU_X86_OR_AMD64
#endif
#if defined(MY_CPU_ARM) || defined(MY_CPU_ARM64)
#define MY_CPU_ARM_OR_ARM64
#endif
#ifdef _WIN32
#ifdef MY_CPU_ARM
#define MY_CPU_ARM_LE
#endif
#ifdef MY_CPU_ARM64
#define MY_CPU_ARM64_LE
#endif
#ifdef _M_IA64
#define MY_CPU_IA64_LE
#endif
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_LE) \
|| defined(MY_CPU_ARM64_LE) \
|| defined(MY_CPU_IA64_LE) \
|| defined(__LITTLE_ENDIAN__) \
|| defined(__ARMEL__) \
|| defined(__THUMBEL__) \
|| defined(__AARCH64EL__) \
|| defined(__MIPSEL__) \
|| defined(__MIPSEL) \
|| defined(_MIPSEL) \
|| defined(__BFIN__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__))
#define MY_CPU_LE
#endif
#if defined(__BIG_ENDIAN__) \
|| defined(__ARMEB__) \
|| defined(__THUMBEB__) \
|| defined(__AARCH64EB__) \
|| defined(__MIPSEB__) \
|| defined(__MIPSEB) \
|| defined(_MIPSEB) \
|| defined(__m68k__) \
|| defined(__s390__) \
|| defined(__s390x__) \
|| defined(__zarch__) \
|| (defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__))
#define MY_CPU_BE
#endif
#if defined(MY_CPU_LE) && defined(MY_CPU_BE)
#error Stop_Compiling_Bad_Endian
#endif
#if !defined(MY_CPU_LE) && !defined(MY_CPU_BE)
#error Stop_Compiling_CPU_ENDIAN_must_be_detected_at_compile_time
#endif
#if defined(MY_CPU_32BIT) && defined(MY_CPU_64BIT)
#error Stop_Compiling_Bad_32_64_BIT
#endif
#ifdef __SIZEOF_POINTER__
#ifdef MY_CPU_SIZEOF_POINTER
#if MY_CPU_SIZEOF_POINTER != __SIZEOF_POINTER__
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#else
#define MY_CPU_SIZEOF_POINTER __SIZEOF_POINTER__
#endif
#endif
#if defined(MY_CPU_SIZEOF_POINTER) && (MY_CPU_SIZEOF_POINTER == 4)
#if defined (_LP64)
#error Stop_Compiling_Bad_MY_CPU_PTR_SIZE
#endif
#endif
#ifdef _MSC_VER
#if _MSC_VER >= 1300
#define MY_CPU_pragma_pack_push_1 __pragma(pack(push, 1))
#define MY_CPU_pragma_pop __pragma(pack(pop))
#else
#define MY_CPU_pragma_pack_push_1
#define MY_CPU_pragma_pop
#endif
#else
#ifdef __xlC__
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(1)")
#define MY_CPU_pragma_pop _Pragma("pack()")
#else
#define MY_CPU_pragma_pack_push_1 _Pragma("pack(push, 1)")
#define MY_CPU_pragma_pop _Pragma("pack(pop)")
#endif
#endif
#ifndef MY_CPU_NAME
#ifdef MY_CPU_LE
#define MY_CPU_NAME "LE"
#elif defined(MY_CPU_BE)
#define MY_CPU_NAME "BE"
#else
/*
#define MY_CPU_NAME ""
*/
#endif
#endif
#ifdef __has_builtin
#define Z7_has_builtin(x) __has_builtin(x)
#else
#define Z7_has_builtin(x) 0
#endif
#define Z7_BSWAP32_CONST(v) \
( (((UInt32)(v) << 24) ) \
| (((UInt32)(v) << 8) & (UInt32)0xff0000) \
| (((UInt32)(v) >> 8) & (UInt32)0xff00 ) \
| (((UInt32)(v) >> 24) ))
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
#include <stdlib.h>
/* Note: these macros will use bswap instruction (486), that is unsupported in 386 cpu */
#pragma intrinsic(_byteswap_ushort)
#pragma intrinsic(_byteswap_ulong)
#pragma intrinsic(_byteswap_uint64)
#define Z7_BSWAP16(v) _byteswap_ushort(v)
#define Z7_BSWAP32(v) _byteswap_ulong (v)
#define Z7_BSWAP64(v) _byteswap_uint64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
#elif (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))) \
|| (defined(__clang__) && Z7_has_builtin(__builtin_bswap16))
#define Z7_BSWAP16(v) __builtin_bswap16(v)
#define Z7_BSWAP32(v) __builtin_bswap32(v)
#define Z7_BSWAP64(v) __builtin_bswap64(v)
#define Z7_CPU_FAST_BSWAP_SUPPORTED
#else
#define Z7_BSWAP16(v) ((UInt16) \
( ((UInt32)(v) << 8) \
| ((UInt32)(v) >> 8) \
))
#define Z7_BSWAP32(v) Z7_BSWAP32_CONST(v)
#define Z7_BSWAP64(v) \
( ( ( (UInt64)(v) ) << 8 * 7 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 1) ) << 8 * 5 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 2) ) << 8 * 3 ) \
| ( ( (UInt64)(v) & ((UInt32)0xff << 8 * 3) ) << 8 * 1 ) \
| ( ( (UInt64)(v) >> 8 * 1 ) & ((UInt32)0xff << 8 * 3) ) \
| ( ( (UInt64)(v) >> 8 * 3 ) & ((UInt32)0xff << 8 * 2) ) \
| ( ( (UInt64)(v) >> 8 * 5 ) & ((UInt32)0xff << 8 * 1) ) \
| ( ( (UInt64)(v) >> 8 * 7 ) ) \
)
#endif
#ifdef MY_CPU_LE
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM64)
#define MY_CPU_LE_UNALIGN
#define MY_CPU_LE_UNALIGN_64
#elif defined(__ARM_FEATURE_UNALIGNED)
/* gcc9 for 32-bit arm can use LDRD instruction that requires 32-bit alignment.
So we can't use unaligned 64-bit operations. */
#define MY_CPU_LE_UNALIGN
#endif
#endif
#ifdef MY_CPU_LE_UNALIGN
#define GetUi16(p) (*(const UInt16 *)(const void *)(p))
#define GetUi32(p) (*(const UInt32 *)(const void *)(p))
#ifdef MY_CPU_LE_UNALIGN_64
#define GetUi64(p) (*(const UInt64 *)(const void *)(p))
#define SetUi64(p, v) { *(UInt64 *)(void *)(p) = (v); }
#endif
#define SetUi16(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define SetUi32(p, v) { *(UInt32 *)(void *)(p) = (v); }
#else
#define GetUi16(p) ( (UInt16) ( \
((const Byte *)(p))[0] | \
((UInt16)((const Byte *)(p))[1] << 8) ))
#define GetUi32(p) ( \
((const Byte *)(p))[0] | \
((UInt32)((const Byte *)(p))[1] << 8) | \
((UInt32)((const Byte *)(p))[2] << 16) | \
((UInt32)((const Byte *)(p))[3] << 24))
#define SetUi16(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); }
#define SetUi32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)_vvv_; \
_ppp_[1] = (Byte)(_vvv_ >> 8); \
_ppp_[2] = (Byte)(_vvv_ >> 16); \
_ppp_[3] = (Byte)(_vvv_ >> 24); }
#endif
#ifndef GetUi64
#define GetUi64(p) (GetUi32(p) | ((UInt64)GetUi32(((const Byte *)(p)) + 4) << 32))
#endif
#ifndef SetUi64
#define SetUi64(p, v) { Byte *_ppp2_ = (Byte *)(p); UInt64 _vvv2_ = (v); \
SetUi32(_ppp2_ , (UInt32)_vvv2_) \
SetUi32(_ppp2_ + 4, (UInt32)(_vvv2_ >> 32)) }
#endif
#if defined(MY_CPU_LE_UNALIGN) && defined(Z7_CPU_FAST_BSWAP_SUPPORTED)
#define GetBe32(p) Z7_BSWAP32 (*(const UInt32 *)(const void *)(p))
#define SetBe32(p, v) { (*(UInt32 *)(void *)(p)) = Z7_BSWAP32(v); }
#if defined(MY_CPU_LE_UNALIGN_64)
#define GetBe64(p) Z7_BSWAP64 (*(const UInt64 *)(const void *)(p))
#endif
#else
#define GetBe32(p) ( \
((UInt32)((const Byte *)(p))[0] << 24) | \
((UInt32)((const Byte *)(p))[1] << 16) | \
((UInt32)((const Byte *)(p))[2] << 8) | \
((const Byte *)(p))[3] )
#define SetBe32(p, v) { Byte *_ppp_ = (Byte *)(p); UInt32 _vvv_ = (v); \
_ppp_[0] = (Byte)(_vvv_ >> 24); \
_ppp_[1] = (Byte)(_vvv_ >> 16); \
_ppp_[2] = (Byte)(_vvv_ >> 8); \
_ppp_[3] = (Byte)_vvv_; }
#endif
#ifndef GetBe64
#define GetBe64(p) (((UInt64)GetBe32(p) << 32) | GetBe32(((const Byte *)(p)) + 4))
#endif
#ifndef GetBe16
#define GetBe16(p) ( (UInt16) ( \
((UInt16)((const Byte *)(p))[0] << 8) | \
((const Byte *)(p))[1] ))
#endif
#if defined(MY_CPU_BE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_NATIVE_TO_BE_32(v) (v)
#elif defined(MY_CPU_LE)
#define Z7_CONV_BE_TO_NATIVE_CONST32(v) Z7_BSWAP32_CONST(v)
#define Z7_CONV_LE_TO_NATIVE_CONST32(v) (v)
#define Z7_CONV_NATIVE_TO_BE_32(v) Z7_BSWAP32(v)
#else
#error Stop_Compiling_Unknown_Endian_CONV
#endif
#if defined(MY_CPU_BE)
#define GetBe32a(p) (*(const UInt32 *)(const void *)(p))
#define GetBe16a(p) (*(const UInt16 *)(const void *)(p))
#define SetBe32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetBe16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetUi32a(p) GetUi32(p)
#define GetUi16a(p) GetUi16(p)
#define SetUi32a(p, v) SetUi32(p, v)
#define SetUi16a(p, v) SetUi16(p, v)
#elif defined(MY_CPU_LE)
#define GetUi32a(p) (*(const UInt32 *)(const void *)(p))
#define GetUi16a(p) (*(const UInt16 *)(const void *)(p))
#define SetUi32a(p, v) { *(UInt32 *)(void *)(p) = (v); }
#define SetUi16a(p, v) { *(UInt16 *)(void *)(p) = (v); }
#define GetBe32a(p) GetBe32(p)
#define GetBe16a(p) GetBe16(p)
#define SetBe32a(p, v) SetBe32(p, v)
#define SetBe16a(p, v) SetBe16(p, v)
#else
#error Stop_Compiling_Unknown_Endian_CPU_a
#endif
#if defined(MY_CPU_X86_OR_AMD64) \
|| defined(MY_CPU_ARM_OR_ARM64) \
|| defined(MY_CPU_PPC_OR_PPC64)
#define Z7_CPU_FAST_ROTATE_SUPPORTED
#endif
#ifdef MY_CPU_X86_OR_AMD64
void Z7_FASTCALL z7_x86_cpuid(UInt32 a[4], UInt32 function);
UInt32 Z7_FASTCALL z7_x86_cpuid_GetMaxFunc(void);
#if defined(MY_CPU_AMD64)
#define Z7_IF_X86_CPUID_SUPPORTED
#else
#define Z7_IF_X86_CPUID_SUPPORTED if (z7_x86_cpuid_GetMaxFunc())
#endif
BoolInt CPU_IsSupported_AES(void);
BoolInt CPU_IsSupported_AVX(void);
BoolInt CPU_IsSupported_AVX2(void);
BoolInt CPU_IsSupported_VAES_AVX2(void);
BoolInt CPU_IsSupported_CMOV(void);
BoolInt CPU_IsSupported_SSE(void);
BoolInt CPU_IsSupported_SSE2(void);
BoolInt CPU_IsSupported_SSSE3(void);
BoolInt CPU_IsSupported_SSE41(void);
BoolInt CPU_IsSupported_SHA(void);
BoolInt CPU_IsSupported_PageGB(void);
#elif defined(MY_CPU_ARM_OR_ARM64)
BoolInt CPU_IsSupported_CRC32(void);
BoolInt CPU_IsSupported_NEON(void);
#if defined(_WIN32)
BoolInt CPU_IsSupported_CRYPTO(void);
#define CPU_IsSupported_SHA1 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_SHA2 CPU_IsSupported_CRYPTO
#define CPU_IsSupported_AES CPU_IsSupported_CRYPTO
#else
BoolInt CPU_IsSupported_SHA1(void);
BoolInt CPU_IsSupported_SHA2(void);
BoolInt CPU_IsSupported_AES(void);
#endif
#endif
#if defined(__APPLE__)
int z7_sysctlbyname_Get(const char *name, void *buf, size_t *bufSize);
int z7_sysctlbyname_Get_UInt32(const char *name, UInt32 *val);
#endif
EXTERN_C_END
#endif

View File

@ -1,169 +0,0 @@
/* Delta.c -- Delta converter
2021-02-09 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Delta.h"
void Delta_Init(Byte *state)
{
unsigned i;
for (i = 0; i < DELTA_STATE_SIZE; i++)
state[i] = 0;
}
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
Byte temp[DELTA_STATE_SIZE];
if (size == 0)
return;
{
unsigned i = 0;
do
temp[i] = state[i];
while (++i != delta);
}
if (size <= delta)
{
unsigned i = 0, k;
do
{
Byte b = *data;
*data++ = (Byte)(b - temp[i]);
temp[i] = b;
}
while (++i != size);
k = 0;
do
{
if (i == delta)
i = 0;
state[k] = temp[i++];
}
while (++k != delta);
return;
}
{
Byte *p = data + size - delta;
{
unsigned i = 0;
do
state[i] = *p++;
while (++i != delta);
}
{
const Byte *lim = data + delta;
ptrdiff_t dif = -(ptrdiff_t)delta;
if (((ptrdiff_t)size + dif) & 1)
{
--p; *p = (Byte)(*p - p[dif]);
}
while (p != lim)
{
--p; *p = (Byte)(*p - p[dif]);
--p; *p = (Byte)(*p - p[dif]);
}
dif = -dif;
do
{
--p; *p = (Byte)(*p - temp[--dif]);
}
while (dif != 0);
}
}
}
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size)
{
unsigned i;
const Byte *lim;
if (size == 0)
return;
i = 0;
lim = data + size;
if (size <= delta)
{
do
*data = (Byte)(*data + state[i++]);
while (++data != lim);
for (; delta != i; state++, delta--)
*state = state[i];
data -= i;
}
else
{
/*
#define B(n) b ## n
#define I(n) Byte B(n) = state[n];
#define U(n) { B(n) = (Byte)((B(n)) + *data++); data[-1] = (B(n)); }
#define F(n) if (data != lim) { U(n) }
if (delta == 1)
{
I(0)
if ((lim - data) & 1) { U(0) }
while (data != lim) { U(0) U(0) }
data -= 1;
}
else if (delta == 2)
{
I(0) I(1)
lim -= 1; while (data < lim) { U(0) U(1) }
lim += 1; F(0)
data -= 2;
}
else if (delta == 3)
{
I(0) I(1) I(2)
lim -= 2; while (data < lim) { U(0) U(1) U(2) }
lim += 2; F(0) F(1)
data -= 3;
}
else if (delta == 4)
{
I(0) I(1) I(2) I(3)
lim -= 3; while (data < lim) { U(0) U(1) U(2) U(3) }
lim += 3; F(0) F(1) F(2)
data -= 4;
}
else
*/
{
do
{
*data = (Byte)(*data + state[i++]);
data++;
}
while (i != delta);
{
ptrdiff_t dif = -(ptrdiff_t)delta;
do
*data = (Byte)(*data + data[dif]);
while (++data != lim);
data += dif;
}
}
}
do
*state++ = *data;
while (++data != lim);
}

View File

@ -1,19 +0,0 @@
/* Delta.h -- Delta converter
2023-03-03 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_DELTA_H
#define ZIP7_INC_DELTA_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define DELTA_STATE_SIZE 256
void Delta_Init(Byte *state);
void Delta_Encode(Byte *state, unsigned delta, Byte *data, SizeT size);
void Delta_Decode(Byte *state, unsigned delta, Byte *data, SizeT size);
EXTERN_C_END
#endif

View File

@ -1,111 +0,0 @@
/* DllSecur.c -- DLL loading security
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#include "7zWindows.h"
#include "DllSecur.h"
#ifndef UNDER_CE
#if (defined(__GNUC__) && (__GNUC__ >= 8)) || defined(__clang__)
// #pragma GCC diagnostic ignored "-Wcast-function-type"
#endif
#if defined(__clang__) || defined(__GNUC__)
typedef void (*Z7_voidFunction)(void);
#define MY_CAST_FUNC (Z7_voidFunction)
#elif defined(_MSC_VER) && _MSC_VER > 1920
#define MY_CAST_FUNC (void *)
// #pragma warning(disable : 4191) // 'type cast': unsafe conversion from 'FARPROC' to 'void (__cdecl *)()'
#else
#define MY_CAST_FUNC
#endif
typedef BOOL (WINAPI *Func_SetDefaultDllDirectories)(DWORD DirectoryFlags);
#define MY_LOAD_LIBRARY_SEARCH_USER_DIRS 0x400
#define MY_LOAD_LIBRARY_SEARCH_SYSTEM32 0x800
#define DELIM "\0"
static const char * const g_Dlls =
"userenv"
DELIM "setupapi"
DELIM "apphelp"
DELIM "propsys"
DELIM "dwmapi"
DELIM "cryptbase"
DELIM "oleacc"
DELIM "clbcatq"
DELIM "version"
#ifndef _CONSOLE
DELIM "uxtheme"
#endif
DELIM;
#endif
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
#if defined (_MSC_VER) && _MSC_VER >= 1900
// sysinfoapi.h: kit10: GetVersion was declared deprecated
#pragma warning(disable : 4996)
#endif
#define IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN \
if ((UInt16)GetVersion() != 6) { \
const \
Func_SetDefaultDllDirectories setDllDirs = \
(Func_SetDefaultDllDirectories) MY_CAST_FUNC GetProcAddress(GetModuleHandle(TEXT("kernel32.dll")), \
"SetDefaultDllDirectories"); \
if (setDllDirs) if (setDllDirs(MY_LOAD_LIBRARY_SEARCH_SYSTEM32 | MY_LOAD_LIBRARY_SEARCH_USER_DIRS)) return; }
void My_SetDefaultDllDirectories(void)
{
#ifndef UNDER_CE
IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN
#endif
}
void LoadSecurityDlls(void)
{
#ifndef UNDER_CE
// at Vista (ver 6.0) : CoCreateInstance(CLSID_ShellLink, ...) doesn't work after SetDefaultDllDirectories() : Check it ???
IF_NON_VISTA_SET_DLL_DIRS_AND_RETURN
{
wchar_t buf[MAX_PATH + 100];
const char *dll;
unsigned pos = GetSystemDirectoryW(buf, MAX_PATH + 2);
if (pos == 0 || pos > MAX_PATH)
return;
if (buf[pos - 1] != '\\')
buf[pos++] = '\\';
for (dll = g_Dlls; *dll != 0;)
{
wchar_t *dest = &buf[pos];
for (;;)
{
const char c = *dll++;
if (c == 0)
break;
*dest++ = (Byte)c;
}
dest[0] = '.';
dest[1] = 'd';
dest[2] = 'l';
dest[3] = 'l';
dest[4] = 0;
// lstrcatW(buf, L".dll");
LoadLibraryExW(buf, NULL, LOAD_WITH_ALTERED_SEARCH_PATH);
}
}
#endif
}
#endif // _WIN32

View File

@ -1,20 +0,0 @@
/* DllSecur.h -- DLL loading for security
2023-03-03 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_DLL_SECUR_H
#define ZIP7_INC_DLL_SECUR_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#ifdef _WIN32
void My_SetDefaultDllDirectories(void);
void LoadSecurityDlls(void);
#endif
EXTERN_C_END
#endif

View File

@ -1,154 +0,0 @@
/* HuffEnc.c -- functions for Huffman encoding
2023-03-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "HuffEnc.h"
#include "Sort.h"
#define kMaxLen 16
#define NUM_BITS 10
#define MASK (((unsigned)1 << NUM_BITS) - 1)
#define NUM_COUNTERS 64
#define HUFFMAN_SPEED_OPT
void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 numSymbols, UInt32 maxLen)
{
UInt32 num = 0;
/* if (maxLen > 10) maxLen = 10; */
{
UInt32 i;
#ifdef HUFFMAN_SPEED_OPT
UInt32 counters[NUM_COUNTERS];
for (i = 0; i < NUM_COUNTERS; i++)
counters[i] = 0;
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
counters[(freq < NUM_COUNTERS - 1) ? freq : NUM_COUNTERS - 1]++;
}
for (i = 1; i < NUM_COUNTERS; i++)
{
UInt32 temp = counters[i];
counters[i] = num;
num += temp;
}
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
if (freq == 0)
lens[i] = 0;
else
p[counters[((freq < NUM_COUNTERS - 1) ? freq : NUM_COUNTERS - 1)]++] = i | (freq << NUM_BITS);
}
counters[0] = 0;
HeapSort(p + counters[NUM_COUNTERS - 2], counters[NUM_COUNTERS - 1] - counters[NUM_COUNTERS - 2]);
#else
for (i = 0; i < numSymbols; i++)
{
UInt32 freq = freqs[i];
if (freq == 0)
lens[i] = 0;
else
p[num++] = i | (freq << NUM_BITS);
}
HeapSort(p, num);
#endif
}
if (num < 2)
{
unsigned minCode = 0;
unsigned maxCode = 1;
if (num == 1)
{
maxCode = (unsigned)p[0] & MASK;
if (maxCode == 0)
maxCode++;
}
p[minCode] = 0;
p[maxCode] = 1;
lens[minCode] = lens[maxCode] = 1;
return;
}
{
UInt32 b, e, i;
i = b = e = 0;
do
{
UInt32 n, m, freq;
n = (i != num && (b == e || (p[i] >> NUM_BITS) <= (p[b] >> NUM_BITS))) ? i++ : b++;
freq = (p[n] & ~MASK);
p[n] = (p[n] & MASK) | (e << NUM_BITS);
m = (i != num && (b == e || (p[i] >> NUM_BITS) <= (p[b] >> NUM_BITS))) ? i++ : b++;
freq += (p[m] & ~MASK);
p[m] = (p[m] & MASK) | (e << NUM_BITS);
p[e] = (p[e] & MASK) | freq;
e++;
}
while (num - e > 1);
{
UInt32 lenCounters[kMaxLen + 1];
for (i = 0; i <= kMaxLen; i++)
lenCounters[i] = 0;
p[--e] &= MASK;
lenCounters[1] = 2;
while (e != 0)
{
UInt32 len = (p[p[--e] >> NUM_BITS] >> NUM_BITS) + 1;
p[e] = (p[e] & MASK) | (len << NUM_BITS);
if (len >= maxLen)
for (len = maxLen - 1; lenCounters[len] == 0; len--);
lenCounters[len]--;
lenCounters[(size_t)len + 1] += 2;
}
{
UInt32 len;
i = 0;
for (len = maxLen; len != 0; len--)
{
UInt32 k;
for (k = lenCounters[len]; k != 0; k--)
lens[p[i++] & MASK] = (Byte)len;
}
}
{
UInt32 nextCodes[kMaxLen + 1];
{
UInt32 code = 0;
UInt32 len;
for (len = 1; len <= kMaxLen; len++)
nextCodes[len] = code = (code + lenCounters[(size_t)len - 1]) << 1;
}
/* if (code + lenCounters[kMaxLen] - 1 != (1 << kMaxLen) - 1) throw 1; */
{
UInt32 k;
for (k = 0; k < numSymbols; k++)
p[k] = nextCodes[lens[k]]++;
}
}
}
}
}
#undef kMaxLen
#undef NUM_BITS
#undef MASK
#undef NUM_COUNTERS
#undef HUFFMAN_SPEED_OPT

View File

@ -1,23 +0,0 @@
/* HuffEnc.h -- Huffman encoding
2023-03-05 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_HUFF_ENC_H
#define ZIP7_INC_HUFF_ENC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/*
Conditions:
num <= 1024 = 2 ^ NUM_BITS
Sum(freqs) < 4M = 2 ^ (32 - NUM_BITS)
maxLen <= 16 = kMaxLen
Num_Items(p) >= HUFFMAN_TEMP_SIZE(num)
*/
void Huffman_Generate(const UInt32 *freqs, UInt32 *p, Byte *lens, UInt32 num, UInt32 maxLen);
EXTERN_C_END
#endif

1717
3rdparty/7z/src/LzFind.c vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,159 +0,0 @@
/* LzFind.h -- Match finder for LZ algorithms
2023-03-04 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZ_FIND_H
#define ZIP7_INC_LZ_FIND_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef UInt32 CLzRef;
typedef struct
{
const Byte *buffer;
UInt32 pos;
UInt32 posLimit;
UInt32 streamPos; /* wrap over Zero is allowed (streamPos < pos). Use (UInt32)(streamPos - pos) */
UInt32 lenLimit;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
Byte streamEndWasReached;
Byte btMode;
Byte bigHash;
Byte directInput;
UInt32 matchMaxLen;
CLzRef *hash;
CLzRef *son;
UInt32 hashMask;
UInt32 cutValue;
Byte *bufBase;
ISeqInStreamPtr stream;
UInt32 blockSize;
UInt32 keepSizeBefore;
UInt32 keepSizeAfter;
UInt32 numHashBytes;
size_t directInputRem;
UInt32 historySize;
UInt32 fixedHashSize;
Byte numHashBytes_Min;
Byte numHashOutBits;
Byte _pad2_[2];
SRes result;
UInt32 crc[256];
size_t numRefs;
UInt64 expectedDataSize;
} CMatchFinder;
#define Inline_MatchFinder_GetPointerToCurrentPos(p) ((const Byte *)(p)->buffer)
#define Inline_MatchFinder_GetNumAvailableBytes(p) ((UInt32)((p)->streamPos - (p)->pos))
/*
#define Inline_MatchFinder_IsFinishedOK(p) \
((p)->streamEndWasReached \
&& (p)->streamPos == (p)->pos \
&& (!(p)->directInput || (p)->directInputRem == 0))
*/
int MatchFinder_NeedMove(CMatchFinder *p);
/* Byte *MatchFinder_GetPointerToCurrentPos(CMatchFinder *p); */
void MatchFinder_MoveBlock(CMatchFinder *p);
void MatchFinder_ReadIfRequired(CMatchFinder *p);
void MatchFinder_Construct(CMatchFinder *p);
/* (directInput = 0) is default value.
It's required to provide correct (directInput) value
before calling MatchFinder_Create().
You can set (directInput) by any of the following calls:
- MatchFinder_SET_DIRECT_INPUT_BUF()
- MatchFinder_SET_STREAM()
- MatchFinder_SET_STREAM_MODE()
*/
#define MatchFinder_SET_DIRECT_INPUT_BUF(p, _src_, _srcLen_) { \
(p)->stream = NULL; \
(p)->directInput = 1; \
(p)->buffer = (_src_); \
(p)->directInputRem = (_srcLen_); }
/*
#define MatchFinder_SET_STREAM_MODE(p) { \
(p)->directInput = 0; }
*/
#define MatchFinder_SET_STREAM(p, _stream_) { \
(p)->stream = _stream_; \
(p)->directInput = 0; }
int MatchFinder_Create(CMatchFinder *p, UInt32 historySize,
UInt32 keepAddBufferBefore, UInt32 matchMaxLen, UInt32 keepAddBufferAfter,
ISzAllocPtr alloc);
void MatchFinder_Free(CMatchFinder *p, ISzAllocPtr alloc);
void MatchFinder_Normalize3(UInt32 subValue, CLzRef *items, size_t numItems);
/*
#define MatchFinder_INIT_POS(p, val) \
(p)->pos = (val); \
(p)->streamPos = (val);
*/
// void MatchFinder_ReduceOffsets(CMatchFinder *p, UInt32 subValue);
#define MatchFinder_REDUCE_OFFSETS(p, subValue) \
(p)->pos -= (subValue); \
(p)->streamPos -= (subValue);
UInt32 * GetMatchesSpec1(UInt32 lenLimit, UInt32 curMatch, UInt32 pos, const Byte *buffer, CLzRef *son,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize, UInt32 _cutValue,
UInt32 *distances, UInt32 maxLen);
/*
Conditions:
Mf_GetNumAvailableBytes_Func must be called before each Mf_GetMatchLen_Func.
Mf_GetPointerToCurrentPos_Func's result must be used only before any other function
*/
typedef void (*Mf_Init_Func)(void *object);
typedef UInt32 (*Mf_GetNumAvailableBytes_Func)(void *object);
typedef const Byte * (*Mf_GetPointerToCurrentPos_Func)(void *object);
typedef UInt32 * (*Mf_GetMatches_Func)(void *object, UInt32 *distances);
typedef void (*Mf_Skip_Func)(void *object, UInt32);
typedef struct
{
Mf_Init_Func Init;
Mf_GetNumAvailableBytes_Func GetNumAvailableBytes;
Mf_GetPointerToCurrentPos_Func GetPointerToCurrentPos;
Mf_GetMatches_Func GetMatches;
Mf_Skip_Func Skip;
} IMatchFinder2;
void MatchFinder_CreateVTable(CMatchFinder *p, IMatchFinder2 *vTable);
void MatchFinder_Init_LowHash(CMatchFinder *p);
void MatchFinder_Init_HighHash(CMatchFinder *p);
void MatchFinder_Init_4(CMatchFinder *p);
void MatchFinder_Init(CMatchFinder *p);
UInt32* Bt3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
UInt32* Hc3Zip_MatchFinder_GetMatches(CMatchFinder *p, UInt32 *distances);
void Bt3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void Hc3Zip_MatchFinder_Skip(CMatchFinder *p, UInt32 num);
void LzFindPrepare(void);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,109 +0,0 @@
/* LzFindMt.h -- multithreaded Match finder for LZ algorithms
2023-03-05 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZ_FIND_MT_H
#define ZIP7_INC_LZ_FIND_MT_H
#include "LzFind.h"
#include "Threads.h"
EXTERN_C_BEGIN
typedef struct
{
UInt32 numProcessedBlocks;
CThread thread;
UInt64 affinity;
BoolInt wasCreated;
BoolInt needStart;
BoolInt csWasInitialized;
BoolInt csWasEntered;
BoolInt exit;
BoolInt stopWriting;
CAutoResetEvent canStart;
CAutoResetEvent wasStopped;
CSemaphore freeSemaphore;
CSemaphore filledSemaphore;
CCriticalSection cs;
// UInt32 numBlocks_Sent;
} CMtSync;
typedef UInt32 * (*Mf_Mix_Matches)(void *p, UInt32 matchMinPos, UInt32 *distances);
/* kMtCacheLineDummy must be >= size_of_CPU_cache_line */
#define kMtCacheLineDummy 128
typedef void (*Mf_GetHeads)(const Byte *buffer, UInt32 pos,
UInt32 *hash, UInt32 hashMask, UInt32 *heads, UInt32 numHeads, const UInt32 *crc);
typedef struct
{
/* LZ */
const Byte *pointerToCurPos;
UInt32 *btBuf;
const UInt32 *btBufPos;
const UInt32 *btBufPosLimit;
UInt32 lzPos;
UInt32 btNumAvailBytes;
UInt32 *hash;
UInt32 fixedHashSize;
// UInt32 hash4Mask;
UInt32 historySize;
const UInt32 *crc;
Mf_Mix_Matches MixMatchesFunc;
UInt32 failure_LZ_BT; // failure in BT transfered to LZ
// UInt32 failure_LZ_LZ; // failure in LZ tables
UInt32 failureBuf[1];
// UInt32 crc[256];
/* LZ + BT */
CMtSync btSync;
Byte btDummy[kMtCacheLineDummy];
/* BT */
UInt32 *hashBuf;
UInt32 hashBufPos;
UInt32 hashBufPosLimit;
UInt32 hashNumAvail;
UInt32 failure_BT;
CLzRef *son;
UInt32 matchMaxLen;
UInt32 numHashBytes;
UInt32 pos;
const Byte *buffer;
UInt32 cyclicBufferPos;
UInt32 cyclicBufferSize; /* it must be = (historySize + 1) */
UInt32 cutValue;
/* BT + Hash */
CMtSync hashSync;
/* Byte hashDummy[kMtCacheLineDummy]; */
/* Hash */
Mf_GetHeads GetHeadsFunc;
CMatchFinder *MatchFinder;
// CMatchFinder MatchFinder;
} CMatchFinderMt;
// only for Mt part
void MatchFinderMt_Construct(CMatchFinderMt *p);
void MatchFinderMt_Destruct(CMatchFinderMt *p, ISzAllocPtr alloc);
SRes MatchFinderMt_Create(CMatchFinderMt *p, UInt32 historySize, UInt32 keepAddBufferBefore,
UInt32 matchMaxLen, UInt32 keepAddBufferAfter, ISzAllocPtr alloc);
void MatchFinderMt_CreateVTable(CMatchFinderMt *p, IMatchFinder2 *vTable);
/* call MatchFinderMt_InitMt() before IMatchFinder::Init() */
SRes MatchFinderMt_InitMt(CMatchFinderMt *p);
void MatchFinderMt_ReleaseStream(CMatchFinderMt *p);
EXTERN_C_END
#endif

View File

@ -1,578 +0,0 @@
/* LzFindOpt.c -- multithreaded Match finder for LZ algorithms
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#include "LzFind.h"
// #include "LzFindMt.h"
// #define LOG_ITERS
// #define LOG_THREAD
#ifdef LOG_THREAD
#include <stdio.h>
#define PRF(x) x
#else
// #define PRF(x)
#endif
#ifdef LOG_ITERS
#include <stdio.h>
UInt64 g_NumIters_Tree;
UInt64 g_NumIters_Loop;
UInt64 g_NumIters_Bytes;
#define LOG_ITER(x) x
#else
#define LOG_ITER(x)
#endif
// ---------- BT THREAD ----------
#define USE_SON_PREFETCH
#define USE_LONG_MATCH_OPT
#define kEmptyHashValue 0
// #define CYC_TO_POS_OFFSET 0
// #define CYC_TO_POS_OFFSET 1 // for debug
/*
Z7_NO_INLINE
UInt32 * Z7_FASTCALL GetMatchesSpecN_1(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size, UInt32 *posRes)
{
do
{
UInt32 delta;
if (hash == size)
break;
delta = *hash++;
if (delta == 0 || delta > (UInt32)pos)
return NULL;
lenLimit++;
if (delta == (UInt32)pos)
{
CLzRef *ptr1 = son + ((size_t)pos << 1) - CYC_TO_POS_OFFSET * 2;
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
UInt32 *_distances = ++d;
CLzRef *ptr0 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2 + 1;
CLzRef *ptr1 = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
const Byte *len0 = cur, *len1 = cur;
UInt32 cutValue = _cutValue;
const Byte *maxLen = cur + _maxLen;
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
CLzRef *pair = son + ((size_t)(((ptrdiff_t)pos - CYC_TO_POS_OFFSET) + diff) << 1);
const Byte *len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (len[diff] == len[0])
{
if (++len != lenLimit && len[diff] == len[0])
while (++len != lenLimit)
{
LOG_ITER(g_NumIters_Bytes++);
if (len[diff] != len[0])
break;
}
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (len == lenLimit)
{
const UInt32 pair1 = pair[1];
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
*ptr0 = pair1;
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
{
for (;;)
{
hash++;
pos++;
cur++;
lenLimit++;
{
CLzRef *ptr = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
#if 0
*(UInt64 *)(void *)ptr = ((const UInt64 *)(const void *)ptr)[diff];
#else
const UInt32 p0 = ptr[0 + (diff * 2)];
const UInt32 p1 = ptr[1 + (diff * 2)];
ptr[0] = p0;
ptr[1] = p1;
// ptr[0] = ptr[0 + (diff * 2)];
// ptr[1] = ptr[1 + (diff * 2)];
#endif
}
// PrintSon(son + 2, pos - 1);
// printf("\npos = %x delta = %x\n", pos, delta);
len++;
*d++ = 2;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
}
}
#endif
break;
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta; // (UInt32)(pos + diff);
if (len[diff] < len[0])
{
delta = pair[1];
if (delta >= curMatch)
return NULL;
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
}
else
{
delta = *pair;
if (delta >= curMatch)
return NULL;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
}
delta = (UInt32)pos - delta;
if (--cutValue == 0 || delta >= pos)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
} // for (tree iterations)
}
pos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
*/
/* define cbs if you use 2 functions.
GetMatchesSpecN_1() : (pos < _cyclicBufferSize)
GetMatchesSpecN_2() : (pos >= _cyclicBufferSize)
do not define cbs if you use 1 function:
GetMatchesSpecN_2()
*/
// #define cbs _cyclicBufferSize
/*
we use size_t for (pos) and (_cyclicBufferPos_ instead of UInt32
to eliminate "movsx" BUG in old MSVC x64 compiler.
*/
UInt32 * Z7_FASTCALL GetMatchesSpecN_2(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes);
Z7_NO_INLINE
UInt32 * Z7_FASTCALL GetMatchesSpecN_2(const Byte *lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, size_t _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes)
{
do // while (hash != size)
{
UInt32 delta;
#ifndef cbs
UInt32 cbs;
#endif
if (hash == size)
break;
delta = *hash++;
if (delta == 0)
return NULL;
lenLimit++;
#ifndef cbs
cbs = _cyclicBufferSize;
if ((UInt32)pos < cbs)
{
if (delta > (UInt32)pos)
return NULL;
cbs = (UInt32)pos;
}
#endif
if (delta >= cbs)
{
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
UInt32 *_distances = ++d;
CLzRef *ptr0 = son + ((size_t)_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
UInt32 cutValue = _cutValue;
const Byte *len0 = cur, *len1 = cur;
const Byte *maxLen = cur + _maxLen;
// if (cutValue == 0) { *ptr0 = *ptr1 = kEmptyHashValue; } else
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
// SPEC code
CLzRef *pair = son + ((size_t)((ptrdiff_t)_cyclicBufferPos - (ptrdiff_t)delta
+ (ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)
) << 1);
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
const Byte *len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (len[diff] == len[0])
{
if (++len != lenLimit && len[diff] == len[0])
while (++len != lenLimit)
{
LOG_ITER(g_NumIters_Bytes++);
if (len[diff] != len[0])
break;
}
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)(len - cur);
*d++ = delta - 1;
if (len == lenLimit)
{
const UInt32 pair1 = pair[1];
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
*ptr0 = pair1;
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
{
for (;;)
{
*d++ = 2;
*d++ = (UInt32)(lenLimit - cur);
*d++ = delta - 1;
cur++;
lenLimit++;
// SPEC
_cyclicBufferPos++;
{
// SPEC code
CLzRef *dest = son + ((size_t)(_cyclicBufferPos) << 1);
const CLzRef *src = dest + ((diff
+ (ptrdiff_t)(UInt32)((_cyclicBufferPos < delta) ? cbs : 0)) << 1);
// CLzRef *ptr = son + ((size_t)(pos) << 1) - CYC_TO_POS_OFFSET * 2;
#if 0
*(UInt64 *)(void *)dest = *((const UInt64 *)(const void *)src);
#else
const UInt32 p0 = src[0];
const UInt32 p1 = src[1];
dest[0] = p0;
dest[1] = p1;
#endif
}
pos++;
hash++;
if (hash == size || *hash != delta || lenLimit[diff] != lenLimit[0] || d >= limit)
break;
} // for() end for long matches
}
#endif
break; // break from TREE iterations
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta; // (UInt32)(pos + diff);
if (len[diff] < len[0])
{
delta = pair[1];
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
if (delta >= curMatch)
return NULL;
}
else
{
delta = *pair;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
if (delta >= curMatch)
return NULL;
}
delta = (UInt32)pos - delta;
if (--cutValue == 0 || delta >= cbs)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
} // for (tree iterations)
}
pos++;
_cyclicBufferPos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
/*
typedef UInt32 uint32plus; // size_t
UInt32 * Z7_FASTCALL GetMatchesSpecN_3(uint32plus lenLimit, size_t pos, const Byte *cur, CLzRef *son,
UInt32 _cutValue, UInt32 *d, uint32plus _maxLen, const UInt32 *hash, const UInt32 *limit, const UInt32 *size,
size_t _cyclicBufferPos, UInt32 _cyclicBufferSize,
UInt32 *posRes)
{
do // while (hash != size)
{
UInt32 delta;
#ifndef cbs
UInt32 cbs;
#endif
if (hash == size)
break;
delta = *hash++;
if (delta == 0)
return NULL;
#ifndef cbs
cbs = _cyclicBufferSize;
if ((UInt32)pos < cbs)
{
if (delta > (UInt32)pos)
return NULL;
cbs = (UInt32)pos;
}
#endif
if (delta >= cbs)
{
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
*d++ = 0;
ptr1[0] = kEmptyHashValue;
ptr1[1] = kEmptyHashValue;
}
else
{
CLzRef *ptr0 = son + ((size_t)_cyclicBufferPos << 1) + 1;
CLzRef *ptr1 = son + ((size_t)_cyclicBufferPos << 1);
UInt32 *_distances = ++d;
uint32plus len0 = 0, len1 = 0;
UInt32 cutValue = _cutValue;
uint32plus maxLen = _maxLen;
// lenLimit++; // const Byte *lenLimit = cur + _lenLimit;
for (LOG_ITER(g_NumIters_Tree++);;)
{
LOG_ITER(g_NumIters_Loop++);
{
// const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
CLzRef *pair = son + ((size_t)((ptrdiff_t)_cyclicBufferPos - delta
+ (ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)
) << 1);
const Byte *pb = cur - delta;
uint32plus len = (len0 < len1 ? len0 : len1);
#ifdef USE_SON_PREFETCH
const UInt32 pair0 = *pair;
#endif
if (pb[len] == cur[len])
{
if (++len != lenLimit && pb[len] == cur[len])
while (++len != lenLimit)
if (pb[len] != cur[len])
break;
if (maxLen < len)
{
maxLen = len;
*d++ = (UInt32)len;
*d++ = delta - 1;
if (len == lenLimit)
{
{
const UInt32 pair1 = pair[1];
*ptr0 = pair1;
*ptr1 =
#ifdef USE_SON_PREFETCH
pair0;
#else
pair[0];
#endif
}
_distances[-1] = (UInt32)(d - _distances);
#ifdef USE_LONG_MATCH_OPT
if (hash == size || *hash != delta || pb[lenLimit] != cur[lenLimit] || d >= limit)
break;
{
const ptrdiff_t diff = (ptrdiff_t)0 - (ptrdiff_t)delta;
for (;;)
{
*d++ = 2;
*d++ = (UInt32)lenLimit;
*d++ = delta - 1;
_cyclicBufferPos++;
{
CLzRef *dest = son + ((size_t)_cyclicBufferPos << 1);
const CLzRef *src = dest + ((diff +
(ptrdiff_t)(UInt32)(_cyclicBufferPos < delta ? cbs : 0)) << 1);
#if 0
*(UInt64 *)(void *)dest = *((const UInt64 *)(const void *)src);
#else
const UInt32 p0 = src[0];
const UInt32 p1 = src[1];
dest[0] = p0;
dest[1] = p1;
#endif
}
hash++;
pos++;
cur++;
pb++;
if (hash == size || *hash != delta || pb[lenLimit] != cur[lenLimit] || d >= limit)
break;
}
}
#endif
break;
}
}
}
{
const UInt32 curMatch = (UInt32)pos - delta;
if (pb[len] < cur[len])
{
delta = pair[1];
*ptr1 = curMatch;
ptr1 = pair + 1;
len1 = len;
}
else
{
delta = *pair;
*ptr0 = curMatch;
ptr0 = pair;
len0 = len;
}
{
if (delta >= curMatch)
return NULL;
delta = (UInt32)pos - delta;
if (delta >= cbs
// delta >= _cyclicBufferSize || delta >= pos
|| --cutValue == 0)
{
*ptr0 = *ptr1 = kEmptyHashValue;
_distances[-1] = (UInt32)(d - _distances);
break;
}
}
}
}
} // for (tree iterations)
}
pos++;
_cyclicBufferPos++;
cur++;
}
while (d < limit);
*posRes = (UInt32)pos;
return d;
}
*/

View File

@ -1,34 +0,0 @@
/* LzHash.h -- HASH constants for LZ algorithms
2023-03-05 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZ_HASH_H
#define ZIP7_INC_LZ_HASH_H
/*
(kHash2Size >= (1 << 8)) : Required
(kHash3Size >= (1 << 16)) : Required
*/
#define kHash2Size (1 << 10)
#define kHash3Size (1 << 16)
// #define kHash4Size (1 << 20)
#define kFix3HashSize (kHash2Size)
#define kFix4HashSize (kHash2Size + kHash3Size)
// #define kFix5HashSize (kHash2Size + kHash3Size + kHash4Size)
/*
We use up to 3 crc values for hash:
crc0
crc1 << Shift_1
crc2 << Shift_2
(Shift_1 = 5) and (Shift_2 = 10) is good tradeoff.
Small values for Shift are not good for collision rate.
Big value for Shift_2 increases the minimum size
of hash table, that will be slow for small files.
*/
#define kLzHash_CrcShift_1 5
#define kLzHash_CrcShift_2 10
#endif

View File

@ -1,491 +0,0 @@
/* Lzma2Dec.c -- LZMA2 Decoder
2023-03-03 : Igor Pavlov : Public domain */
/* #define SHOW_DEBUG_INFO */
#include "Precomp.h"
#ifdef SHOW_DEBUG_INFO
#include <stdio.h>
#endif
#include <string.h>
#include "Lzma2Dec.h"
/*
00000000 - End of data
00000001 U U - Uncompressed, reset dic, need reset state and set new prop
00000010 U U - Uncompressed, no reset
100uuuuu U U P P - LZMA, no reset
101uuuuu U U P P - LZMA, reset state
110uuuuu U U P P S - LZMA, reset state + set new prop
111uuuuu U U P P S - LZMA, reset state + set new prop, reset dic
u, U - Unpack Size
P - Pack Size
S - Props
*/
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_IS_UNCOMPRESSED_STATE(p) (((p)->control & (1 << 7)) == 0)
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#ifdef SHOW_DEBUG_INFO
#define PRF(x) x
#else
#define PRF(x)
#endif
typedef enum
{
LZMA2_STATE_CONTROL,
LZMA2_STATE_UNPACK0,
LZMA2_STATE_UNPACK1,
LZMA2_STATE_PACK0,
LZMA2_STATE_PACK1,
LZMA2_STATE_PROP,
LZMA2_STATE_DATA,
LZMA2_STATE_DATA_CONT,
LZMA2_STATE_FINISHED,
LZMA2_STATE_ERROR
} ELzma2State;
static SRes Lzma2Dec_GetOldProps(Byte prop, Byte *props)
{
UInt32 dicSize;
if (prop > 40)
return SZ_ERROR_UNSUPPORTED;
dicSize = (prop == 40) ? 0xFFFFFFFF : LZMA2_DIC_SIZE_FROM_PROP(prop);
props[0] = (Byte)LZMA2_LCLP_MAX;
props[1] = (Byte)(dicSize);
props[2] = (Byte)(dicSize >> 8);
props[3] = (Byte)(dicSize >> 16);
props[4] = (Byte)(dicSize >> 24);
return SZ_OK;
}
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props))
return LzmaDec_AllocateProbs(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc)
{
Byte props[LZMA_PROPS_SIZE];
RINOK(Lzma2Dec_GetOldProps(prop, props))
return LzmaDec_Allocate(&p->decoder, props, LZMA_PROPS_SIZE, alloc);
}
void Lzma2Dec_Init(CLzma2Dec *p)
{
p->state = LZMA2_STATE_CONTROL;
p->needInitLevel = 0xE0;
p->isExtraMode = False;
p->unpackSize = 0;
// p->decoder.dicPos = 0; // we can use it instead of full init
LzmaDec_Init(&p->decoder);
}
// ELzma2State
static unsigned Lzma2Dec_UpdateState(CLzma2Dec *p, Byte b)
{
switch (p->state)
{
case LZMA2_STATE_CONTROL:
p->isExtraMode = False;
p->control = b;
PRF(printf("\n %8X", (unsigned)p->decoder.dicPos));
PRF(printf(" %02X", (unsigned)b));
if (b == 0)
return LZMA2_STATE_FINISHED;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (b == LZMA2_CONTROL_COPY_RESET_DIC)
p->needInitLevel = 0xC0;
else if (b > 2 || p->needInitLevel == 0xE0)
return LZMA2_STATE_ERROR;
}
else
{
if (b < p->needInitLevel)
return LZMA2_STATE_ERROR;
p->needInitLevel = 0;
p->unpackSize = (UInt32)(b & 0x1F) << 16;
}
return LZMA2_STATE_UNPACK0;
case LZMA2_STATE_UNPACK0:
p->unpackSize |= (UInt32)b << 8;
return LZMA2_STATE_UNPACK1;
case LZMA2_STATE_UNPACK1:
p->unpackSize |= (UInt32)b;
p->unpackSize++;
PRF(printf(" %7u", (unsigned)p->unpackSize));
return LZMA2_IS_UNCOMPRESSED_STATE(p) ? LZMA2_STATE_DATA : LZMA2_STATE_PACK0;
case LZMA2_STATE_PACK0:
p->packSize = (UInt32)b << 8;
return LZMA2_STATE_PACK1;
case LZMA2_STATE_PACK1:
p->packSize |= (UInt32)b;
p->packSize++;
// if (p->packSize < 5) return LZMA2_STATE_ERROR;
PRF(printf(" %5u", (unsigned)p->packSize));
return (p->control & 0x40) ? LZMA2_STATE_PROP : LZMA2_STATE_DATA;
case LZMA2_STATE_PROP:
{
unsigned lc, lp;
if (b >= (9 * 5 * 5))
return LZMA2_STATE_ERROR;
lc = b % 9;
b /= 9;
p->decoder.prop.pb = (Byte)(b / 5);
lp = b % 5;
if (lc + lp > LZMA2_LCLP_MAX)
return LZMA2_STATE_ERROR;
p->decoder.prop.lc = (Byte)lc;
p->decoder.prop.lp = (Byte)lp;
return LZMA2_STATE_DATA;
}
}
return LZMA2_STATE_ERROR;
}
static void LzmaDec_UpdateWithUncompressed(CLzmaDec *p, const Byte *src, SizeT size)
{
memcpy(p->dic + p->dicPos, src, size);
p->dicPos += size;
if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= size)
p->checkDicSize = p->prop.dicSize;
p->processedPos += (UInt32)size;
}
void LzmaDec_InitDicAndState(CLzmaDec *p, BoolInt initDic, BoolInt initState);
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT inSize = *srcLen;
*srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
while (p->state != LZMA2_STATE_ERROR)
{
SizeT dicPos;
if (p->state == LZMA2_STATE_FINISHED)
{
*status = LZMA_STATUS_FINISHED_WITH_MARK;
return SZ_OK;
}
dicPos = p->decoder.dicPos;
if (dicPos == dicLimit && finishMode == LZMA_FINISH_ANY)
{
*status = LZMA_STATUS_NOT_FINISHED;
return SZ_OK;
}
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (dicPos == dicLimit && p->state != LZMA2_STATE_FINISHED)
break;
continue;
}
{
SizeT inCur = inSize - *srcLen;
SizeT outCur = dicLimit - dicPos;
ELzmaFinishMode curFinishMode = LZMA_FINISH_ANY;
if (outCur >= p->unpackSize)
{
outCur = (SizeT)p->unpackSize;
curFinishMode = LZMA_FINISH_END;
}
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
{
*status = LZMA_STATUS_NEEDS_MORE_INPUT;
return SZ_OK;
}
if (p->state == LZMA2_STATE_DATA)
{
BoolInt initDic = (p->control == LZMA2_CONTROL_COPY_RESET_DIC);
LzmaDec_InitDicAndState(&p->decoder, initDic, False);
}
if (inCur > outCur)
inCur = outCur;
if (inCur == 0)
break;
LzmaDec_UpdateWithUncompressed(&p->decoder, src, inCur);
src += inCur;
*srcLen += inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
SRes res;
if (p->state == LZMA2_STATE_DATA)
{
BoolInt initDic = (p->control >= 0xE0);
BoolInt initState = (p->control >= 0xA0);
LzmaDec_InitDicAndState(&p->decoder, initDic, initState);
p->state = LZMA2_STATE_DATA_CONT;
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
res = LzmaDec_DecodeToDic(&p->decoder, dicPos + outCur, src, &inCur, curFinishMode, status);
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
outCur = p->decoder.dicPos - dicPos;
p->unpackSize -= (UInt32)outCur;
if (res != 0)
break;
if (*status == LZMA_STATUS_NEEDS_MORE_INPUT)
{
if (p->packSize == 0)
break;
return SZ_OK;
}
if (inCur == 0 && outCur == 0)
{
if (*status != LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
|| p->unpackSize != 0
|| p->packSize != 0)
break;
p->state = LZMA2_STATE_CONTROL;
}
*status = LZMA_STATUS_NOT_SPECIFIED;
}
}
}
*status = LZMA_STATUS_NOT_SPECIFIED;
p->state = LZMA2_STATE_ERROR;
return SZ_ERROR_DATA;
}
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize,
const Byte *src, SizeT *srcLen,
int checkFinishBlock)
{
SizeT inSize = *srcLen;
*srcLen = 0;
while (p->state != LZMA2_STATE_ERROR)
{
if (p->state == LZMA2_STATE_FINISHED)
return (ELzma2ParseStatus)LZMA_STATUS_FINISHED_WITH_MARK;
if (outSize == 0 && !checkFinishBlock)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
if (p->state != LZMA2_STATE_DATA && p->state != LZMA2_STATE_DATA_CONT)
{
if (*srcLen == inSize)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
(*srcLen)++;
p->state = Lzma2Dec_UpdateState(p, *src++);
if (p->state == LZMA2_STATE_UNPACK0)
{
// if (p->decoder.dicPos != 0)
if (p->control == LZMA2_CONTROL_COPY_RESET_DIC || p->control >= 0xE0)
return LZMA2_PARSE_STATUS_NEW_BLOCK;
// if (outSize == 0) return LZMA_STATUS_NOT_FINISHED;
}
// The following code can be commented.
// It's not big problem, if we read additional input bytes.
// It will be stopped later in LZMA2_STATE_DATA / LZMA2_STATE_DATA_CONT state.
if (outSize == 0 && p->state != LZMA2_STATE_FINISHED)
{
// checkFinishBlock is true. So we expect that block must be finished,
// We can return LZMA_STATUS_NOT_SPECIFIED or LZMA_STATUS_NOT_FINISHED here
// break;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
}
if (p->state == LZMA2_STATE_DATA)
return LZMA2_PARSE_STATUS_NEW_CHUNK;
continue;
}
if (outSize == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NOT_FINISHED;
{
SizeT inCur = inSize - *srcLen;
if (LZMA2_IS_UNCOMPRESSED_STATE(p))
{
if (inCur == 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
if (inCur > p->unpackSize)
inCur = p->unpackSize;
if (inCur > outSize)
inCur = outSize;
p->decoder.dicPos += inCur;
src += inCur;
*srcLen += inCur;
outSize -= inCur;
p->unpackSize -= (UInt32)inCur;
p->state = (p->unpackSize == 0) ? LZMA2_STATE_CONTROL : LZMA2_STATE_DATA_CONT;
}
else
{
p->isExtraMode = True;
if (inCur == 0)
{
if (p->packSize != 0)
return (ELzma2ParseStatus)LZMA_STATUS_NEEDS_MORE_INPUT;
}
else if (p->state == LZMA2_STATE_DATA)
{
p->state = LZMA2_STATE_DATA_CONT;
if (*src != 0)
{
// first byte of lzma chunk must be Zero
*srcLen += 1;
p->packSize--;
break;
}
}
if (inCur > p->packSize)
inCur = (SizeT)p->packSize;
src += inCur;
*srcLen += inCur;
p->packSize -= (UInt32)inCur;
if (p->packSize == 0)
{
SizeT rem = outSize;
if (rem > p->unpackSize)
rem = p->unpackSize;
p->decoder.dicPos += rem;
p->unpackSize -= (UInt32)rem;
outSize -= rem;
if (p->unpackSize == 0)
p->state = LZMA2_STATE_CONTROL;
}
}
}
}
p->state = LZMA2_STATE_ERROR;
return (ELzma2ParseStatus)LZMA_STATUS_NOT_SPECIFIED;
}
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
{
SizeT outSize = *destLen, inSize = *srcLen;
*srcLen = *destLen = 0;
for (;;)
{
SizeT inCur = inSize, outCur, dicPos;
ELzmaFinishMode curFinishMode;
SRes res;
if (p->decoder.dicPos == p->decoder.dicBufSize)
p->decoder.dicPos = 0;
dicPos = p->decoder.dicPos;
curFinishMode = LZMA_FINISH_ANY;
outCur = p->decoder.dicBufSize - dicPos;
if (outCur >= outSize)
{
outCur = outSize;
curFinishMode = finishMode;
}
res = Lzma2Dec_DecodeToDic(p, dicPos + outCur, src, &inCur, curFinishMode, status);
src += inCur;
inSize -= inCur;
*srcLen += inCur;
outCur = p->decoder.dicPos - dicPos;
memcpy(dest, p->decoder.dic + dicPos, outCur);
dest += outCur;
outSize -= outCur;
*destLen += outCur;
if (res != 0)
return res;
if (outCur == 0 || outSize == 0)
return SZ_OK;
}
}
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAllocPtr alloc)
{
CLzma2Dec p;
SRes res;
SizeT outSize = *destLen, inSize = *srcLen;
*destLen = *srcLen = 0;
*status = LZMA_STATUS_NOT_SPECIFIED;
Lzma2Dec_CONSTRUCT(&p)
RINOK(Lzma2Dec_AllocateProbs(&p, prop, alloc))
p.decoder.dic = dest;
p.decoder.dicBufSize = outSize;
Lzma2Dec_Init(&p);
*srcLen = inSize;
res = Lzma2Dec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
*destLen = p.decoder.dicPos;
if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
res = SZ_ERROR_INPUT_EOF;
Lzma2Dec_FreeProbs(&p, alloc);
return res;
}
#undef PRF

View File

@ -1,121 +0,0 @@
/* Lzma2Dec.h -- LZMA2 Decoder
2023-03-03 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA2_DEC_H
#define ZIP7_INC_LZMA2_DEC_H
#include "LzmaDec.h"
EXTERN_C_BEGIN
/* ---------- State Interface ---------- */
typedef struct
{
unsigned state;
Byte control;
Byte needInitLevel;
Byte isExtraMode;
Byte _pad_;
UInt32 packSize;
UInt32 unpackSize;
CLzmaDec decoder;
} CLzma2Dec;
#define Lzma2Dec_CONSTRUCT(p) LzmaDec_CONSTRUCT(&(p)->decoder)
#define Lzma2Dec_Construct(p) Lzma2Dec_CONSTRUCT(p)
#define Lzma2Dec_FreeProbs(p, alloc) LzmaDec_FreeProbs(&(p)->decoder, alloc)
#define Lzma2Dec_Free(p, alloc) LzmaDec_Free(&(p)->decoder, alloc)
SRes Lzma2Dec_AllocateProbs(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
SRes Lzma2Dec_Allocate(CLzma2Dec *p, Byte prop, ISzAllocPtr alloc);
void Lzma2Dec_Init(CLzma2Dec *p);
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen or dicLimit).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
SZ_ERROR_DATA - Data error
*/
SRes Lzma2Dec_DecodeToDic(CLzma2Dec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
SRes Lzma2Dec_DecodeToBuf(CLzma2Dec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- LZMA2 block and chunk parsing ---------- */
/*
Lzma2Dec_Parse() parses compressed data stream up to next independent block or next chunk data.
It can return LZMA_STATUS_* code or LZMA2_PARSE_STATUS_* code:
- LZMA2_PARSE_STATUS_NEW_BLOCK - there is new block, and 1 additional byte (control byte of next block header) was read from input.
- LZMA2_PARSE_STATUS_NEW_CHUNK - there is new chunk, and only lzma2 header of new chunk was read.
CLzma2Dec::unpackSize contains unpack size of that chunk
*/
typedef enum
{
/*
LZMA_STATUS_NOT_SPECIFIED // data error
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED //
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK // unused
*/
LZMA2_PARSE_STATUS_NEW_BLOCK = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK + 1,
LZMA2_PARSE_STATUS_NEW_CHUNK
} ELzma2ParseStatus;
ELzma2ParseStatus Lzma2Dec_Parse(CLzma2Dec *p,
SizeT outSize, // output size
const Byte *src, SizeT *srcLen,
int checkFinishBlock // set (checkFinishBlock = 1), if it must read full input data, if decoder.dicPos reaches blockMax position.
);
/*
LZMA2 parser doesn't decode LZMA chunks, so we must read
full input LZMA chunk to decode some part of LZMA chunk.
Lzma2Dec_GetUnpackExtra() returns the value that shows
max possible number of output bytes that can be output by decoder
at current input positon.
*/
#define Lzma2Dec_GetUnpackExtra(p) ((p)->isExtraMode ? (p)->unpackSize : 0)
/* ---------- One Call Interface ---------- */
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - use smallest number of input bytes
LZMA_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
*/
SRes Lzma2Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
Byte prop, ELzmaFinishMode finishMode, ELzmaStatus *status, ISzAllocPtr alloc);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,81 +0,0 @@
/* Lzma2DecMt.h -- LZMA2 Decoder Multi-thread
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA2_DEC_MT_H
#define ZIP7_INC_LZMA2_DEC_MT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
typedef struct
{
size_t inBufSize_ST;
size_t outStep_ST;
#ifndef Z7_ST
unsigned numThreads;
size_t inBufSize_MT;
size_t outBlockMax;
size_t inBlockMax;
#endif
} CLzma2DecMtProps;
/* init to single-thread mode */
void Lzma2DecMtProps_Init(CLzma2DecMtProps *p);
/* ---------- CLzma2DecMtHandle Interface ---------- */
/* Lzma2DecMt_ * functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
// SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef struct CLzma2DecMt CLzma2DecMt;
typedef CLzma2DecMt * CLzma2DecMtHandle;
// Z7_DECLARE_HANDLE(CLzma2DecMtHandle)
CLzma2DecMtHandle Lzma2DecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid);
void Lzma2DecMt_Destroy(CLzma2DecMtHandle p);
SRes Lzma2DecMt_Decode(CLzma2DecMtHandle p,
Byte prop,
const CLzma2DecMtProps *props,
ISeqOutStreamPtr outStream,
const UInt64 *outDataSize, // NULL means undefined
int finishMode, // 0 - partial unpacking is allowed, 1 - if lzma2 stream must be finished
// Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
// const Byte *inData, size_t inDataSize,
// out variables:
UInt64 *inProcessed,
int *isMT, /* out: (*isMT == 0), if single thread decoding was used */
// UInt64 *outProcessed,
ICompressProgressPtr progress);
/* ---------- Read from CLzma2DecMtHandle Interface ---------- */
SRes Lzma2DecMt_Init(CLzma2DecMtHandle pp,
Byte prop,
const CLzma2DecMtProps *props,
const UInt64 *outDataSize, int finishMode,
ISeqInStreamPtr inStream);
SRes Lzma2DecMt_Read(CLzma2DecMtHandle pp,
Byte *data, size_t *outSize,
UInt64 *inStreamProcessed);
EXTERN_C_END
#endif

View File

@ -1,805 +0,0 @@
/* Lzma2Enc.c -- LZMA2 Encoder
2023-04-13 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
/* #define Z7_ST */
#include "Lzma2Enc.h"
#ifndef Z7_ST
#include "MtCoder.h"
#else
#define MTCODER_THREADS_MAX 1
#endif
#define LZMA2_CONTROL_LZMA (1 << 7)
#define LZMA2_CONTROL_COPY_NO_RESET 2
#define LZMA2_CONTROL_COPY_RESET_DIC 1
#define LZMA2_CONTROL_EOF 0
#define LZMA2_LCLP_MAX 4
#define LZMA2_DIC_SIZE_FROM_PROP(p) (((UInt32)2 | ((p) & 1)) << ((p) / 2 + 11))
#define LZMA2_PACK_SIZE_MAX (1 << 16)
#define LZMA2_COPY_CHUNK_SIZE LZMA2_PACK_SIZE_MAX
#define LZMA2_UNPACK_SIZE_MAX (1 << 21)
#define LZMA2_KEEP_WINDOW_SIZE LZMA2_UNPACK_SIZE_MAX
#define LZMA2_CHUNK_SIZE_COMPRESSED_MAX ((1 << 16) + 16)
#define PRF(x) /* x */
/* ---------- CLimitedSeqInStream ---------- */
typedef struct
{
ISeqInStream vt;
ISeqInStreamPtr realStream;
UInt64 limit;
UInt64 processed;
int finished;
} CLimitedSeqInStream;
static void LimitedSeqInStream_Init(CLimitedSeqInStream *p)
{
p->limit = (UInt64)(Int64)-1;
p->processed = 0;
p->finished = 0;
}
static SRes LimitedSeqInStream_Read(ISeqInStreamPtr pp, void *data, size_t *size)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CLimitedSeqInStream)
size_t size2 = *size;
SRes res = SZ_OK;
if (p->limit != (UInt64)(Int64)-1)
{
const UInt64 rem = p->limit - p->processed;
if (size2 > rem)
size2 = (size_t)rem;
}
if (size2 != 0)
{
res = ISeqInStream_Read(p->realStream, data, &size2);
p->finished = (size2 == 0 ? 1 : 0);
p->processed += size2;
}
*size = size2;
return res;
}
/* ---------- CLzma2EncInt ---------- */
typedef struct
{
CLzmaEncHandle enc;
Byte propsAreSet;
Byte propsByte;
Byte needInitState;
Byte needInitProp;
UInt64 srcPos;
} CLzma2EncInt;
static SRes Lzma2EncInt_InitStream(CLzma2EncInt *p, const CLzma2EncProps *props)
{
if (!p->propsAreSet)
{
SizeT propsSize = LZMA_PROPS_SIZE;
Byte propsEncoded[LZMA_PROPS_SIZE];
RINOK(LzmaEnc_SetProps(p->enc, &props->lzmaProps))
RINOK(LzmaEnc_WriteProperties(p->enc, propsEncoded, &propsSize))
p->propsByte = propsEncoded[0];
p->propsAreSet = True;
}
return SZ_OK;
}
static void Lzma2EncInt_InitBlock(CLzma2EncInt *p)
{
p->srcPos = 0;
p->needInitState = True;
p->needInitProp = True;
}
SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle p, ISeqInStreamPtr inStream, UInt32 keepWindowSize,
ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemPrepare(CLzmaEncHandle p, const Byte *src, SizeT srcLen,
UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle p, BoolInt reInit,
Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize);
const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle p);
void LzmaEnc_Finish(CLzmaEncHandle p);
void LzmaEnc_SaveState(CLzmaEncHandle p);
void LzmaEnc_RestoreState(CLzmaEncHandle p);
/*
UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle p);
*/
static SRes Lzma2EncInt_EncodeSubblock(CLzma2EncInt *p, Byte *outBuf,
size_t *packSizeRes, ISeqOutStreamPtr outStream)
{
size_t packSizeLimit = *packSizeRes;
size_t packSize = packSizeLimit;
UInt32 unpackSize = LZMA2_UNPACK_SIZE_MAX;
unsigned lzHeaderSize = 5 + (p->needInitProp ? 1 : 0);
BoolInt useCopyBlock;
SRes res;
*packSizeRes = 0;
if (packSize < lzHeaderSize)
return SZ_ERROR_OUTPUT_EOF;
packSize -= lzHeaderSize;
LzmaEnc_SaveState(p->enc);
res = LzmaEnc_CodeOneMemBlock(p->enc, p->needInitState,
outBuf + lzHeaderSize, &packSize, LZMA2_PACK_SIZE_MAX, &unpackSize);
PRF(printf("\npackSize = %7d unpackSize = %7d ", packSize, unpackSize));
if (unpackSize == 0)
return res;
if (res == SZ_OK)
useCopyBlock = (packSize + 2 >= unpackSize || packSize > (1 << 16));
else
{
if (res != SZ_ERROR_OUTPUT_EOF)
return res;
res = SZ_OK;
useCopyBlock = True;
}
if (useCopyBlock)
{
size_t destPos = 0;
PRF(printf("################# COPY "));
while (unpackSize > 0)
{
const UInt32 u = (unpackSize < LZMA2_COPY_CHUNK_SIZE) ? unpackSize : LZMA2_COPY_CHUNK_SIZE;
if (packSizeLimit - destPos < u + 3)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos++] = (Byte)(p->srcPos == 0 ? LZMA2_CONTROL_COPY_RESET_DIC : LZMA2_CONTROL_COPY_NO_RESET);
outBuf[destPos++] = (Byte)((u - 1) >> 8);
outBuf[destPos++] = (Byte)(u - 1);
memcpy(outBuf + destPos, LzmaEnc_GetCurBuf(p->enc) - unpackSize, u);
unpackSize -= u;
destPos += u;
p->srcPos += u;
if (outStream)
{
*packSizeRes += destPos;
if (ISeqOutStream_Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
destPos = 0;
}
else
*packSizeRes = destPos;
/* needInitState = True; */
}
LzmaEnc_RestoreState(p->enc);
return SZ_OK;
}
{
size_t destPos = 0;
const UInt32 u = unpackSize - 1;
const UInt32 pm = (UInt32)(packSize - 1);
const unsigned mode = (p->srcPos == 0) ? 3 : (p->needInitState ? (p->needInitProp ? 2 : 1) : 0);
PRF(printf(" "));
outBuf[destPos++] = (Byte)(LZMA2_CONTROL_LZMA | (mode << 5) | ((u >> 16) & 0x1F));
outBuf[destPos++] = (Byte)(u >> 8);
outBuf[destPos++] = (Byte)u;
outBuf[destPos++] = (Byte)(pm >> 8);
outBuf[destPos++] = (Byte)pm;
if (p->needInitProp)
outBuf[destPos++] = p->propsByte;
p->needInitProp = False;
p->needInitState = False;
destPos += packSize;
p->srcPos += unpackSize;
if (outStream)
if (ISeqOutStream_Write(outStream, outBuf, destPos) != destPos)
return SZ_ERROR_WRITE;
*packSizeRes = destPos;
return SZ_OK;
}
}
/* ---------- Lzma2 Props ---------- */
void Lzma2EncProps_Init(CLzma2EncProps *p)
{
LzmaEncProps_Init(&p->lzmaProps);
p->blockSize = LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO;
p->numBlockThreads_Reduced = -1;
p->numBlockThreads_Max = -1;
p->numTotalThreads = -1;
}
void Lzma2EncProps_Normalize(CLzma2EncProps *p)
{
UInt64 fileSize;
int t1, t1n, t2, t2r, t3;
{
CLzmaEncProps lzmaProps = p->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
t1n = lzmaProps.numThreads;
}
t1 = p->lzmaProps.numThreads;
t2 = p->numBlockThreads_Max;
t3 = p->numTotalThreads;
if (t2 > MTCODER_THREADS_MAX)
t2 = MTCODER_THREADS_MAX;
if (t3 <= 0)
{
if (t2 <= 0)
t2 = 1;
t3 = t1n * t2;
}
else if (t2 <= 0)
{
t2 = t3 / t1n;
if (t2 == 0)
{
t1 = 1;
t2 = t3;
}
if (t2 > MTCODER_THREADS_MAX)
t2 = MTCODER_THREADS_MAX;
}
else if (t1 <= 0)
{
t1 = t3 / t2;
if (t1 == 0)
t1 = 1;
}
else
t3 = t1n * t2;
p->lzmaProps.numThreads = t1;
t2r = t2;
fileSize = p->lzmaProps.reduceSize;
if ( p->blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& p->blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO
&& (p->blockSize < fileSize || fileSize == (UInt64)(Int64)-1))
p->lzmaProps.reduceSize = p->blockSize;
LzmaEncProps_Normalize(&p->lzmaProps);
p->lzmaProps.reduceSize = fileSize;
t1 = p->lzmaProps.numThreads;
if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID)
{
t2r = t2 = 1;
t3 = t1;
}
else if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO && t2 <= 1)
{
/* if there is no block multi-threading, we use SOLID block */
p->blockSize = LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID;
}
else
{
if (p->blockSize == LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO)
{
const UInt32 kMinSize = (UInt32)1 << 20;
const UInt32 kMaxSize = (UInt32)1 << 28;
const UInt32 dictSize = p->lzmaProps.dictSize;
UInt64 blockSize = (UInt64)dictSize << 2;
if (blockSize < kMinSize) blockSize = kMinSize;
if (blockSize > kMaxSize) blockSize = kMaxSize;
if (blockSize < dictSize) blockSize = dictSize;
blockSize += (kMinSize - 1);
blockSize &= ~(UInt64)(kMinSize - 1);
p->blockSize = blockSize;
}
if (t2 > 1 && fileSize != (UInt64)(Int64)-1)
{
UInt64 numBlocks = fileSize / p->blockSize;
if (numBlocks * p->blockSize != fileSize)
numBlocks++;
if (numBlocks < (unsigned)t2)
{
t2r = (int)numBlocks;
if (t2r == 0)
t2r = 1;
t3 = t1 * t2r;
}
}
}
p->numBlockThreads_Max = t2;
p->numBlockThreads_Reduced = t2r;
p->numTotalThreads = t3;
}
static SRes Progress(ICompressProgressPtr p, UInt64 inSize, UInt64 outSize)
{
return (p && ICompressProgress_Progress(p, inSize, outSize) != SZ_OK) ? SZ_ERROR_PROGRESS : SZ_OK;
}
/* ---------- Lzma2 ---------- */
struct CLzma2Enc
{
Byte propEncoded;
CLzma2EncProps props;
UInt64 expectedDataSize;
Byte *tempBufLzma;
ISzAllocPtr alloc;
ISzAllocPtr allocBig;
CLzma2EncInt coders[MTCODER_THREADS_MAX];
#ifndef Z7_ST
ISeqOutStreamPtr outStream;
Byte *outBuf;
size_t outBuf_Rem; /* remainder in outBuf */
size_t outBufSize; /* size of allocated outBufs[i] */
size_t outBufsDataSizes[MTCODER_BLOCKS_MAX];
BoolInt mtCoder_WasConstructed;
CMtCoder mtCoder;
Byte *outBufs[MTCODER_BLOCKS_MAX];
#endif
};
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig)
{
CLzma2Enc *p = (CLzma2Enc *)ISzAlloc_Alloc(alloc, sizeof(CLzma2Enc));
if (!p)
return NULL;
Lzma2EncProps_Init(&p->props);
Lzma2EncProps_Normalize(&p->props);
p->expectedDataSize = (UInt64)(Int64)-1;
p->tempBufLzma = NULL;
p->alloc = alloc;
p->allocBig = allocBig;
{
unsigned i;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
p->coders[i].enc = NULL;
}
#ifndef Z7_ST
p->mtCoder_WasConstructed = False;
{
unsigned i;
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
p->outBufs[i] = NULL;
p->outBufSize = 0;
}
#endif
return (CLzma2EncHandle)p;
}
#ifndef Z7_ST
static void Lzma2Enc_FreeOutBufs(CLzma2Enc *p)
{
unsigned i;
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
if (p->outBufs[i])
{
ISzAlloc_Free(p->alloc, p->outBufs[i]);
p->outBufs[i] = NULL;
}
p->outBufSize = 0;
}
#endif
// #define GET_CLzma2Enc_p CLzma2Enc *p = (CLzma2Enc *)(void *)p;
void Lzma2Enc_Destroy(CLzma2EncHandle p)
{
// GET_CLzma2Enc_p
unsigned i;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CLzma2EncInt *t = &p->coders[i];
if (t->enc)
{
LzmaEnc_Destroy(t->enc, p->alloc, p->allocBig);
t->enc = NULL;
}
}
#ifndef Z7_ST
if (p->mtCoder_WasConstructed)
{
MtCoder_Destruct(&p->mtCoder);
p->mtCoder_WasConstructed = False;
}
Lzma2Enc_FreeOutBufs(p);
#endif
ISzAlloc_Free(p->alloc, p->tempBufLzma);
p->tempBufLzma = NULL;
ISzAlloc_Free(p->alloc, p);
}
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props)
{
// GET_CLzma2Enc_p
CLzmaEncProps lzmaProps = props->lzmaProps;
LzmaEncProps_Normalize(&lzmaProps);
if (lzmaProps.lc + lzmaProps.lp > LZMA2_LCLP_MAX)
return SZ_ERROR_PARAM;
p->props = *props;
Lzma2EncProps_Normalize(&p->props);
return SZ_OK;
}
void Lzma2Enc_SetDataSize(CLzma2EncHandle p, UInt64 expectedDataSiize)
{
// GET_CLzma2Enc_p
p->expectedDataSize = expectedDataSiize;
}
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p)
{
// GET_CLzma2Enc_p
unsigned i;
UInt32 dicSize = LzmaEncProps_GetDictSize(&p->props.lzmaProps);
for (i = 0; i < 40; i++)
if (dicSize <= LZMA2_DIC_SIZE_FROM_PROP(i))
break;
return (Byte)i;
}
static SRes Lzma2Enc_EncodeMt1(
CLzma2Enc *me,
CLzma2EncInt *p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
int finished,
ICompressProgressPtr progress)
{
UInt64 unpackTotal = 0;
UInt64 packTotal = 0;
size_t outLim = 0;
CLimitedSeqInStream limitedInStream;
if (outBuf)
{
outLim = *outBufSize;
*outBufSize = 0;
}
if (!p->enc)
{
p->propsAreSet = False;
p->enc = LzmaEnc_Create(me->alloc);
if (!p->enc)
return SZ_ERROR_MEM;
}
limitedInStream.realStream = inStream;
if (inStream)
{
limitedInStream.vt.Read = LimitedSeqInStream_Read;
}
if (!outBuf)
{
// outStream version works only in one thread. So we use CLzma2Enc::tempBufLzma
if (!me->tempBufLzma)
{
me->tempBufLzma = (Byte *)ISzAlloc_Alloc(me->alloc, LZMA2_CHUNK_SIZE_COMPRESSED_MAX);
if (!me->tempBufLzma)
return SZ_ERROR_MEM;
}
}
RINOK(Lzma2EncInt_InitStream(p, &me->props))
for (;;)
{
SRes res = SZ_OK;
SizeT inSizeCur = 0;
Lzma2EncInt_InitBlock(p);
LimitedSeqInStream_Init(&limitedInStream);
limitedInStream.limit = me->props.blockSize;
if (inStream)
{
UInt64 expected = (UInt64)(Int64)-1;
// inStream version works only in one thread. So we use CLzma2Enc::expectedDataSize
if (me->expectedDataSize != (UInt64)(Int64)-1
&& me->expectedDataSize >= unpackTotal)
expected = me->expectedDataSize - unpackTotal;
if (me->props.blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& expected > me->props.blockSize)
expected = (size_t)me->props.blockSize;
LzmaEnc_SetDataSize(p->enc, expected);
RINOK(LzmaEnc_PrepareForLzma2(p->enc,
&limitedInStream.vt,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig))
}
else
{
inSizeCur = (SizeT)(inDataSize - (size_t)unpackTotal);
if (me->props.blockSize != LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID
&& inSizeCur > me->props.blockSize)
inSizeCur = (SizeT)(size_t)me->props.blockSize;
// LzmaEnc_SetDataSize(p->enc, inSizeCur);
RINOK(LzmaEnc_MemPrepare(p->enc,
inData + (size_t)unpackTotal, inSizeCur,
LZMA2_KEEP_WINDOW_SIZE,
me->alloc,
me->allocBig))
}
for (;;)
{
size_t packSize = LZMA2_CHUNK_SIZE_COMPRESSED_MAX;
if (outBuf)
packSize = outLim - (size_t)packTotal;
res = Lzma2EncInt_EncodeSubblock(p,
outBuf ? outBuf + (size_t)packTotal : me->tempBufLzma, &packSize,
outBuf ? NULL : outStream);
if (res != SZ_OK)
break;
packTotal += packSize;
if (outBuf)
*outBufSize = (size_t)packTotal;
res = Progress(progress, unpackTotal + p->srcPos, packTotal);
if (res != SZ_OK)
break;
/*
if (LzmaEnc_GetNumAvailableBytes(p->enc) == 0)
break;
*/
if (packSize == 0)
break;
}
LzmaEnc_Finish(p->enc);
unpackTotal += p->srcPos;
RINOK(res)
if (p->srcPos != (inStream ? limitedInStream.processed : inSizeCur))
return SZ_ERROR_FAIL;
if (inStream ? limitedInStream.finished : (unpackTotal == inDataSize))
{
if (finished)
{
if (outBuf)
{
const size_t destPos = *outBufSize;
if (destPos >= outLim)
return SZ_ERROR_OUTPUT_EOF;
outBuf[destPos] = LZMA2_CONTROL_EOF; // 0
*outBufSize = destPos + 1;
}
else
{
const Byte b = LZMA2_CONTROL_EOF; // 0;
if (ISeqOutStream_Write(outStream, &b, 1) != 1)
return SZ_ERROR_WRITE;
}
}
return SZ_OK;
}
}
}
#ifndef Z7_ST
static SRes Lzma2Enc_MtCallback_Code(void *p, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished)
{
CLzma2Enc *me = (CLzma2Enc *)p;
size_t destSize = me->outBufSize;
SRes res;
CMtProgressThunk progressThunk;
Byte *dest = me->outBufs[outBufIndex];
me->outBufsDataSizes[outBufIndex] = 0;
if (!dest)
{
dest = (Byte *)ISzAlloc_Alloc(me->alloc, me->outBufSize);
if (!dest)
return SZ_ERROR_MEM;
me->outBufs[outBufIndex] = dest;
}
MtProgressThunk_CreateVTable(&progressThunk);
progressThunk.mtProgress = &me->mtCoder.mtProgress;
progressThunk.inSize = 0;
progressThunk.outSize = 0;
res = Lzma2Enc_EncodeMt1(me,
&me->coders[coderIndex],
NULL, dest, &destSize,
NULL, src, srcSize,
finished,
&progressThunk.vt);
me->outBufsDataSizes[outBufIndex] = destSize;
return res;
}
static SRes Lzma2Enc_MtCallback_Write(void *p, unsigned outBufIndex)
{
CLzma2Enc *me = (CLzma2Enc *)p;
size_t size = me->outBufsDataSizes[outBufIndex];
const Byte *data = me->outBufs[outBufIndex];
if (me->outStream)
return ISeqOutStream_Write(me->outStream, data, size) == size ? SZ_OK : SZ_ERROR_WRITE;
if (size > me->outBuf_Rem)
return SZ_ERROR_OUTPUT_EOF;
memcpy(me->outBuf, data, size);
me->outBuf_Rem -= size;
me->outBuf += size;
return SZ_OK;
}
#endif
SRes Lzma2Enc_Encode2(CLzma2EncHandle p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
ICompressProgressPtr progress)
{
// GET_CLzma2Enc_p
if (inStream && inData)
return SZ_ERROR_PARAM;
if (outStream && outBuf)
return SZ_ERROR_PARAM;
{
unsigned i;
for (i = 0; i < MTCODER_THREADS_MAX; i++)
p->coders[i].propsAreSet = False;
}
#ifndef Z7_ST
if (p->props.numBlockThreads_Reduced > 1)
{
IMtCoderCallback2 vt;
if (!p->mtCoder_WasConstructed)
{
p->mtCoder_WasConstructed = True;
MtCoder_Construct(&p->mtCoder);
}
vt.Code = Lzma2Enc_MtCallback_Code;
vt.Write = Lzma2Enc_MtCallback_Write;
p->outStream = outStream;
p->outBuf = NULL;
p->outBuf_Rem = 0;
if (!outStream)
{
p->outBuf = outBuf;
p->outBuf_Rem = *outBufSize;
*outBufSize = 0;
}
p->mtCoder.allocBig = p->allocBig;
p->mtCoder.progress = progress;
p->mtCoder.inStream = inStream;
p->mtCoder.inData = inData;
p->mtCoder.inDataSize = inDataSize;
p->mtCoder.mtCallback = &vt;
p->mtCoder.mtCallbackObject = p;
p->mtCoder.blockSize = (size_t)p->props.blockSize;
if (p->mtCoder.blockSize != p->props.blockSize)
return SZ_ERROR_PARAM; /* SZ_ERROR_MEM */
{
const size_t destBlockSize = p->mtCoder.blockSize + (p->mtCoder.blockSize >> 10) + 16;
if (destBlockSize < p->mtCoder.blockSize)
return SZ_ERROR_PARAM;
if (p->outBufSize != destBlockSize)
Lzma2Enc_FreeOutBufs(p);
p->outBufSize = destBlockSize;
}
p->mtCoder.numThreadsMax = (unsigned)p->props.numBlockThreads_Max;
p->mtCoder.expectedDataSize = p->expectedDataSize;
{
const SRes res = MtCoder_Code(&p->mtCoder);
if (!outStream)
*outBufSize = (size_t)(p->outBuf - outBuf);
return res;
}
}
#endif
return Lzma2Enc_EncodeMt1(p,
&p->coders[0],
outStream, outBuf, outBufSize,
inStream, inData, inDataSize,
True, /* finished */
progress);
}
#undef PRF

View File

@ -1,57 +0,0 @@
/* Lzma2Enc.h -- LZMA2 Encoder
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA2_ENC_H
#define ZIP7_INC_LZMA2_ENC_H
#include "LzmaEnc.h"
EXTERN_C_BEGIN
#define LZMA2_ENC_PROPS_BLOCK_SIZE_AUTO 0
#define LZMA2_ENC_PROPS_BLOCK_SIZE_SOLID ((UInt64)(Int64)-1)
typedef struct
{
CLzmaEncProps lzmaProps;
UInt64 blockSize;
int numBlockThreads_Reduced;
int numBlockThreads_Max;
int numTotalThreads;
} CLzma2EncProps;
void Lzma2EncProps_Init(CLzma2EncProps *p);
void Lzma2EncProps_Normalize(CLzma2EncProps *p);
/* ---------- CLzmaEnc2Handle Interface ---------- */
/* Lzma2Enc_* functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef struct CLzma2Enc CLzma2Enc;
typedef CLzma2Enc * CLzma2EncHandle;
// Z7_DECLARE_HANDLE(CLzma2EncHandle)
CLzma2EncHandle Lzma2Enc_Create(ISzAllocPtr alloc, ISzAllocPtr allocBig);
void Lzma2Enc_Destroy(CLzma2EncHandle p);
SRes Lzma2Enc_SetProps(CLzma2EncHandle p, const CLzma2EncProps *props);
void Lzma2Enc_SetDataSize(CLzma2EncHandle p, UInt64 expectedDataSiize);
Byte Lzma2Enc_WriteProperties(CLzma2EncHandle p);
SRes Lzma2Enc_Encode2(CLzma2EncHandle p,
ISeqOutStreamPtr outStream,
Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
const Byte *inData, size_t inDataSize,
ICompressProgressPtr progress);
EXTERN_C_END
#endif

View File

@ -1,111 +0,0 @@
/* Lzma86.h -- LZMA + x86 (BCJ) Filter
2023-03-03 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA86_H
#define ZIP7_INC_LZMA86_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA86_SIZE_OFFSET (1 + 5)
#define LZMA86_HEADER_SIZE (LZMA86_SIZE_OFFSET + 8)
/*
It's an example for LZMA + x86 Filter use.
You can use .lzma86 extension, if you write that stream to file.
.lzma86 header adds one additional byte to standard .lzma header.
.lzma86 header (14 bytes):
Offset Size Description
0 1 = 0 - no filter, pure LZMA
= 1 - x86 filter + LZMA
1 1 lc, lp and pb in encoded form
2 4 dictSize (little endian)
6 8 uncompressed size (little endian)
Lzma86_Encode
-------------
level - compression level: 0 <= level <= 9, the default value for "level" is 5.
dictSize - The dictionary size in bytes. The maximum value is
128 MB = (1 << 27) bytes for 32-bit version
1 GB = (1 << 30) bytes for 64-bit version
The default value is 16 MB = (1 << 24) bytes, for level = 5.
It's recommended to use the dictionary that is larger than 4 KB and
that can be calculated as (1 << N) or (3 << N) sizes.
For better compression ratio dictSize must be >= inSize.
filterMode:
SZ_FILTER_NO - no Filter
SZ_FILTER_YES - x86 Filter
SZ_FILTER_AUTO - it tries both alternatives to select best.
Encoder will use 2 or 3 passes:
2 passes when FILTER_NO provides better compression.
3 passes when FILTER_YES provides better compression.
Lzma86Encode allocates Data with MyAlloc functions.
RAM Requirements for compressing:
RamSize = dictionarySize * 11.5 + 6MB + FilterBlockSize
filterMode FilterBlockSize
SZ_FILTER_NO 0
SZ_FILTER_YES inSize
SZ_FILTER_AUTO inSize
Return code:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
enum ESzFilterMode
{
SZ_FILTER_NO,
SZ_FILTER_YES,
SZ_FILTER_AUTO
};
SRes Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode);
/*
Lzma86_GetUnpackSize:
In:
src - input data
srcLen - input data size
Out:
unpackSize - size of uncompressed stream
Return code:
SZ_OK - OK
SZ_ERROR_INPUT_EOF - Error in headers
*/
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize);
/*
Lzma86_Decode:
In:
dest - output data
destLen - output data size
src - input data
srcLen - input data size
Out:
destLen - processed output size
srcLen - processed input size
Return code:
SZ_OK - OK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - unsupported file
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer
*/
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen);
EXTERN_C_END
#endif

View File

@ -1,53 +0,0 @@
/* Lzma86Dec.c -- LZMA + x86 (BCJ) Filter Decoder
2023-03-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaDec.h"
SRes Lzma86_GetUnpackSize(const Byte *src, SizeT srcLen, UInt64 *unpackSize)
{
unsigned i;
if (srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
*unpackSize = 0;
for (i = 0; i < sizeof(UInt64); i++)
*unpackSize += ((UInt64)src[LZMA86_SIZE_OFFSET + i]) << (8 * i);
return SZ_OK;
}
SRes Lzma86_Decode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen)
{
SRes res;
int useFilter;
SizeT inSizePure;
ELzmaStatus status;
if (*srcLen < LZMA86_HEADER_SIZE)
return SZ_ERROR_INPUT_EOF;
useFilter = src[0];
if (useFilter > 1)
{
*destLen = 0;
return SZ_ERROR_UNSUPPORTED;
}
inSizePure = *srcLen - LZMA86_HEADER_SIZE;
res = LzmaDecode(dest, destLen, src + LZMA86_HEADER_SIZE, &inSizePure,
src + 1, LZMA_PROPS_SIZE, LZMA_FINISH_ANY, &status, &g_Alloc);
*srcLen = inSizePure + LZMA86_HEADER_SIZE;
if (res != SZ_OK)
return res;
if (useFilter == 1)
{
UInt32 x86State = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Dec(dest, *destLen, 0, &x86State);
}
return SZ_OK;
}

View File

@ -1,103 +0,0 @@
/* Lzma86Enc.c -- LZMA + x86 (BCJ) Filter Encoder
2023-03-03 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include <string.h>
#include "Lzma86.h"
#include "Alloc.h"
#include "Bra.h"
#include "LzmaEnc.h"
int Lzma86_Encode(Byte *dest, size_t *destLen, const Byte *src, size_t srcLen,
int level, UInt32 dictSize, int filterMode)
{
size_t outSize2 = *destLen;
Byte *filteredStream;
BoolInt useFilter;
int mainResult = SZ_ERROR_OUTPUT_EOF;
CLzmaEncProps props;
LzmaEncProps_Init(&props);
props.level = level;
props.dictSize = dictSize;
*destLen = 0;
if (outSize2 < LZMA86_HEADER_SIZE)
return SZ_ERROR_OUTPUT_EOF;
{
int i;
UInt64 t = srcLen;
for (i = 0; i < 8; i++, t >>= 8)
dest[LZMA86_SIZE_OFFSET + i] = (Byte)t;
}
filteredStream = 0;
useFilter = (filterMode != SZ_FILTER_NO);
if (useFilter)
{
if (srcLen != 0)
{
filteredStream = (Byte *)MyAlloc(srcLen);
if (filteredStream == 0)
return SZ_ERROR_MEM;
memcpy(filteredStream, src, srcLen);
}
{
UInt32 x86State = Z7_BRANCH_CONV_ST_X86_STATE_INIT_VAL;
z7_BranchConvSt_X86_Enc(filteredStream, srcLen, 0, &x86State);
}
}
{
size_t minSize = 0;
BoolInt bestIsFiltered = False;
/* passes for SZ_FILTER_AUTO:
0 - BCJ + LZMA
1 - LZMA
2 - BCJ + LZMA agaian, if pass 0 (BCJ + LZMA) is better.
*/
int numPasses = (filterMode == SZ_FILTER_AUTO) ? 3 : 1;
int i;
for (i = 0; i < numPasses; i++)
{
size_t outSizeProcessed = outSize2 - LZMA86_HEADER_SIZE;
size_t outPropsSize = 5;
SRes curRes;
BoolInt curModeIsFiltered = (numPasses > 1 && i == numPasses - 1);
if (curModeIsFiltered && !bestIsFiltered)
break;
if (useFilter && i == 0)
curModeIsFiltered = True;
curRes = LzmaEncode(dest + LZMA86_HEADER_SIZE, &outSizeProcessed,
curModeIsFiltered ? filteredStream : src, srcLen,
&props, dest + 1, &outPropsSize, 0,
NULL, &g_Alloc, &g_Alloc);
if (curRes != SZ_ERROR_OUTPUT_EOF)
{
if (curRes != SZ_OK)
{
mainResult = curRes;
break;
}
if (outSizeProcessed <= minSize || mainResult != SZ_OK)
{
minSize = outSizeProcessed;
bestIsFiltered = curModeIsFiltered;
mainResult = SZ_OK;
}
}
}
dest[0] = (Byte)(bestIsFiltered ? 1 : 0);
*destLen = LZMA86_HEADER_SIZE + minSize;
}
if (useFilter)
MyFree(filteredStream);
return mainResult;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,237 +0,0 @@
/* LzmaDec.h -- LZMA Decoder
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA_DEC_H
#define ZIP7_INC_LZMA_DEC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
/* #define Z7_LZMA_PROB32 */
/* Z7_LZMA_PROB32 can increase the speed on some CPUs,
but memory usage for CLzmaDec::probs will be doubled in that case */
typedef
#ifdef Z7_LZMA_PROB32
UInt32
#else
UInt16
#endif
CLzmaProb;
/* ---------- LZMA Properties ---------- */
#define LZMA_PROPS_SIZE 5
typedef struct
{
Byte lc;
Byte lp;
Byte pb;
Byte _pad_;
UInt32 dicSize;
} CLzmaProps;
/* LzmaProps_Decode - decodes properties
Returns:
SZ_OK
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size);
/* ---------- LZMA Decoder state ---------- */
/* LZMA_REQUIRED_INPUT_MAX = number of required input bytes for worst case.
Num bits = log2((2^11 / 31) ^ 22) + 26 < 134 + 26 = 160; */
#define LZMA_REQUIRED_INPUT_MAX 20
typedef struct
{
/* Don't change this structure. ASM code can use it. */
CLzmaProps prop;
CLzmaProb *probs;
CLzmaProb *probs_1664;
Byte *dic;
SizeT dicBufSize;
SizeT dicPos;
const Byte *buf;
UInt32 range;
UInt32 code;
UInt32 processedPos;
UInt32 checkDicSize;
UInt32 reps[4];
UInt32 state;
UInt32 remainLen;
UInt32 numProbs;
unsigned tempBufSize;
Byte tempBuf[LZMA_REQUIRED_INPUT_MAX];
} CLzmaDec;
#define LzmaDec_CONSTRUCT(p) { (p)->dic = NULL; (p)->probs = NULL; }
#define LzmaDec_Construct(p) LzmaDec_CONSTRUCT(p)
void LzmaDec_Init(CLzmaDec *p);
/* There are two types of LZMA streams:
- Stream with end mark. That end mark adds about 6 bytes to compressed size.
- Stream without end mark. You must know exact uncompressed size to decompress such stream. */
typedef enum
{
LZMA_FINISH_ANY, /* finish at any point */
LZMA_FINISH_END /* block must be finished at the end */
} ELzmaFinishMode;
/* ELzmaFinishMode has meaning only if the decoding reaches output limit !!!
You must use LZMA_FINISH_END, when you know that current output buffer
covers last bytes of block. In other cases you must use LZMA_FINISH_ANY.
If LZMA decoder sees end marker before reaching output limit, it returns SZ_OK,
and output value of destLen will be less than output buffer size limit.
You can check status result also.
You can use multiple checks to test data integrity after full decompression:
1) Check Result and "status" variable.
2) Check that output(destLen) = uncompressedSize, if you know real uncompressedSize.
3) Check that output(srcLen) = compressedSize, if you know real compressedSize.
You must use correct finish mode in that case. */
typedef enum
{
LZMA_STATUS_NOT_SPECIFIED, /* use main error code instead */
LZMA_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
LZMA_STATUS_NOT_FINISHED, /* stream was not finished */
LZMA_STATUS_NEEDS_MORE_INPUT, /* you must provide more input bytes */
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK /* there is probability that stream was finished without end mark */
} ELzmaStatus;
/* ELzmaStatus is used only as output value for function call */
/* ---------- Interfaces ---------- */
/* There are 3 levels of interfaces:
1) Dictionary Interface
2) Buffer Interface
3) One Call Interface
You can select any of these interfaces, but don't mix functions from different
groups for same object. */
/* There are two variants to allocate state for Dictionary Interface:
1) LzmaDec_Allocate / LzmaDec_Free
2) LzmaDec_AllocateProbs / LzmaDec_FreeProbs
You can use variant 2, if you set dictionary buffer manually.
For Buffer Interface you must always use variant 1.
LzmaDec_Allocate* can return:
SZ_OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
*/
SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_FreeProbs(CLzmaDec *p, ISzAllocPtr alloc);
SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAllocPtr alloc);
void LzmaDec_Free(CLzmaDec *p, ISzAllocPtr alloc);
/* ---------- Dictionary Interface ---------- */
/* You can use it, if you want to eliminate the overhead for data copying from
dictionary to some other external buffer.
You must work with CLzmaDec variables directly in this interface.
STEPS:
LzmaDec_Construct()
LzmaDec_Allocate()
for (each new stream)
{
LzmaDec_Init()
while (it needs more decompression)
{
LzmaDec_DecodeToDic()
use data from CLzmaDec::dic and update CLzmaDec::dicPos
}
}
LzmaDec_Free()
*/
/* LzmaDec_DecodeToDic
The decoding to internal dictionary buffer (CLzmaDec::dic).
You must manually update CLzmaDec::dicPos, if it reaches CLzmaDec::dicBufSize !!!
finishMode:
It has meaning only if the decoding reaches output limit (dicLimit).
LZMA_FINISH_ANY - Decode just dicLimit bytes.
LZMA_FINISH_END - Stream must be finished after dicLimit.
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_NEEDS_MORE_INPUT
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
SZ_ERROR_FAIL - Some unexpected error: internal error of code, memory corruption or hardware failure
*/
SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- Buffer Interface ---------- */
/* It's zlib-like interface.
See LzmaDec_DecodeToDic description for information about STEPS and return results,
but you must use LzmaDec_DecodeToBuf instead of LzmaDec_DecodeToDic and you don't need
to work with CLzmaDec variables manually.
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
*/
SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status);
/* ---------- One Call Interface ---------- */
/* LzmaDecode
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
LZMA_FINISH_ANY - Decode just destLen bytes.
LZMA_FINISH_END - Stream must be finished after (*destLen).
Returns:
SZ_OK
status:
LZMA_STATUS_FINISHED_WITH_MARK
LZMA_STATUS_NOT_FINISHED
LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
SZ_ERROR_FAIL - Some unexpected error: internal error of code, memory corruption or hardware failure
*/
SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
ELzmaStatus *status, ISzAllocPtr alloc);
EXTERN_C_END
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,83 +0,0 @@
/* LzmaEnc.h -- LZMA Encoder
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA_ENC_H
#define ZIP7_INC_LZMA_ENC_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define LZMA_PROPS_SIZE 5
typedef struct
{
int level; /* 0 <= level <= 9 */
UInt32 dictSize; /* (1 << 12) <= dictSize <= (1 << 27) for 32-bit version
(1 << 12) <= dictSize <= (3 << 29) for 64-bit version
default = (1 << 24) */
int lc; /* 0 <= lc <= 8, default = 3 */
int lp; /* 0 <= lp <= 4, default = 0 */
int pb; /* 0 <= pb <= 4, default = 2 */
int algo; /* 0 - fast, 1 - normal, default = 1 */
int fb; /* 5 <= fb <= 273, default = 32 */
int btMode; /* 0 - hashChain Mode, 1 - binTree mode - normal, default = 1 */
int numHashBytes; /* 2, 3 or 4, default = 4 */
unsigned numHashOutBits; /* default = ? */
UInt32 mc; /* 1 <= mc <= (1 << 30), default = 32 */
unsigned writeEndMark; /* 0 - do not write EOPM, 1 - write EOPM, default = 0 */
int numThreads; /* 1 or 2, default = 2 */
// int _pad;
UInt64 reduceSize; /* estimated size of data that will be compressed. default = (UInt64)(Int64)-1.
Encoder uses this value to reduce dictionary size */
UInt64 affinity;
} CLzmaEncProps;
void LzmaEncProps_Init(CLzmaEncProps *p);
void LzmaEncProps_Normalize(CLzmaEncProps *p);
UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2);
/* ---------- CLzmaEncHandle Interface ---------- */
/* LzmaEnc* functions can return the following exit codes:
SRes:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater in props
SZ_ERROR_WRITE - ISeqOutStream write callback error
SZ_ERROR_OUTPUT_EOF - output buffer overflow - version with (Byte *) output
SZ_ERROR_PROGRESS - some break from progress callback
SZ_ERROR_THREAD - error in multithreading functions (only for Mt version)
*/
typedef struct CLzmaEnc CLzmaEnc;
typedef CLzmaEnc * CLzmaEncHandle;
// Z7_DECLARE_HANDLE(CLzmaEncHandle)
CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc);
void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_SetProps(CLzmaEncHandle p, const CLzmaEncProps *props);
void LzmaEnc_SetDataSize(CLzmaEncHandle p, UInt64 expectedDataSiize);
SRes LzmaEnc_WriteProperties(CLzmaEncHandle p, Byte *properties, SizeT *size);
unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle p);
SRes LzmaEnc_Encode(CLzmaEncHandle p, ISeqOutStreamPtr outStream, ISeqInStreamPtr inStream,
ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
SRes LzmaEnc_MemEncode(CLzmaEncHandle p, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
int writeEndMark, ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
/* ---------- One Call Interface ---------- */
SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
ICompressProgressPtr progress, ISzAllocPtr alloc, ISzAllocPtr allocBig);
EXTERN_C_END
#endif

View File

@ -1,42 +0,0 @@
/* LzmaLib.c -- LZMA library wrapper
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Alloc.h"
#include "LzmaDec.h"
#include "LzmaEnc.h"
#include "LzmaLib.h"
Z7_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize,
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* use (1 << N) or (3 << N). 4 KB < dictSize <= 128 MB */
int lc, /* 0 <= lc <= 8, default = 3 */
int lp, /* 0 <= lp <= 4, default = 0 */
int pb, /* 0 <= pb <= 4, default = 2 */
int fb, /* 5 <= fb <= 273, default = 32 */
int numThreads /* 1 or 2, default = 2 */
)
{
CLzmaEncProps props;
LzmaEncProps_Init(&props);
props.level = level;
props.dictSize = dictSize;
props.lc = lc;
props.lp = lp;
props.pb = pb;
props.fb = fb;
props.numThreads = numThreads;
return LzmaEncode(dest, destLen, src, srcLen, &props, outProps, outPropsSize, 0,
NULL, &g_Alloc, &g_Alloc);
}
Z7_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t *srcLen,
const unsigned char *props, size_t propsSize)
{
ELzmaStatus status;
return LzmaDecode(dest, destLen, src, srcLen, props, (unsigned)propsSize, LZMA_FINISH_ANY, &status, &g_Alloc);
}

View File

@ -1,138 +0,0 @@
/* LzmaLib.h -- LZMA library interface
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_LZMA_LIB_H
#define ZIP7_INC_LZMA_LIB_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define Z7_STDAPI int Z7_STDCALL
#define LZMA_PROPS_SIZE 5
/*
RAM requirements for LZMA:
for compression: (dictSize * 11.5 + 6 MB) + state_size
for decompression: dictSize + state_size
state_size = (4 + (1.5 << (lc + lp))) KB
by default (lc=3, lp=0), state_size = 16 KB.
LZMA properties (5 bytes) format
Offset Size Description
0 1 lc, lp and pb in encoded form.
1 4 dictSize (little endian).
*/
/*
LzmaCompress
------------
outPropsSize -
In: the pointer to the size of outProps buffer; *outPropsSize = LZMA_PROPS_SIZE = 5.
Out: the pointer to the size of written properties in outProps buffer; *outPropsSize = LZMA_PROPS_SIZE = 5.
LZMA Encoder will use defult values for any parameter, if it is
-1 for any from: level, loc, lp, pb, fb, numThreads
0 for dictSize
level - compression level: 0 <= level <= 9;
level dictSize algo fb
0: 64 KB 0 32
1: 256 KB 0 32
2: 1 MB 0 32
3: 4 MB 0 32
4: 16 MB 0 32
5: 16 MB 1 32
6: 32 MB 1 32
7: 32 MB 1 64
8: 64 MB 1 64
9: 64 MB 1 64
The default value for "level" is 5.
algo = 0 means fast method
algo = 1 means normal method
dictSize - The dictionary size in bytes. The maximum value is
128 MB = (1 << 27) bytes for 32-bit version
1 GB = (1 << 30) bytes for 64-bit version
The default value is 16 MB = (1 << 24) bytes.
It's recommended to use the dictionary that is larger than 4 KB and
that can be calculated as (1 << N) or (3 << N) sizes.
lc - The number of literal context bits (high bits of previous literal).
It can be in the range from 0 to 8. The default value is 3.
Sometimes lc=4 gives the gain for big files.
lp - The number of literal pos bits (low bits of current position for literals).
It can be in the range from 0 to 4. The default value is 0.
The lp switch is intended for periodical data when the period is equal to 2^lp.
For example, for 32-bit (4 bytes) periodical data you can use lp=2. Often it's
better to set lc=0, if you change lp switch.
pb - The number of pos bits (low bits of current position).
It can be in the range from 0 to 4. The default value is 2.
The pb switch is intended for periodical data when the period is equal 2^pb.
fb - Word size (the number of fast bytes).
It can be in the range from 5 to 273. The default value is 32.
Usually, a big number gives a little bit better compression ratio and
slower compression process.
numThreads - The number of thereads. 1 or 2. The default value is 2.
Fast mode (algo = 0) can use only 1 thread.
In:
dest - output data buffer
destLen - output data buffer size
src - input data
srcLen - input data size
Out:
destLen - processed output size
Returns:
SZ_OK - OK
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_PARAM - Incorrect paramater
SZ_ERROR_OUTPUT_EOF - output buffer overflow
SZ_ERROR_THREAD - errors in multithreading functions (only for Mt version)
*/
Z7_STDAPI LzmaCompress(unsigned char *dest, size_t *destLen, const unsigned char *src, size_t srcLen,
unsigned char *outProps, size_t *outPropsSize, /* *outPropsSize must be = 5 */
int level, /* 0 <= level <= 9, default = 5 */
unsigned dictSize, /* default = (1 << 24) */
int lc, /* 0 <= lc <= 8, default = 3 */
int lp, /* 0 <= lp <= 4, default = 0 */
int pb, /* 0 <= pb <= 4, default = 2 */
int fb, /* 5 <= fb <= 273, default = 32 */
int numThreads /* 1 or 2, default = 2 */
);
/*
LzmaUncompress
--------------
In:
dest - output data buffer
destLen - output data buffer size
src - input data
srcLen - input data size
Out:
destLen - processed output size
srcLen - processed input size
Returns:
SZ_OK - OK
SZ_ERROR_DATA - Data error
SZ_ERROR_MEM - Memory allocation arror
SZ_ERROR_UNSUPPORTED - Unsupported properties
SZ_ERROR_INPUT_EOF - it needs more bytes in input buffer (src)
*/
Z7_STDAPI LzmaUncompress(unsigned char *dest, size_t *destLen, const unsigned char *src, SizeT *srcLen,
const unsigned char *props, size_t propsSize);
EXTERN_C_END
#endif

View File

@ -1,571 +0,0 @@
/* MtCoder.c -- Multi-thread Coder
2023-04-13 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "MtCoder.h"
#ifndef Z7_ST
static SRes MtProgressThunk_Progress(ICompressProgressPtr pp, UInt64 inSize, UInt64 outSize)
{
Z7_CONTAINER_FROM_VTBL_TO_DECL_VAR_pp_vt_p(CMtProgressThunk)
UInt64 inSize2 = 0;
UInt64 outSize2 = 0;
if (inSize != (UInt64)(Int64)-1)
{
inSize2 = inSize - p->inSize;
p->inSize = inSize;
}
if (outSize != (UInt64)(Int64)-1)
{
outSize2 = outSize - p->outSize;
p->outSize = outSize;
}
return MtProgress_ProgressAdd(p->mtProgress, inSize2, outSize2);
}
void MtProgressThunk_CreateVTable(CMtProgressThunk *p)
{
p->vt.Progress = MtProgressThunk_Progress;
}
#define RINOK_THREAD(x) { if ((x) != 0) return SZ_ERROR_THREAD; }
static THREAD_FUNC_DECL ThreadFunc(void *pp);
static SRes MtCoderThread_CreateAndStart(CMtCoderThread *t)
{
WRes wres = AutoResetEvent_OptCreate_And_Reset(&t->startEvent);
if (wres == 0)
{
t->stop = False;
if (!Thread_WasCreated(&t->thread))
wres = Thread_Create(&t->thread, ThreadFunc, t);
if (wres == 0)
wres = Event_Set(&t->startEvent);
}
if (wres == 0)
return SZ_OK;
return MY_SRes_HRESULT_FROM_WRes(wres);
}
static void MtCoderThread_Destruct(CMtCoderThread *t)
{
if (Thread_WasCreated(&t->thread))
{
t->stop = 1;
Event_Set(&t->startEvent);
Thread_Wait_Close(&t->thread);
}
Event_Close(&t->startEvent);
if (t->inBuf)
{
ISzAlloc_Free(t->mtCoder->allocBig, t->inBuf);
t->inBuf = NULL;
}
}
/*
ThreadFunc2() returns:
SZ_OK - in all normal cases (even for stream error or memory allocation error)
SZ_ERROR_THREAD - in case of failure in system synch function
*/
static SRes ThreadFunc2(CMtCoderThread *t)
{
CMtCoder *mtc = t->mtCoder;
for (;;)
{
unsigned bi;
SRes res;
SRes res2;
BoolInt finished;
unsigned bufIndex;
size_t size;
const Byte *inData;
UInt64 readProcessed = 0;
RINOK_THREAD(Event_Wait(&mtc->readEvent))
/* after Event_Wait(&mtc->readEvent) we must call Event_Set(&mtc->readEvent) in any case to unlock another threads */
if (mtc->stopReading)
{
return Event_Set(&mtc->readEvent) == 0 ? SZ_OK : SZ_ERROR_THREAD;
}
res = MtProgress_GetError(&mtc->mtProgress);
size = 0;
inData = NULL;
finished = True;
if (res == SZ_OK)
{
size = mtc->blockSize;
if (mtc->inStream)
{
if (!t->inBuf)
{
t->inBuf = (Byte *)ISzAlloc_Alloc(mtc->allocBig, mtc->blockSize);
if (!t->inBuf)
res = SZ_ERROR_MEM;
}
if (res == SZ_OK)
{
res = SeqInStream_ReadMax(mtc->inStream, t->inBuf, &size);
readProcessed = mtc->readProcessed + size;
mtc->readProcessed = readProcessed;
}
if (res != SZ_OK)
{
mtc->readRes = res;
/* after reading error - we can stop encoding of previous blocks */
MtProgress_SetError(&mtc->mtProgress, res);
}
else
finished = (size != mtc->blockSize);
}
else
{
size_t rem;
readProcessed = mtc->readProcessed;
rem = mtc->inDataSize - (size_t)readProcessed;
if (size > rem)
size = rem;
inData = mtc->inData + (size_t)readProcessed;
readProcessed += size;
mtc->readProcessed = readProcessed;
finished = (mtc->inDataSize == (size_t)readProcessed);
}
}
/* we must get some block from blocksSemaphore before Event_Set(&mtc->readEvent) */
res2 = SZ_OK;
if (Semaphore_Wait(&mtc->blocksSemaphore) != 0)
{
res2 = SZ_ERROR_THREAD;
if (res == SZ_OK)
{
res = res2;
// MtProgress_SetError(&mtc->mtProgress, res);
}
}
bi = mtc->blockIndex;
if (++mtc->blockIndex >= mtc->numBlocksMax)
mtc->blockIndex = 0;
bufIndex = (unsigned)(int)-1;
if (res == SZ_OK)
res = MtProgress_GetError(&mtc->mtProgress);
if (res != SZ_OK)
finished = True;
if (!finished)
{
if (mtc->numStartedThreads < mtc->numStartedThreadsLimit
&& mtc->expectedDataSize != readProcessed)
{
res = MtCoderThread_CreateAndStart(&mtc->threads[mtc->numStartedThreads]);
if (res == SZ_OK)
mtc->numStartedThreads++;
else
{
MtProgress_SetError(&mtc->mtProgress, res);
finished = True;
}
}
}
if (finished)
mtc->stopReading = True;
RINOK_THREAD(Event_Set(&mtc->readEvent))
if (res2 != SZ_OK)
return res2;
if (res == SZ_OK)
{
CriticalSection_Enter(&mtc->cs);
bufIndex = mtc->freeBlockHead;
mtc->freeBlockHead = mtc->freeBlockList[bufIndex];
CriticalSection_Leave(&mtc->cs);
res = mtc->mtCallback->Code(mtc->mtCallbackObject, t->index, bufIndex,
mtc->inStream ? t->inBuf : inData, size, finished);
// MtProgress_Reinit(&mtc->mtProgress, t->index);
if (res != SZ_OK)
MtProgress_SetError(&mtc->mtProgress, res);
}
{
CMtCoderBlock *block = &mtc->blocks[bi];
block->res = res;
block->bufIndex = bufIndex;
block->finished = finished;
}
#ifdef MTCODER_USE_WRITE_THREAD
RINOK_THREAD(Event_Set(&mtc->writeEvents[bi]))
#else
{
unsigned wi;
{
CriticalSection_Enter(&mtc->cs);
wi = mtc->writeIndex;
if (wi == bi)
mtc->writeIndex = (unsigned)(int)-1;
else
mtc->ReadyBlocks[bi] = True;
CriticalSection_Leave(&mtc->cs);
}
if (wi != bi)
{
if (res != SZ_OK || finished)
return 0;
continue;
}
if (mtc->writeRes != SZ_OK)
res = mtc->writeRes;
for (;;)
{
if (res == SZ_OK && bufIndex != (unsigned)(int)-1)
{
res = mtc->mtCallback->Write(mtc->mtCallbackObject, bufIndex);
if (res != SZ_OK)
{
mtc->writeRes = res;
MtProgress_SetError(&mtc->mtProgress, res);
}
}
if (++wi >= mtc->numBlocksMax)
wi = 0;
{
BoolInt isReady;
CriticalSection_Enter(&mtc->cs);
if (bufIndex != (unsigned)(int)-1)
{
mtc->freeBlockList[bufIndex] = mtc->freeBlockHead;
mtc->freeBlockHead = bufIndex;
}
isReady = mtc->ReadyBlocks[wi];
if (isReady)
mtc->ReadyBlocks[wi] = False;
else
mtc->writeIndex = wi;
CriticalSection_Leave(&mtc->cs);
RINOK_THREAD(Semaphore_Release1(&mtc->blocksSemaphore))
if (!isReady)
break;
}
{
CMtCoderBlock *block = &mtc->blocks[wi];
if (res == SZ_OK && block->res != SZ_OK)
res = block->res;
bufIndex = block->bufIndex;
finished = block->finished;
}
}
}
#endif
if (finished || res != SZ_OK)
return 0;
}
}
static THREAD_FUNC_DECL ThreadFunc(void *pp)
{
CMtCoderThread *t = (CMtCoderThread *)pp;
for (;;)
{
if (Event_Wait(&t->startEvent) != 0)
return (THREAD_FUNC_RET_TYPE)SZ_ERROR_THREAD;
if (t->stop)
return 0;
{
SRes res = ThreadFunc2(t);
CMtCoder *mtc = t->mtCoder;
if (res != SZ_OK)
{
MtProgress_SetError(&mtc->mtProgress, res);
}
#ifndef MTCODER_USE_WRITE_THREAD
{
unsigned numFinished = (unsigned)InterlockedIncrement(&mtc->numFinishedThreads);
if (numFinished == mtc->numStartedThreads)
if (Event_Set(&mtc->finishedEvent) != 0)
return (THREAD_FUNC_RET_TYPE)SZ_ERROR_THREAD;
}
#endif
}
}
}
void MtCoder_Construct(CMtCoder *p)
{
unsigned i;
p->blockSize = 0;
p->numThreadsMax = 0;
p->expectedDataSize = (UInt64)(Int64)-1;
p->inStream = NULL;
p->inData = NULL;
p->inDataSize = 0;
p->progress = NULL;
p->allocBig = NULL;
p->mtCallback = NULL;
p->mtCallbackObject = NULL;
p->allocatedBufsSize = 0;
Event_Construct(&p->readEvent);
Semaphore_Construct(&p->blocksSemaphore);
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CMtCoderThread *t = &p->threads[i];
t->mtCoder = p;
t->index = i;
t->inBuf = NULL;
t->stop = False;
Event_Construct(&t->startEvent);
Thread_CONSTRUCT(&t->thread)
}
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
Event_Construct(&p->writeEvents[i]);
#else
Event_Construct(&p->finishedEvent);
#endif
CriticalSection_Init(&p->cs);
CriticalSection_Init(&p->mtProgress.cs);
}
static void MtCoder_Free(CMtCoder *p)
{
unsigned i;
/*
p->stopReading = True;
if (Event_IsCreated(&p->readEvent))
Event_Set(&p->readEvent);
*/
for (i = 0; i < MTCODER_THREADS_MAX; i++)
MtCoderThread_Destruct(&p->threads[i]);
Event_Close(&p->readEvent);
Semaphore_Close(&p->blocksSemaphore);
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
Event_Close(&p->writeEvents[i]);
#else
Event_Close(&p->finishedEvent);
#endif
}
void MtCoder_Destruct(CMtCoder *p)
{
MtCoder_Free(p);
CriticalSection_Delete(&p->cs);
CriticalSection_Delete(&p->mtProgress.cs);
}
SRes MtCoder_Code(CMtCoder *p)
{
unsigned numThreads = p->numThreadsMax;
unsigned numBlocksMax;
unsigned i;
SRes res = SZ_OK;
if (numThreads > MTCODER_THREADS_MAX)
numThreads = MTCODER_THREADS_MAX;
numBlocksMax = MTCODER_GET_NUM_BLOCKS_FROM_THREADS(numThreads);
if (p->blockSize < ((UInt32)1 << 26)) numBlocksMax++;
if (p->blockSize < ((UInt32)1 << 24)) numBlocksMax++;
if (p->blockSize < ((UInt32)1 << 22)) numBlocksMax++;
if (numBlocksMax > MTCODER_BLOCKS_MAX)
numBlocksMax = MTCODER_BLOCKS_MAX;
if (p->blockSize != p->allocatedBufsSize)
{
for (i = 0; i < MTCODER_THREADS_MAX; i++)
{
CMtCoderThread *t = &p->threads[i];
if (t->inBuf)
{
ISzAlloc_Free(p->allocBig, t->inBuf);
t->inBuf = NULL;
}
}
p->allocatedBufsSize = p->blockSize;
}
p->readRes = SZ_OK;
MtProgress_Init(&p->mtProgress, p->progress);
#ifdef MTCODER_USE_WRITE_THREAD
for (i = 0; i < numBlocksMax; i++)
{
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->writeEvents[i]))
}
#else
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->finishedEvent))
#endif
{
RINOK_THREAD(AutoResetEvent_OptCreate_And_Reset(&p->readEvent))
RINOK_THREAD(Semaphore_OptCreateInit(&p->blocksSemaphore, numBlocksMax, numBlocksMax))
}
for (i = 0; i < MTCODER_BLOCKS_MAX - 1; i++)
p->freeBlockList[i] = i + 1;
p->freeBlockList[MTCODER_BLOCKS_MAX - 1] = (unsigned)(int)-1;
p->freeBlockHead = 0;
p->readProcessed = 0;
p->blockIndex = 0;
p->numBlocksMax = numBlocksMax;
p->stopReading = False;
#ifndef MTCODER_USE_WRITE_THREAD
p->writeIndex = 0;
p->writeRes = SZ_OK;
for (i = 0; i < MTCODER_BLOCKS_MAX; i++)
p->ReadyBlocks[i] = False;
p->numFinishedThreads = 0;
#endif
p->numStartedThreadsLimit = numThreads;
p->numStartedThreads = 0;
// for (i = 0; i < numThreads; i++)
{
CMtCoderThread *nextThread = &p->threads[p->numStartedThreads++];
RINOK(MtCoderThread_CreateAndStart(nextThread))
}
RINOK_THREAD(Event_Set(&p->readEvent))
#ifdef MTCODER_USE_WRITE_THREAD
{
unsigned bi = 0;
for (;; bi++)
{
if (bi >= numBlocksMax)
bi = 0;
RINOK_THREAD(Event_Wait(&p->writeEvents[bi]))
{
const CMtCoderBlock *block = &p->blocks[bi];
unsigned bufIndex = block->bufIndex;
BoolInt finished = block->finished;
if (res == SZ_OK && block->res != SZ_OK)
res = block->res;
if (bufIndex != (unsigned)(int)-1)
{
if (res == SZ_OK)
{
res = p->mtCallback->Write(p->mtCallbackObject, bufIndex);
if (res != SZ_OK)
MtProgress_SetError(&p->mtProgress, res);
}
CriticalSection_Enter(&p->cs);
{
p->freeBlockList[bufIndex] = p->freeBlockHead;
p->freeBlockHead = bufIndex;
}
CriticalSection_Leave(&p->cs);
}
RINOK_THREAD(Semaphore_Release1(&p->blocksSemaphore))
if (finished)
break;
}
}
}
#else
{
WRes wres = Event_Wait(&p->finishedEvent);
res = MY_SRes_HRESULT_FROM_WRes(wres);
}
#endif
if (res == SZ_OK)
res = p->readRes;
if (res == SZ_OK)
res = p->mtProgress.res;
#ifndef MTCODER_USE_WRITE_THREAD
if (res == SZ_OK)
res = p->writeRes;
#endif
if (res != SZ_OK)
MtCoder_Free(p);
return res;
}
#endif
#undef RINOK_THREAD

View File

@ -1,141 +0,0 @@
/* MtCoder.h -- Multi-thread Coder
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_MT_CODER_H
#define ZIP7_INC_MT_CODER_H
#include "MtDec.h"
EXTERN_C_BEGIN
/*
if ( defined MTCODER_USE_WRITE_THREAD) : main thread writes all data blocks to output stream
if (not defined MTCODER_USE_WRITE_THREAD) : any coder thread can write data blocks to output stream
*/
/* #define MTCODER_USE_WRITE_THREAD */
#ifndef Z7_ST
#define MTCODER_GET_NUM_BLOCKS_FROM_THREADS(numThreads) ((numThreads) + (numThreads) / 8 + 1)
#define MTCODER_THREADS_MAX 64
#define MTCODER_BLOCKS_MAX (MTCODER_GET_NUM_BLOCKS_FROM_THREADS(MTCODER_THREADS_MAX) + 3)
#else
#define MTCODER_THREADS_MAX 1
#define MTCODER_BLOCKS_MAX 1
#endif
#ifndef Z7_ST
typedef struct
{
ICompressProgress vt;
CMtProgress *mtProgress;
UInt64 inSize;
UInt64 outSize;
} CMtProgressThunk;
void MtProgressThunk_CreateVTable(CMtProgressThunk *p);
#define MtProgressThunk_INIT(p) { (p)->inSize = 0; (p)->outSize = 0; }
struct CMtCoder_;
typedef struct
{
struct CMtCoder_ *mtCoder;
unsigned index;
int stop;
Byte *inBuf;
CAutoResetEvent startEvent;
CThread thread;
} CMtCoderThread;
typedef struct
{
SRes (*Code)(void *p, unsigned coderIndex, unsigned outBufIndex,
const Byte *src, size_t srcSize, int finished);
SRes (*Write)(void *p, unsigned outBufIndex);
} IMtCoderCallback2;
typedef struct
{
SRes res;
unsigned bufIndex;
BoolInt finished;
} CMtCoderBlock;
typedef struct CMtCoder_
{
/* input variables */
size_t blockSize; /* size of input block */
unsigned numThreadsMax;
UInt64 expectedDataSize;
ISeqInStreamPtr inStream;
const Byte *inData;
size_t inDataSize;
ICompressProgressPtr progress;
ISzAllocPtr allocBig;
IMtCoderCallback2 *mtCallback;
void *mtCallbackObject;
/* internal variables */
size_t allocatedBufsSize;
CAutoResetEvent readEvent;
CSemaphore blocksSemaphore;
BoolInt stopReading;
SRes readRes;
#ifdef MTCODER_USE_WRITE_THREAD
CAutoResetEvent writeEvents[MTCODER_BLOCKS_MAX];
#else
CAutoResetEvent finishedEvent;
SRes writeRes;
unsigned writeIndex;
Byte ReadyBlocks[MTCODER_BLOCKS_MAX];
LONG numFinishedThreads;
#endif
unsigned numStartedThreadsLimit;
unsigned numStartedThreads;
unsigned numBlocksMax;
unsigned blockIndex;
UInt64 readProcessed;
CCriticalSection cs;
unsigned freeBlockHead;
unsigned freeBlockList[MTCODER_BLOCKS_MAX];
CMtProgress mtProgress;
CMtCoderBlock blocks[MTCODER_BLOCKS_MAX];
CMtCoderThread threads[MTCODER_THREADS_MAX];
} CMtCoder;
void MtCoder_Construct(CMtCoder *p);
void MtCoder_Destruct(CMtCoder *p);
SRes MtCoder_Code(CMtCoder *p);
#endif
EXTERN_C_END
#endif

1114
3rdparty/7z/src/MtDec.c vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,202 +0,0 @@
/* MtDec.h -- Multi-thread Decoder
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_MT_DEC_H
#define ZIP7_INC_MT_DEC_H
#include "7zTypes.h"
#ifndef Z7_ST
#include "Threads.h"
#endif
EXTERN_C_BEGIN
#ifndef Z7_ST
#ifndef Z7_ST
#define MTDEC_THREADS_MAX 32
#else
#define MTDEC_THREADS_MAX 1
#endif
typedef struct
{
ICompressProgressPtr progress;
SRes res;
UInt64 totalInSize;
UInt64 totalOutSize;
CCriticalSection cs;
} CMtProgress;
void MtProgress_Init(CMtProgress *p, ICompressProgressPtr progress);
SRes MtProgress_Progress_ST(CMtProgress *p);
SRes MtProgress_ProgressAdd(CMtProgress *p, UInt64 inSize, UInt64 outSize);
SRes MtProgress_GetError(CMtProgress *p);
void MtProgress_SetError(CMtProgress *p, SRes res);
struct CMtDec;
typedef struct
{
struct CMtDec_ *mtDec;
unsigned index;
void *inBuf;
size_t inDataSize_Start; // size of input data in start block
UInt64 inDataSize; // total size of input data in all blocks
CThread thread;
CAutoResetEvent canRead;
CAutoResetEvent canWrite;
void *allocaPtr;
} CMtDecThread;
void MtDecThread_FreeInBufs(CMtDecThread *t);
typedef enum
{
MTDEC_PARSE_CONTINUE, // continue this block with more input data
MTDEC_PARSE_OVERFLOW, // MT buffers overflow, need switch to single-thread
MTDEC_PARSE_NEW, // new block
MTDEC_PARSE_END // end of block threading. But we still can return to threading after Write(&needContinue)
} EMtDecParseState;
typedef struct
{
// in
int startCall;
const Byte *src;
size_t srcSize;
// in : (srcSize == 0) is allowed
// out : it's allowed to return less that actually was used ?
int srcFinished;
// out
EMtDecParseState state;
BoolInt canCreateNewThread;
UInt64 outPos; // check it (size_t)
} CMtDecCallbackInfo;
typedef struct
{
void (*Parse)(void *p, unsigned coderIndex, CMtDecCallbackInfo *ci);
// PreCode() and Code():
// (SRes_return_result != SZ_OK) means stop decoding, no need another blocks
SRes (*PreCode)(void *p, unsigned coderIndex);
SRes (*Code)(void *p, unsigned coderIndex,
const Byte *src, size_t srcSize, int srcFinished,
UInt64 *inCodePos, UInt64 *outCodePos, int *stop);
// stop - means stop another Code calls
/* Write() must be called, if Parse() was called
set (needWrite) if
{
&& (was not interrupted by progress)
&& (was not interrupted in previous block)
}
out:
if (*needContinue), decoder still need to continue decoding with new iteration,
even after MTDEC_PARSE_END
if (*canRecode), we didn't flush current block data, so we still can decode current block later.
*/
SRes (*Write)(void *p, unsigned coderIndex,
BoolInt needWriteToStream,
const Byte *src, size_t srcSize, BoolInt isCross,
// int srcFinished,
BoolInt *needContinue,
BoolInt *canRecode);
} IMtDecCallback2;
typedef struct CMtDec_
{
/* input variables */
size_t inBufSize; /* size of input block */
unsigned numThreadsMax;
// size_t inBlockMax;
unsigned numThreadsMax_2;
ISeqInStreamPtr inStream;
// const Byte *inData;
// size_t inDataSize;
ICompressProgressPtr progress;
ISzAllocPtr alloc;
IMtDecCallback2 *mtCallback;
void *mtCallbackObject;
/* internal variables */
size_t allocatedBufsSize;
BoolInt exitThread;
WRes exitThreadWRes;
UInt64 blockIndex;
BoolInt isAllocError;
BoolInt overflow;
SRes threadingErrorSRes;
BoolInt needContinue;
// CAutoResetEvent finishedEvent;
SRes readRes;
SRes codeRes;
BoolInt wasInterrupted;
unsigned numStartedThreads_Limit;
unsigned numStartedThreads;
Byte *crossBlock;
size_t crossStart;
size_t crossEnd;
UInt64 readProcessed;
BoolInt readWasFinished;
UInt64 inProcessed;
unsigned filledThreadStart;
unsigned numFilledThreads;
#ifndef Z7_ST
BoolInt needInterrupt;
UInt64 interruptIndex;
CMtProgress mtProgress;
CMtDecThread threads[MTDEC_THREADS_MAX];
#endif
} CMtDec;
void MtDec_Construct(CMtDec *p);
void MtDec_Destruct(CMtDec *p);
/*
MtDec_Code() returns:
SZ_OK - in most cases
MY_SRes_HRESULT_FROM_WRes(WRes_error) - in case of unexpected error in threading function
*/
SRes MtDec_Code(CMtDec *p);
Byte *MtDec_GetCrossBuff(CMtDec *p);
int MtDec_PrepareRead(CMtDec *p);
const Byte *MtDec_Read(CMtDec *p, size_t *inLim);
#endif
EXTERN_C_END
#endif

169
3rdparty/7z/src/Ppmd.h vendored
View File

@ -1,169 +0,0 @@
/* Ppmd.h -- PPMD codec common code
2023-03-05 : Igor Pavlov : Public domain
This code is based on PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef ZIP7_INC_PPMD_H
#define ZIP7_INC_PPMD_H
#include "CpuArch.h"
EXTERN_C_BEGIN
#if defined(MY_CPU_SIZEOF_POINTER) && (MY_CPU_SIZEOF_POINTER == 4)
/*
PPMD code always uses 32-bit internal fields in PPMD structures to store internal references in main block.
if (PPMD_32BIT is defined), the PPMD code stores internal pointers to 32-bit reference fields.
if (PPMD_32BIT is NOT defined), the PPMD code stores internal UInt32 offsets to reference fields.
if (pointer size is 64-bit), then (PPMD_32BIT) mode is not allowed,
if (pointer size is 32-bit), then (PPMD_32BIT) mode is optional,
and it's allowed to disable PPMD_32BIT mode even if pointer is 32-bit.
PPMD code works slightly faster in (PPMD_32BIT) mode.
*/
#define PPMD_32BIT
#endif
#define PPMD_INT_BITS 7
#define PPMD_PERIOD_BITS 7
#define PPMD_BIN_SCALE (1 << (PPMD_INT_BITS + PPMD_PERIOD_BITS))
#define PPMD_GET_MEAN_SPEC(summ, shift, round) (((summ) + (1 << ((shift) - (round)))) >> (shift))
#define PPMD_GET_MEAN(summ) PPMD_GET_MEAN_SPEC((summ), PPMD_PERIOD_BITS, 2)
#define PPMD_UPDATE_PROB_0(prob) ((prob) + (1 << PPMD_INT_BITS) - PPMD_GET_MEAN(prob))
#define PPMD_UPDATE_PROB_1(prob) ((prob) - PPMD_GET_MEAN(prob))
#define PPMD_N1 4
#define PPMD_N2 4
#define PPMD_N3 4
#define PPMD_N4 ((128 + 3 - 1 * PPMD_N1 - 2 * PPMD_N2 - 3 * PPMD_N3) / 4)
#define PPMD_NUM_INDEXES (PPMD_N1 + PPMD_N2 + PPMD_N3 + PPMD_N4)
MY_CPU_pragma_pack_push_1
/* Most compilers works OK here even without #pragma pack(push, 1), but some GCC compilers need it. */
/* SEE-contexts for PPM-contexts with masked symbols */
typedef struct
{
UInt16 Summ; /* Freq */
Byte Shift; /* Speed of Freq change; low Shift is for fast change */
Byte Count; /* Count to next change of Shift */
} CPpmd_See;
#define Ppmd_See_UPDATE(p) \
{ if ((p)->Shift < PPMD_PERIOD_BITS && --(p)->Count == 0) \
{ (p)->Summ = (UInt16)((p)->Summ << 1); \
(p)->Count = (Byte)(3 << (p)->Shift++); }}
typedef struct
{
Byte Symbol;
Byte Freq;
UInt16 Successor_0;
UInt16 Successor_1;
} CPpmd_State;
typedef struct CPpmd_State2_
{
Byte Symbol;
Byte Freq;
} CPpmd_State2;
typedef struct CPpmd_State4_
{
UInt16 Successor_0;
UInt16 Successor_1;
} CPpmd_State4;
MY_CPU_pragma_pop
/*
PPMD code can write full CPpmd_State structure data to CPpmd*_Context
at (byte offset = 2) instead of some fields of original CPpmd*_Context structure.
If we use pointers to different types, but that point to shared
memory space, we can have aliasing problem (strict aliasing).
XLC compiler in -O2 mode can change the order of memory write instructions
in relation to read instructions, if we have use pointers to different types.
To solve that aliasing problem we use combined CPpmd*_Context structure
with unions that contain the fields from both structures:
the original CPpmd*_Context and CPpmd_State.
So we can access the fields from both structures via one pointer,
and the compiler doesn't change the order of write instructions
in relation to read instructions.
If we don't use memory write instructions to shared memory in
some local code, and we use only reading instructions (read only),
then probably it's safe to use pointers to different types for reading.
*/
#ifdef PPMD_32BIT
#define Ppmd_Ref_Type(type) type *
#define Ppmd_GetRef(p, ptr) (ptr)
#define Ppmd_GetPtr(p, ptr) (ptr)
#define Ppmd_GetPtr_Type(p, ptr, note_type) (ptr)
#else
#define Ppmd_Ref_Type(type) UInt32
#define Ppmd_GetRef(p, ptr) ((UInt32)((Byte *)(ptr) - (p)->Base))
#define Ppmd_GetPtr(p, offs) ((void *)((p)->Base + (offs)))
#define Ppmd_GetPtr_Type(p, offs, type) ((type *)Ppmd_GetPtr(p, offs))
#endif // PPMD_32BIT
typedef Ppmd_Ref_Type(CPpmd_State) CPpmd_State_Ref;
typedef Ppmd_Ref_Type(void) CPpmd_Void_Ref;
typedef Ppmd_Ref_Type(Byte) CPpmd_Byte_Ref;
/*
#ifdef MY_CPU_LE_UNALIGN
// the unaligned 32-bit access latency can be too large, if the data is not in L1 cache.
#define Ppmd_GET_SUCCESSOR(p) ((CPpmd_Void_Ref)*(const UInt32 *)(const void *)&(p)->Successor_0)
#define Ppmd_SET_SUCCESSOR(p, v) *(UInt32 *)(void *)(void *)&(p)->Successor_0 = (UInt32)(v)
#else
*/
/*
We can write 16-bit halves to 32-bit (Successor) field in any selected order.
But the native order is more consistent way.
So we use the native order, if LE/BE order can be detected here at compile time.
*/
#ifdef MY_CPU_BE
#define Ppmd_GET_SUCCESSOR(p) \
( (CPpmd_Void_Ref) (((UInt32)(p)->Successor_0 << 16) | (p)->Successor_1) )
#define Ppmd_SET_SUCCESSOR(p, v) { \
(p)->Successor_0 = (UInt16)(((UInt32)(v) >> 16) /* & 0xFFFF */); \
(p)->Successor_1 = (UInt16)((UInt32)(v) /* & 0xFFFF */); }
#else
#define Ppmd_GET_SUCCESSOR(p) \
( (CPpmd_Void_Ref) ((p)->Successor_0 | ((UInt32)(p)->Successor_1 << 16)) )
#define Ppmd_SET_SUCCESSOR(p, v) { \
(p)->Successor_0 = (UInt16)((UInt32)(v) /* & 0xFFFF */); \
(p)->Successor_1 = (UInt16)(((UInt32)(v) >> 16) /* & 0xFFFF */); }
#endif
// #endif
#define PPMD_SetAllBitsIn256Bytes(p) \
{ size_t z; for (z = 0; z < 256 / sizeof(p[0]); z += 8) { \
p[z+7] = p[z+6] = p[z+5] = p[z+4] = p[z+3] = p[z+2] = p[z+1] = p[z+0] = ~(size_t)0; }}
EXTERN_C_END
#endif

1122
3rdparty/7z/src/Ppmd7.c vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,181 +0,0 @@
/* Ppmd7.h -- Ppmd7 (PPMdH) compression codec
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
#ifndef ZIP7_INC_PPMD7_H
#define ZIP7_INC_PPMD7_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD7_MIN_ORDER 2
#define PPMD7_MAX_ORDER 64
#define PPMD7_MIN_MEM_SIZE (1 << 11)
#define PPMD7_MAX_MEM_SIZE (0xFFFFFFFF - 12 * 3)
struct CPpmd7_Context_;
typedef Ppmd_Ref_Type(struct CPpmd7_Context_) CPpmd7_Context_Ref;
// MY_CPU_pragma_pack_push_1
typedef struct CPpmd7_Context_
{
UInt16 NumStats;
union
{
UInt16 SummFreq;
CPpmd_State2 State2;
} Union2;
union
{
CPpmd_State_Ref Stats;
CPpmd_State4 State4;
} Union4;
CPpmd7_Context_Ref Suffix;
} CPpmd7_Context;
// MY_CPU_pragma_pop
#define Ppmd7Context_OneState(p) ((CPpmd_State *)&(p)->Union2)
typedef struct
{
UInt32 Range;
UInt32 Code;
UInt32 Low;
IByteInPtr Stream;
} CPpmd7_RangeDec;
typedef struct
{
UInt32 Range;
Byte Cache;
// Byte _dummy_[3];
UInt64 Low;
UInt64 CacheSize;
IByteOutPtr Stream;
} CPpmd7z_RangeEnc;
typedef struct
{
CPpmd7_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, HiBitsFlag;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
UInt32 AlignOffset;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
union
{
CPpmd7_RangeDec dec;
CPpmd7z_RangeEnc enc;
} rc;
Byte Indx2Units[PPMD_NUM_INDEXES + 2]; // +2 for alignment
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
Byte NS2BSIndx[256], NS2Indx[256];
Byte ExpEscape[16];
CPpmd_See DummySee, See[25][16];
UInt16 BinSumm[128][64];
// int LastSymbol;
} CPpmd7;
void Ppmd7_Construct(CPpmd7 *p);
BoolInt Ppmd7_Alloc(CPpmd7 *p, UInt32 size, ISzAllocPtr alloc);
void Ppmd7_Free(CPpmd7 *p, ISzAllocPtr alloc);
void Ppmd7_Init(CPpmd7 *p, unsigned maxOrder);
#define Ppmd7_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
#define Ppmd7_GetPtr(p, ptr) Ppmd_GetPtr(p, ptr)
#define Ppmd7_GetContext(p, ptr) Ppmd_GetPtr_Type(p, ptr, CPpmd7_Context)
#define Ppmd7_GetStats(p, ctx) Ppmd_GetPtr_Type(p, (ctx)->Union4.Stats, CPpmd_State)
void Ppmd7_Update1(CPpmd7 *p);
void Ppmd7_Update1_0(CPpmd7 *p);
void Ppmd7_Update2(CPpmd7 *p);
#define PPMD7_HiBitsFlag_3(sym) ((((unsigned)sym + 0xC0) >> (8 - 3)) & (1 << 3))
#define PPMD7_HiBitsFlag_4(sym) ((((unsigned)sym + 0xC0) >> (8 - 4)) & (1 << 4))
// #define PPMD7_HiBitsFlag_3(sym) ((sym) < 0x40 ? 0 : (1 << 3))
// #define PPMD7_HiBitsFlag_4(sym) ((sym) < 0x40 ? 0 : (1 << 4))
#define Ppmd7_GetBinSumm(p) \
&p->BinSumm[(size_t)(unsigned)Ppmd7Context_OneState(p->MinContext)->Freq - 1] \
[ p->PrevSuccess + ((p->RunLength >> 26) & 0x20) \
+ p->NS2BSIndx[(size_t)Ppmd7_GetContext(p, p->MinContext->Suffix)->NumStats - 1] \
+ PPMD7_HiBitsFlag_4(Ppmd7Context_OneState(p->MinContext)->Symbol) \
+ (p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol)) ]
CPpmd_See *Ppmd7_MakeEscFreq(CPpmd7 *p, unsigned numMasked, UInt32 *scale);
/*
We support two versions of Ppmd7 (PPMdH) methods that use same CPpmd7 structure:
1) Ppmd7a_*: original PPMdH
2) Ppmd7z_*: modified PPMdH with 7z Range Coder
Ppmd7_*: the structures and functions that are common for both versions of PPMd7 (PPMdH)
*/
/* ---------- Decode ---------- */
#define PPMD7_SYM_END (-1)
#define PPMD7_SYM_ERROR (-2)
/*
You must set (CPpmd7::rc.dec.Stream) before Ppmd7*_RangeDec_Init()
Ppmd7*_DecodeSymbol()
out:
>= 0 : decoded byte
-1 : PPMD7_SYM_END : End of payload marker
-2 : PPMD7_SYM_ERROR : Data error
*/
/* Ppmd7a_* : original PPMdH */
BoolInt Ppmd7a_RangeDec_Init(CPpmd7_RangeDec *p);
#define Ppmd7a_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7a_DecodeSymbol(CPpmd7 *p);
/* Ppmd7z_* : modified PPMdH with 7z Range Coder */
BoolInt Ppmd7z_RangeDec_Init(CPpmd7_RangeDec *p);
#define Ppmd7z_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd7z_DecodeSymbol(CPpmd7 *p);
// Byte *Ppmd7z_DecodeSymbols(CPpmd7 *p, Byte *buf, const Byte *lim);
/* ---------- Encode ---------- */
void Ppmd7z_Init_RangeEnc(CPpmd7 *p);
void Ppmd7z_Flush_RangeEnc(CPpmd7 *p);
// void Ppmd7z_EncodeSymbol(CPpmd7 *p, int symbol);
void Ppmd7z_EncodeSymbols(CPpmd7 *p, const Byte *buf, const Byte *lim);
EXTERN_C_END
#endif

View File

@ -1,312 +0,0 @@
/* Ppmd7Dec.c -- Ppmd7z (PPMdH with 7z Range Coder) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue ((UInt32)1 << 24)
#define READ_BYTE(p) IByteIn_Read((p)->Stream)
BoolInt Ppmd7z_RangeDec_Init(CPpmd7_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
if (READ_BYTE(p) != 0)
return False;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
#define RC_NORM_BASE(p) if ((p)->Range < kTopValue) \
{ (p)->Code = ((p)->Code << 8) | READ_BYTE(p); (p)->Range <<= 8;
#define RC_NORM_1(p) RC_NORM_BASE(p) }
#define RC_NORM(p) RC_NORM_BASE(p) RC_NORM_BASE(p) }}
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R (&p->rc.dec)
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7z_RD_Decode(CPpmd7 *p, UInt32 start, UInt32 size)
{
R->Code -= start * R->Range;
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define RC_Decode(start, size) Ppmd7z_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
// typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
// Z7_FORCE_INLINE
// static
int Ppmd7z_DecodeSymbol(CPpmd7 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
const UInt32 summFreq = p->MinContext->Union2.SummFreq;
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1_0(p);
return sym;
}
p->PrevSuccess = 0;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1(p);
return sym;
}
}
while (--i);
if (hiCnt >= summFreq)
return PPMD7_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt16 *prob = Ppmd7_GetBinSumm(p);
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM_1(R)
/* we can use single byte normalization here because of
(min(BinSumm[][]) = 95) > (1 << (14 - 8)) */
// sym = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
// Ppmd7_UpdateBin(p);
{
unsigned freq = s->Freq;
CPpmd7_Context *c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return sym;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(size0);
R->Code -= size0;
R->Range -= size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
CPpmd7_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return PPMD7_SYM_END;
mc = Ppmd7_GetContext(p, mc->Suffix);
}
while (mc->NumStats == numMasked);
s = Ppmd7_GetStats(p, mc);
{
unsigned num = mc->NumStats;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
count = RC_GetThreshold(freqSum);
if (count < hiCnt)
{
Byte sym;
s = Ppmd7_GetStats(p, p->MinContext);
hiCnt = count;
// count -= s->Freq & (unsigned)(MASK(s->Symbol));
// if ((Int32)count >= 0)
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update2(p);
return sym;
}
if (count >= freqSum)
return PPMD7_SYM_ERROR;
RC_Decode(hiCnt, freqSum - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
s = Ppmd7_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
/*
Byte *Ppmd7z_DecodeSymbols(CPpmd7 *p, Byte *buf, const Byte *lim)
{
int sym = 0;
if (buf != lim)
do
{
sym = Ppmd7z_DecodeSymbol(p);
if (sym < 0)
break;
*buf = (Byte)sym;
}
while (++buf < lim);
p->LastSymbol = sym;
return buf;
}
*/
#undef kTopValue
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

View File

@ -1,338 +0,0 @@
/* Ppmd7Enc.c -- Ppmd7z (PPMdH with 7z Range Coder) Encoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTopValue ((UInt32)1 << 24)
#define R (&p->rc.enc)
void Ppmd7z_Init_RangeEnc(CPpmd7 *p)
{
R->Low = 0;
R->Range = 0xFFFFFFFF;
R->Cache = 0;
R->CacheSize = 1;
}
Z7_NO_INLINE
static void Ppmd7z_RangeEnc_ShiftLow(CPpmd7 *p)
{
if ((UInt32)R->Low < (UInt32)0xFF000000 || (unsigned)(R->Low >> 32) != 0)
{
Byte temp = R->Cache;
do
{
IByteOut_Write(R->Stream, (Byte)(temp + (Byte)(R->Low >> 32)));
temp = 0xFF;
}
while (--R->CacheSize != 0);
R->Cache = (Byte)((UInt32)R->Low >> 24);
}
R->CacheSize++;
R->Low = (UInt32)((UInt32)R->Low << 8);
}
#define RC_NORM_BASE(p) if (R->Range < kTopValue) { R->Range <<= 8; Ppmd7z_RangeEnc_ShiftLow(p);
#define RC_NORM_1(p) RC_NORM_BASE(p) }
#define RC_NORM(p) RC_NORM_BASE(p) RC_NORM_BASE(p) }}
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
/*
#define Ppmd7z_RangeEnc_Encode(p, start, _size_) \
{ UInt32 size = _size_; \
R->Low += start * R->Range; \
R->Range *= size; \
RC_NORM_LOCAL(p); }
*/
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7z_RangeEnc_Encode(CPpmd7 *p, UInt32 start, UInt32 size)
{
R->Low += start * R->Range;
R->Range *= size;
RC_NORM_LOCAL(p)
}
void Ppmd7z_Flush_RangeEnc(CPpmd7 *p)
{
unsigned i;
for (i = 0; i < 5; i++)
Ppmd7z_RangeEnc_ShiftLow(p);
}
#define RC_Encode(start, size) Ppmd7z_RangeEnc_Encode(p, start, size);
#define RC_EncodeFinal(start, size) RC_Encode(start, size) RC_NORM_REMOTE(p)
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
#define SUFFIX(ctx) CTX((ctx)->Suffix)
// typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
Z7_FORCE_INLINE
static
void Ppmd7z_EncodeSymbol(CPpmd7 *p, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
R->Range /= p->MinContext->Union2.SummFreq;
if (s->Symbol == symbol)
{
// R->Range /= p->MinContext->Union2.SummFreq;
RC_EncodeFinal(0, s->Freq)
p->FoundState = s;
Ppmd7_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((++s)->Symbol == symbol)
{
// R->Range /= p->MinContext->Union2.SummFreq;
RC_EncodeFinal(sum, s->Freq)
p->FoundState = s;
Ppmd7_Update1(p);
return;
}
sum += s->Freq;
}
while (--i);
// R->Range /= p->MinContext->Union2.SummFreq;
RC_Encode(sum, p->MinContext->Union2.SummFreq - sum)
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// MASK(s->Symbol) = 0;
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
UInt16 *prob = Ppmd7_GetBinSumm(p);
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt32 pr = *prob;
const UInt32 bound = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (s->Symbol == symbol)
{
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeEnc_EncodeBit_0(p, bound);
R->Range = bound;
RC_NORM_1(p)
// p->FoundState = s;
// Ppmd7_UpdateBin(p);
{
const unsigned freq = s->Freq;
CPpmd7_Context *c = CTX(SUCCESSOR(s));
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeEnc_EncodeBit_1(p, bound);
R->Low += bound;
R->Range -= bound;
RC_NORM_LOCAL(p)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum, escFreq;
CPpmd7_Context *mc;
unsigned i, numMasked;
RC_NORM_REMOTE(p)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return; /* EndMarker (symbol = -1) */
mc = Ppmd7_GetContext(p, mc->Suffix);
i = mc->NumStats;
}
while (i == numMasked);
p->MinContext = mc;
// see = Ppmd7_MakeEscFreq(p, numMasked, &escFreq);
{
if (i != 256)
{
unsigned nonMasked = i - numMasked;
see = p->See[(unsigned)p->NS2Indx[(size_t)nonMasked - 1]]
+ p->HiBitsFlag
+ (nonMasked < (unsigned)SUFFIX(mc)->NumStats - i)
+ 2 * (unsigned)(mc->Union2.SummFreq < 11 * i)
+ 4 * (unsigned)(numMasked > nonMasked);
{
// if (see->Summ) field is larger than 16-bit, we need only low 16 bits of Summ
unsigned summ = (UInt16)see->Summ; // & 0xFFFF
unsigned r = (summ >> see->Shift);
see->Summ = (UInt16)(summ - r);
escFreq = r + (r == 0);
}
}
else
{
see = &p->DummySee;
escFreq = 1;
}
}
s = Ppmd7_GetStats(p, mc);
sum = 0;
// i = mc->NumStats;
do
{
const unsigned cur = s->Symbol;
if ((int)cur == symbol)
{
const UInt32 low = sum;
const UInt32 freq = s->Freq;
unsigned num2;
Ppmd_See_UPDATE(see)
p->FoundState = s;
sum += escFreq;
num2 = i / 2;
i &= 1;
sum += freq & (0 - (UInt32)i);
if (num2 != 0)
{
s += i;
for (;;)
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
sum += (s[-2].Freq & (unsigned)(MASK(sym0)));
sum += (s[-1].Freq & (unsigned)(MASK(sym1)));
if (--num2 == 0)
break;
}
}
R->Range /= sum;
RC_EncodeFinal(low, freq)
Ppmd7_Update2(p);
return;
}
sum += (s->Freq & (unsigned)(MASK(cur)));
s++;
}
while (--i);
{
const UInt32 total = sum + escFreq;
see->Summ = (UInt16)(see->Summ + total);
R->Range /= total;
RC_Encode(sum, escFreq)
}
{
const CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
s--;
MASK(s->Symbol) = 0;
do
{
const unsigned sym0 = s2[0].Symbol;
const unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
}
void Ppmd7z_EncodeSymbols(CPpmd7 *p, const Byte *buf, const Byte *lim)
{
for (; buf < lim; buf++)
{
Ppmd7z_EncodeSymbol(p, *buf);
}
}
#undef kTopValue
#undef WRITE_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Encode
#undef RC_EncodeFinal
#undef SUFFIX
#undef CTX
#undef SUCCESSOR
#undef MASK

View File

@ -1,295 +0,0 @@
/* Ppmd7aDec.c -- PPMd7a (PPMdH) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.H (2001): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd7.h"
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
#define READ_BYTE(p) IByteIn_Read((p)->Stream)
BoolInt Ppmd7a_RangeDec_Init(CPpmd7_RangeDec *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
p->Low = 0;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) { \
p->Code = (p->Code << 8) | READ_BYTE(p); \
p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R (&p->rc.dec)
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd7a_RD_Decode(CPpmd7 *p, UInt32 start, UInt32 size)
{
start *= R->Range;
R->Low += start;
R->Code -= start;
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define RC_Decode(start, size) Ppmd7a_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
#define CTX(ref) ((CPpmd7_Context *)Ppmd7_GetContext(p, ref))
typedef CPpmd7_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd7_UpdateModel(CPpmd7 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
int Ppmd7a_DecodeSymbol(CPpmd7 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 1)
{
CPpmd_State *s = Ppmd7_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
const UInt32 summFreq = p->MinContext->Union2.SummFreq;
if (summFreq > R->Range)
return PPMD7_SYM_ERROR;
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1_0(p);
return sym;
}
p->PrevSuccess = 0;
i = (unsigned)p->MinContext->NumStats - 1;
do
{
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update1(p);
return sym;
}
}
while (--i);
if (hiCnt >= summFreq)
return PPMD7_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
p->HiBitsFlag = PPMD7_HiBitsFlag_3(p->FoundState->Symbol);
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd7_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd7Context_OneState(p->MinContext);
UInt16 *prob = Ppmd7_GetBinSumm(p);
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM(R)
// sym = (p->FoundState = Ppmd7Context_OneState(p->MinContext))->Symbol;
// Ppmd7_UpdateBin(p);
{
unsigned freq = s->Freq;
CTX_PTR c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 128));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c > p->Text)
p->MaxContext = p->MinContext = c;
else
Ppmd7_UpdateModel(p);
}
return sym;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(size0);
R->Low += size0;
R->Code -= size0;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd7Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
CPpmd_See *see;
CPpmd7_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return PPMD7_SYM_END;
mc = Ppmd7_GetContext(p, mc->Suffix);
}
while (mc->NumStats == numMasked);
s = Ppmd7_GetStats(p, mc);
{
unsigned num = mc->NumStats;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
see = Ppmd7_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
if (freqSum > R->Range)
return PPMD7_SYM_ERROR;
count = RC_GetThreshold(freqSum);
if (count < hiCnt)
{
Byte sym;
s = Ppmd7_GetStats(p, p->MinContext);
hiCnt = count;
// count -= s->Freq & (unsigned)(MASK(s->Symbol));
// if ((Int32)count >= 0)
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
sym = s->Symbol;
Ppmd7_Update2(p);
return sym;
}
if (count >= freqSum)
return PPMD7_SYM_ERROR;
RC_Decode(hiCnt, freqSum - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
s = Ppmd7_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
#undef kTop
#undef kBot
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

1565
3rdparty/7z/src/Ppmd8.c vendored

File diff suppressed because it is too large Load Diff

View File

@ -1,181 +0,0 @@
/* Ppmd8.h -- Ppmd8 (PPMdI) compression codec
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#ifndef ZIP7_INC_PPMD8_H
#define ZIP7_INC_PPMD8_H
#include "Ppmd.h"
EXTERN_C_BEGIN
#define PPMD8_MIN_ORDER 2
#define PPMD8_MAX_ORDER 16
struct CPpmd8_Context_;
typedef Ppmd_Ref_Type(struct CPpmd8_Context_) CPpmd8_Context_Ref;
// MY_CPU_pragma_pack_push_1
typedef struct CPpmd8_Context_
{
Byte NumStats;
Byte Flags;
union
{
UInt16 SummFreq;
CPpmd_State2 State2;
} Union2;
union
{
CPpmd_State_Ref Stats;
CPpmd_State4 State4;
} Union4;
CPpmd8_Context_Ref Suffix;
} CPpmd8_Context;
// MY_CPU_pragma_pop
#define Ppmd8Context_OneState(p) ((CPpmd_State *)&(p)->Union2)
/* PPMdI code rev.2 contains the fix over PPMdI code rev.1.
But the code PPMdI.2 is not compatible with PPMdI.1 for some files compressed
in FREEZE mode. So we disable FREEZE mode support. */
// #define PPMD8_FREEZE_SUPPORT
enum
{
PPMD8_RESTORE_METHOD_RESTART,
PPMD8_RESTORE_METHOD_CUT_OFF
#ifdef PPMD8_FREEZE_SUPPORT
, PPMD8_RESTORE_METHOD_FREEZE
#endif
, PPMD8_RESTORE_METHOD_UNSUPPPORTED
};
typedef struct
{
CPpmd8_Context *MinContext, *MaxContext;
CPpmd_State *FoundState;
unsigned OrderFall, InitEsc, PrevSuccess, MaxOrder, RestoreMethod;
Int32 RunLength, InitRL; /* must be 32-bit at least */
UInt32 Size;
UInt32 GlueCount;
UInt32 AlignOffset;
Byte *Base, *LoUnit, *HiUnit, *Text, *UnitsStart;
UInt32 Range;
UInt32 Code;
UInt32 Low;
union
{
IByteInPtr In;
IByteOutPtr Out;
} Stream;
Byte Indx2Units[PPMD_NUM_INDEXES + 2]; // +2 for alignment
Byte Units2Indx[128];
CPpmd_Void_Ref FreeList[PPMD_NUM_INDEXES];
UInt32 Stamps[PPMD_NUM_INDEXES];
Byte NS2BSIndx[256], NS2Indx[260];
Byte ExpEscape[16];
CPpmd_See DummySee, See[24][32];
UInt16 BinSumm[25][64];
} CPpmd8;
void Ppmd8_Construct(CPpmd8 *p);
BoolInt Ppmd8_Alloc(CPpmd8 *p, UInt32 size, ISzAllocPtr alloc);
void Ppmd8_Free(CPpmd8 *p, ISzAllocPtr alloc);
void Ppmd8_Init(CPpmd8 *p, unsigned maxOrder, unsigned restoreMethod);
#define Ppmd8_WasAllocated(p) ((p)->Base != NULL)
/* ---------- Internal Functions ---------- */
#define Ppmd8_GetPtr(p, ptr) Ppmd_GetPtr(p, ptr)
#define Ppmd8_GetContext(p, ptr) Ppmd_GetPtr_Type(p, ptr, CPpmd8_Context)
#define Ppmd8_GetStats(p, ctx) Ppmd_GetPtr_Type(p, (ctx)->Union4.Stats, CPpmd_State)
void Ppmd8_Update1(CPpmd8 *p);
void Ppmd8_Update1_0(CPpmd8 *p);
void Ppmd8_Update2(CPpmd8 *p);
#define Ppmd8_GetBinSumm(p) \
&p->BinSumm[p->NS2Indx[(size_t)Ppmd8Context_OneState(p->MinContext)->Freq - 1]] \
[ p->PrevSuccess + ((p->RunLength >> 26) & 0x20) \
+ p->NS2BSIndx[Ppmd8_GetContext(p, p->MinContext->Suffix)->NumStats] + \
+ p->MinContext->Flags ]
CPpmd_See *Ppmd8_MakeEscFreq(CPpmd8 *p, unsigned numMasked, UInt32 *scale);
/* 20.01: the original PPMdI encoder and decoder probably could work incorrectly in some rare cases,
where the original PPMdI code can give "Divide by Zero" operation.
We use the following fix to allow correct working of encoder and decoder in any cases.
We correct (Escape_Freq) and (_sum_), if (_sum_) is larger than p->Range) */
#define PPMD8_CORRECT_SUM_RANGE(p, _sum_) if (_sum_ > p->Range /* /1 */) _sum_ = p->Range;
/* ---------- Decode ---------- */
#define PPMD8_SYM_END (-1)
#define PPMD8_SYM_ERROR (-2)
/*
You must set (CPpmd8::Stream.In) before Ppmd8_RangeDec_Init()
Ppmd8_DecodeSymbol()
out:
>= 0 : decoded byte
-1 : PPMD8_SYM_END : End of payload marker
-2 : PPMD8_SYM_ERROR : Data error
*/
BoolInt Ppmd8_Init_RangeDec(CPpmd8 *p);
#define Ppmd8_RangeDec_IsFinishedOK(p) ((p)->Code == 0)
int Ppmd8_DecodeSymbol(CPpmd8 *p);
/* ---------- Encode ---------- */
#define Ppmd8_Init_RangeEnc(p) { (p)->Low = 0; (p)->Range = 0xFFFFFFFF; }
void Ppmd8_Flush_RangeEnc(CPpmd8 *p);
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol);
EXTERN_C_END
#endif

View File

@ -1,295 +0,0 @@
/* Ppmd8Dec.c -- Ppmd8 (PPMdI) Decoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd8.h"
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
#define READ_BYTE(p) IByteIn_Read((p)->Stream.In)
BoolInt Ppmd8_Init_RangeDec(CPpmd8 *p)
{
unsigned i;
p->Code = 0;
p->Range = 0xFFFFFFFF;
p->Low = 0;
for (i = 0; i < 4; i++)
p->Code = (p->Code << 8) | READ_BYTE(p);
return (p->Code < 0xFFFFFFFF);
}
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) { \
p->Code = (p->Code << 8) | READ_BYTE(p); \
p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
#define R p
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd8_RD_Decode(CPpmd8 *p, UInt32 start, UInt32 size)
{
start *= R->Range;
R->Low += start;
R->Code -= start;
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define RC_Decode(start, size) Ppmd8_RD_Decode(p, start, size);
#define RC_DecodeFinal(start, size) RC_Decode(start, size) RC_NORM_REMOTE(R)
#define RC_GetThreshold(total) (R->Code / (R->Range /= (total)))
#define CTX(ref) ((CPpmd8_Context *)Ppmd8_GetContext(p, ref))
// typedef CPpmd8_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd8_UpdateModel(CPpmd8 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
int Ppmd8_DecodeSymbol(CPpmd8 *p)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
unsigned i;
UInt32 count, hiCnt;
UInt32 summFreq = p->MinContext->Union2.SummFreq;
PPMD8_CORRECT_SUM_RANGE(p, summFreq)
count = RC_GetThreshold(summFreq);
hiCnt = count;
if ((Int32)(count -= s->Freq) < 0)
{
Byte sym;
RC_DecodeFinal(0, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd8_Update1_0(p);
return sym;
}
p->PrevSuccess = 0;
i = p->MinContext->NumStats;
do
{
if ((Int32)(count -= (++s)->Freq) < 0)
{
Byte sym;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
p->FoundState = s;
sym = s->Symbol;
Ppmd8_Update1(p);
return sym;
}
}
while (--i);
if (hiCnt >= summFreq)
return PPMD8_SYM_ERROR;
hiCnt -= count;
RC_Decode(hiCnt, summFreq - hiCnt)
PPMD_SetAllBitsIn256Bytes(charMask)
// i = p->MinContext->NumStats - 1;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
CPpmd_State *s = Ppmd8Context_OneState(p->MinContext);
UInt16 *prob = Ppmd8_GetBinSumm(p);
UInt32 pr = *prob;
UInt32 size0 = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (R->Code < size0)
{
Byte sym;
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeDec_DecodeBit0(size0);
R->Range = size0;
RC_NORM(R)
// sym = (p->FoundState = Ppmd8Context_OneState(p->MinContext))->Symbol;
// Ppmd8_UpdateBin(p);
{
unsigned freq = s->Freq;
CPpmd8_Context *c = CTX(SUCCESSOR(s));
sym = s->Symbol;
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 196));
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c >= p->UnitsStart)
p->MaxContext = p->MinContext = c;
else
Ppmd8_UpdateModel(p);
}
return sym;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeDec_DecodeBit1(rc2, size0);
R->Low += size0;
R->Code -= size0;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - size0;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(Ppmd8Context_OneState(p->MinContext)->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_State *s, *s2;
UInt32 freqSum, count, hiCnt;
UInt32 freqSum2;
CPpmd_See *see;
CPpmd8_Context *mc;
unsigned numMasked;
RC_NORM_REMOTE(R)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return PPMD8_SYM_END;
mc = Ppmd8_GetContext(p, mc->Suffix);
}
while (mc->NumStats == numMasked);
s = Ppmd8_GetStats(p, mc);
{
unsigned num = (unsigned)mc->NumStats + 1;
unsigned num2 = num / 2;
num &= 1;
hiCnt = (s->Freq & (unsigned)(MASK(s->Symbol))) & (0 - (UInt32)num);
s += num;
p->MinContext = mc;
do
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
hiCnt += (s[-2].Freq & (unsigned)(MASK(sym0)));
hiCnt += (s[-1].Freq & (unsigned)(MASK(sym1)));
}
while (--num2);
}
see = Ppmd8_MakeEscFreq(p, numMasked, &freqSum);
freqSum += hiCnt;
freqSum2 = freqSum;
PPMD8_CORRECT_SUM_RANGE(R, freqSum2)
count = RC_GetThreshold(freqSum2);
if (count < hiCnt)
{
Byte sym;
// Ppmd_See_UPDATE(see) // new (see->Summ) value can overflow over 16-bits in some rare cases
s = Ppmd8_GetStats(p, p->MinContext);
hiCnt = count;
{
for (;;)
{
count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
// count -= s->Freq & (unsigned)(MASK((s)->Symbol)); s++; if ((Int32)count < 0) break;
}
}
s--;
RC_DecodeFinal((hiCnt - count) - s->Freq, s->Freq)
// new (see->Summ) value can overflow over 16-bits in some rare cases
Ppmd_See_UPDATE(see)
p->FoundState = s;
sym = s->Symbol;
Ppmd8_Update2(p);
return sym;
}
if (count >= freqSum2)
return PPMD8_SYM_ERROR;
RC_Decode(hiCnt, freqSum2 - hiCnt)
// We increase (see->Summ) for sum of Freqs of all non_Masked symbols.
// new (see->Summ) value can overflow over 16-bits in some rare cases
see->Summ = (UInt16)(see->Summ + freqSum);
s = Ppmd8_GetStats(p, p->MinContext);
s2 = s + p->MinContext->NumStats + 1;
do
{
MASK(s->Symbol) = 0;
s++;
}
while (s != s2);
}
}
#undef kTop
#undef kBot
#undef READ_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Decode
#undef RC_DecodeFinal
#undef RC_GetThreshold
#undef CTX
#undef SUCCESSOR
#undef MASK

View File

@ -1,338 +0,0 @@
/* Ppmd8Enc.c -- Ppmd8 (PPMdI) Encoder
2023-04-02 : Igor Pavlov : Public domain
This code is based on:
PPMd var.I (2002): Dmitry Shkarin : Public domain
Carryless rangecoder (1999): Dmitry Subbotin : Public domain */
#include "Precomp.h"
#include "Ppmd8.h"
#define kTop ((UInt32)1 << 24)
#define kBot ((UInt32)1 << 15)
#define WRITE_BYTE(p) IByteOut_Write(p->Stream.Out, (Byte)(p->Low >> 24))
void Ppmd8_Flush_RangeEnc(CPpmd8 *p)
{
unsigned i;
for (i = 0; i < 4; i++, p->Low <<= 8 )
WRITE_BYTE(p);
}
#define RC_NORM(p) \
while ((p->Low ^ (p->Low + p->Range)) < kTop \
|| (p->Range < kBot && ((p->Range = (0 - p->Low) & (kBot - 1)), 1))) \
{ WRITE_BYTE(p); p->Range <<= 8; p->Low <<= 8; }
// we must use only one type of Normalization from two: LOCAL or REMOTE
#define RC_NORM_LOCAL(p) // RC_NORM(p)
#define RC_NORM_REMOTE(p) RC_NORM(p)
// #define RC_PRE(total) p->Range /= total;
// #define RC_PRE(total)
#define R p
Z7_FORCE_INLINE
// Z7_NO_INLINE
static void Ppmd8_RangeEnc_Encode(CPpmd8 *p, UInt32 start, UInt32 size, UInt32 total)
{
R->Low += start * (R->Range /= total);
R->Range *= size;
RC_NORM_LOCAL(R)
}
#define RC_Encode(start, size, total) Ppmd8_RangeEnc_Encode(p, start, size, total);
#define RC_EncodeFinal(start, size, total) RC_Encode(start, size, total) RC_NORM_REMOTE(p)
#define CTX(ref) ((CPpmd8_Context *)Ppmd8_GetContext(p, ref))
// typedef CPpmd8_Context * CTX_PTR;
#define SUCCESSOR(p) Ppmd_GET_SUCCESSOR(p)
void Ppmd8_UpdateModel(CPpmd8 *p);
#define MASK(sym) ((unsigned char *)charMask)[sym]
// Z7_FORCE_INLINE
// static
void Ppmd8_EncodeSymbol(CPpmd8 *p, int symbol)
{
size_t charMask[256 / sizeof(size_t)];
if (p->MinContext->NumStats != 0)
{
CPpmd_State *s = Ppmd8_GetStats(p, p->MinContext);
UInt32 sum;
unsigned i;
UInt32 summFreq = p->MinContext->Union2.SummFreq;
PPMD8_CORRECT_SUM_RANGE(p, summFreq)
// RC_PRE(summFreq);
if (s->Symbol == symbol)
{
RC_EncodeFinal(0, s->Freq, summFreq)
p->FoundState = s;
Ppmd8_Update1_0(p);
return;
}
p->PrevSuccess = 0;
sum = s->Freq;
i = p->MinContext->NumStats;
do
{
if ((++s)->Symbol == symbol)
{
RC_EncodeFinal(sum, s->Freq, summFreq)
p->FoundState = s;
Ppmd8_Update1(p);
return;
}
sum += s->Freq;
}
while (--i);
RC_Encode(sum, summFreq - sum, summFreq)
PPMD_SetAllBitsIn256Bytes(charMask)
// MASK(s->Symbol) = 0;
// i = p->MinContext->NumStats;
// do { MASK((--s)->Symbol) = 0; } while (--i);
{
CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
MASK(s->Symbol) = 0;
do
{
unsigned sym0 = s2[0].Symbol;
unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
else
{
UInt16 *prob = Ppmd8_GetBinSumm(p);
CPpmd_State *s = Ppmd8Context_OneState(p->MinContext);
UInt32 pr = *prob;
const UInt32 bound = (R->Range >> 14) * pr;
pr = PPMD_UPDATE_PROB_1(pr);
if (s->Symbol == symbol)
{
*prob = (UInt16)(pr + (1 << PPMD_INT_BITS));
// RangeEnc_EncodeBit_0(p, bound);
R->Range = bound;
RC_NORM(R)
// p->FoundState = s;
// Ppmd8_UpdateBin(p);
{
const unsigned freq = s->Freq;
CPpmd8_Context *c = CTX(SUCCESSOR(s));
p->FoundState = s;
p->PrevSuccess = 1;
p->RunLength++;
s->Freq = (Byte)(freq + (freq < 196)); // Ppmd8 (196)
// NextContext(p);
if (p->OrderFall == 0 && (const Byte *)c >= p->UnitsStart)
p->MaxContext = p->MinContext = c;
else
Ppmd8_UpdateModel(p);
}
return;
}
*prob = (UInt16)pr;
p->InitEsc = p->ExpEscape[pr >> 10];
// RangeEnc_EncodeBit_1(p, bound);
R->Low += bound;
R->Range = (R->Range & ~((UInt32)PPMD_BIN_SCALE - 1)) - bound;
RC_NORM_LOCAL(R)
PPMD_SetAllBitsIn256Bytes(charMask)
MASK(s->Symbol) = 0;
p->PrevSuccess = 0;
}
for (;;)
{
CPpmd_See *see;
CPpmd_State *s;
UInt32 sum, escFreq;
CPpmd8_Context *mc;
unsigned i, numMasked;
RC_NORM_REMOTE(p)
mc = p->MinContext;
numMasked = mc->NumStats;
do
{
p->OrderFall++;
if (!mc->Suffix)
return; /* EndMarker (symbol = -1) */
mc = Ppmd8_GetContext(p, mc->Suffix);
}
while (mc->NumStats == numMasked);
p->MinContext = mc;
see = Ppmd8_MakeEscFreq(p, numMasked, &escFreq);
s = Ppmd8_GetStats(p, p->MinContext);
sum = 0;
i = (unsigned)p->MinContext->NumStats + 1;
do
{
const unsigned cur = s->Symbol;
if ((int)cur == symbol)
{
const UInt32 low = sum;
const UInt32 freq = s->Freq;
unsigned num2;
Ppmd_See_UPDATE(see)
p->FoundState = s;
sum += escFreq;
num2 = i / 2;
i &= 1;
sum += freq & (0 - (UInt32)i);
if (num2 != 0)
{
s += i;
for (;;)
{
unsigned sym0 = s[0].Symbol;
unsigned sym1 = s[1].Symbol;
s += 2;
sum += (s[-2].Freq & (unsigned)(MASK(sym0)));
sum += (s[-1].Freq & (unsigned)(MASK(sym1)));
if (--num2 == 0)
break;
}
}
PPMD8_CORRECT_SUM_RANGE(p, sum)
RC_EncodeFinal(low, freq, sum)
Ppmd8_Update2(p);
return;
}
sum += (s->Freq & (unsigned)(MASK(cur)));
s++;
}
while (--i);
{
UInt32 total = sum + escFreq;
see->Summ = (UInt16)(see->Summ + total);
PPMD8_CORRECT_SUM_RANGE(p, total)
RC_Encode(sum, total - sum, total)
}
{
const CPpmd_State *s2 = Ppmd8_GetStats(p, p->MinContext);
s--;
MASK(s->Symbol) = 0;
do
{
const unsigned sym0 = s2[0].Symbol;
const unsigned sym1 = s2[1].Symbol;
s2 += 2;
MASK(sym0) = 0;
MASK(sym1) = 0;
}
while (s2 < s);
}
}
}
#undef kTop
#undef kBot
#undef WRITE_BYTE
#undef RC_NORM_BASE
#undef RC_NORM_1
#undef RC_NORM
#undef RC_NORM_LOCAL
#undef RC_NORM_REMOTE
#undef R
#undef RC_Encode
#undef RC_EncodeFinal
#undef CTX
#undef SUCCESSOR
#undef MASK

View File

@ -1,10 +0,0 @@
/* Precomp.h -- StdAfx
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_PRECOMP_H
#define ZIP7_INC_PRECOMP_H
#include "Compiler.h"
/* #include "7zTypes.h" */
#endif

View File

@ -1,50 +0,0 @@
/* RotateDefs.h -- Rotate functions
2023-06-18 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_ROTATE_DEFS_H
#define ZIP7_INC_ROTATE_DEFS_H
#ifdef _MSC_VER
#include <stdlib.h>
/* don't use _rotl with old MINGW. It can insert slow call to function. */
/* #if (_MSC_VER >= 1200) */
#pragma intrinsic(_rotl)
#pragma intrinsic(_rotr)
/* #endif */
#define rotlFixed(x, n) _rotl((x), (n))
#define rotrFixed(x, n) _rotr((x), (n))
#if (_MSC_VER >= 1300)
#define Z7_ROTL64(x, n) _rotl64((x), (n))
#define Z7_ROTR64(x, n) _rotr64((x), (n))
#else
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
#else
/* new compilers can translate these macros to fast commands. */
#if defined(__clang__) && (__clang_major__ >= 4) \
|| defined(__GNUC__) && (__GNUC__ >= 5)
/* GCC 4.9.0 and clang 3.5 can recognize more correct version: */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (-(n) & 31)))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (-(n) & 31)))
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (-(n) & 63)))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (-(n) & 63)))
#else
/* for old GCC / clang: */
#define rotlFixed(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
#define rotrFixed(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define Z7_ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n))))
#define Z7_ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n))))
#endif
#endif
#endif

498
3rdparty/7z/src/Sha1.c vendored
View File

@ -1,498 +0,0 @@
/* Sha1.c -- SHA-1 Hash
2023-04-02 : Igor Pavlov : Public domain
This code is based on public domain code of Steve Reid from Wei Dai's Crypto++ library. */
#include "Precomp.h"
#include <string.h>
#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha1.h"
#if defined(_MSC_VER) && (_MSC_VER < 1900)
// #define USE_MY_MM
#endif
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _MSC_VER
#if _MSC_VER >= 1200
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1800) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#endif
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _MSC_VER
#if _MSC_VER >= 1910 && _MSC_VER >= 1929 && _MSC_FULL_VER >= 192930037
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define Z7_COMPILER_SHA1_SUPPORTED
#endif
#endif
#endif
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
#ifdef Z7_COMPILER_SHA1_SUPPORTED
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
static SHA1_FUNC_UPDATE_BLOCKS g_SHA1_FUNC_UPDATE_BLOCKS = Sha1_UpdateBlocks;
static SHA1_FUNC_UPDATE_BLOCKS g_SHA1_FUNC_UPDATE_BLOCKS_HW;
#define SHA1_UPDATE_BLOCKS(p) p->func_UpdateBlocks
#else
#define SHA1_UPDATE_BLOCKS(p) Sha1_UpdateBlocks
#endif
BoolInt Sha1_SetFunction(CSha1 *p, unsigned algo)
{
SHA1_FUNC_UPDATE_BLOCKS func = Sha1_UpdateBlocks;
#ifdef Z7_COMPILER_SHA1_SUPPORTED
if (algo != SHA1_ALGO_SW)
{
if (algo == SHA1_ALGO_DEFAULT)
func = g_SHA1_FUNC_UPDATE_BLOCKS;
else
{
if (algo != SHA1_ALGO_HW)
return False;
func = g_SHA1_FUNC_UPDATE_BLOCKS_HW;
if (!func)
return False;
}
}
#else
if (algo > 1)
return False;
#endif
p->func_UpdateBlocks = func;
return True;
}
/* define it for speed optimization */
// #define Z7_SHA1_UNROLL
// allowed unroll steps: (1, 2, 4, 5, 20)
#undef Z7_SHA1_BIG_W
#ifdef Z7_SHA1_UNROLL
#define STEP_PRE 20
#define STEP_MAIN 20
#else
#define Z7_SHA1_BIG_W
#define STEP_PRE 5
#define STEP_MAIN 5
#endif
#ifdef Z7_SHA1_BIG_W
#define kNumW 80
#define w(i) W[i]
#else
#define kNumW 16
#define w(i) W[(i)&15]
#endif
#define w0(i) (W[i] = GetBe32(data + (size_t)(i) * 4))
#define w1(i) (w(i) = rotlFixed(w((size_t)(i)-3) ^ w((size_t)(i)-8) ^ w((size_t)(i)-14) ^ w((size_t)(i)-16), 1))
#define f0(x,y,z) ( 0x5a827999 + (z^(x&(y^z))) )
#define f1(x,y,z) ( 0x6ed9eba1 + (x^y^z) )
#define f2(x,y,z) ( 0x8f1bbcdc + ((x&y)|(z&(x|y))) )
#define f3(x,y,z) ( 0xca62c1d6 + (x^y^z) )
/*
#define T1(fx, ww) \
tmp = e + fx(b,c,d) + ww + rotlFixed(a, 5); \
e = d; \
d = c; \
c = rotlFixed(b, 30); \
b = a; \
a = tmp; \
*/
#define T5(a,b,c,d,e, fx, ww) \
e += fx(b,c,d) + ww + rotlFixed(a, 5); \
b = rotlFixed(b, 30); \
/*
#define R1(i, fx, wx) \
T1 ( fx, wx(i)); \
#define R2(i, fx, wx) \
R1 ( (i) , fx, wx); \
R1 ( (i) + 1, fx, wx); \
#define R4(i, fx, wx) \
R2 ( (i) , fx, wx); \
R2 ( (i) + 2, fx, wx); \
*/
#define M5(i, fx, wx0, wx1) \
T5 ( a,b,c,d,e, fx, wx0((i) ) ) \
T5 ( e,a,b,c,d, fx, wx1((i)+1) ) \
T5 ( d,e,a,b,c, fx, wx1((i)+2) ) \
T5 ( c,d,e,a,b, fx, wx1((i)+3) ) \
T5 ( b,c,d,e,a, fx, wx1((i)+4) ) \
#define R5(i, fx, wx) \
M5 ( i, fx, wx, wx) \
#if STEP_PRE > 5
#define R20_START \
R5 ( 0, f0, w0) \
R5 ( 5, f0, w0) \
R5 ( 10, f0, w0) \
M5 ( 15, f0, w0, w1) \
#elif STEP_PRE == 5
#define R20_START \
{ size_t i; for (i = 0; i < 15; i += STEP_PRE) \
{ R5(i, f0, w0) } } \
M5 ( 15, f0, w0, w1) \
#else
#if STEP_PRE == 1
#define R_PRE R1
#elif STEP_PRE == 2
#define R_PRE R2
#elif STEP_PRE == 4
#define R_PRE R4
#endif
#define R20_START \
{ size_t i; for (i = 0; i < 16; i += STEP_PRE) \
{ R_PRE(i, f0, w0) } } \
R4 ( 16, f0, w1) \
#endif
#if STEP_MAIN > 5
#define R20(ii, fx) \
R5 ( (ii) , fx, w1) \
R5 ( (ii) + 5 , fx, w1) \
R5 ( (ii) + 10, fx, w1) \
R5 ( (ii) + 15, fx, w1) \
#else
#if STEP_MAIN == 1
#define R_MAIN R1
#elif STEP_MAIN == 2
#define R_MAIN R2
#elif STEP_MAIN == 4
#define R_MAIN R4
#elif STEP_MAIN == 5
#define R_MAIN R5
#endif
#define R20(ii, fx) \
{ size_t i; for (i = (ii); i < (ii) + 20; i += STEP_MAIN) \
{ R_MAIN(i, fx, w1) } } \
#endif
void Sha1_InitState(CSha1 *p)
{
p->count = 0;
p->state[0] = 0x67452301;
p->state[1] = 0xEFCDAB89;
p->state[2] = 0x98BADCFE;
p->state[3] = 0x10325476;
p->state[4] = 0xC3D2E1F0;
}
void Sha1_Init(CSha1 *p)
{
p->func_UpdateBlocks =
#ifdef Z7_COMPILER_SHA1_SUPPORTED
g_SHA1_FUNC_UPDATE_BLOCKS;
#else
NULL;
#endif
Sha1_InitState(p);
}
Z7_NO_INLINE
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks)
{
UInt32 a, b, c, d, e;
UInt32 W[kNumW];
// if (numBlocks != 0x1264378347) return;
if (numBlocks == 0)
return;
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
do
{
#if STEP_PRE < 5 || STEP_MAIN < 5
UInt32 tmp;
#endif
R20_START
R20(20, f1)
R20(40, f2)
R20(60, f3)
a += state[0];
b += state[1];
c += state[2];
d += state[3];
e += state[4];
state[0] = a;
state[1] = b;
state[2] = c;
state[3] = d;
state[4] = e;
data += 64;
}
while (--numBlocks);
}
#define Sha1_UpdateBlock(p) SHA1_UPDATE_BLOCKS(p)(p->state, p->buffer, 1)
void Sha1_Update(CSha1 *p, const Byte *data, size_t size)
{
if (size == 0)
return;
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned num;
p->count += size;
num = 64 - pos;
if (num > size)
{
memcpy(p->buffer + pos, data, size);
return;
}
if (pos != 0)
{
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
Sha1_UpdateBlock(p);
}
}
{
size_t numBlocks = size >> 6;
SHA1_UPDATE_BLOCKS(p)(p->state, data, numBlocks);
size &= 0x3F;
if (size == 0)
return;
data += (numBlocks << 6);
memcpy(p->buffer, data, size);
}
}
void Sha1_Final(CSha1 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
p->buffer[pos++] = 0x80;
if (pos > (64 - 8))
{
while (pos != 64) { p->buffer[pos++] = 0; }
// memset(&p->buf.buffer[pos], 0, 64 - pos);
Sha1_UpdateBlock(p);
pos = 0;
}
/*
if (pos & 3)
{
p->buffer[pos] = 0;
p->buffer[pos + 1] = 0;
p->buffer[pos + 2] = 0;
pos += 3;
pos &= ~3;
}
{
for (; pos < 64 - 8; pos += 4)
*(UInt32 *)(&p->buffer[pos]) = 0;
}
*/
memset(&p->buffer[pos], 0, (64 - 8) - pos);
{
const UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32))
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits))
}
Sha1_UpdateBlock(p);
SetBe32(digest, p->state[0])
SetBe32(digest + 4, p->state[1])
SetBe32(digest + 8, p->state[2])
SetBe32(digest + 12, p->state[3])
SetBe32(digest + 16, p->state[4])
Sha1_InitState(p);
}
void Sha1_PrepareBlock(const CSha1 *p, Byte *block, unsigned size)
{
const UInt64 numBits = (p->count + size) << 3;
SetBe32(&((UInt32 *)(void *)block)[SHA1_NUM_BLOCK_WORDS - 2], (UInt32)(numBits >> 32))
SetBe32(&((UInt32 *)(void *)block)[SHA1_NUM_BLOCK_WORDS - 1], (UInt32)(numBits))
// SetBe32((UInt32 *)(block + size), 0x80000000);
SetUi32((UInt32 *)(void *)(block + size), 0x80)
size += 4;
while (size != (SHA1_NUM_BLOCK_WORDS - 2) * 4)
{
*((UInt32 *)(void *)(block + size)) = 0;
size += 4;
}
}
void Sha1_GetBlockDigest(const CSha1 *p, const Byte *data, Byte *destDigest)
{
MY_ALIGN (16)
UInt32 st[SHA1_NUM_DIGEST_WORDS];
st[0] = p->state[0];
st[1] = p->state[1];
st[2] = p->state[2];
st[3] = p->state[3];
st[4] = p->state[4];
SHA1_UPDATE_BLOCKS(p)(st, data, 1);
SetBe32(destDigest + 0 , st[0])
SetBe32(destDigest + 1 * 4, st[1])
SetBe32(destDigest + 2 * 4, st[2])
SetBe32(destDigest + 3 * 4, st[3])
SetBe32(destDigest + 4 * 4, st[4])
}
void Sha1Prepare(void)
{
#ifdef Z7_COMPILER_SHA1_SUPPORTED
SHA1_FUNC_UPDATE_BLOCKS f, f_hw;
f = Sha1_UpdateBlocks;
f_hw = NULL;
#ifdef MY_CPU_X86_OR_AMD64
#ifndef USE_MY_MM
if (CPU_IsSupported_SHA()
&& CPU_IsSupported_SSSE3()
// && CPU_IsSupported_SSE41()
)
#endif
#else
if (CPU_IsSupported_SHA1())
#endif
{
// printf("\n========== HW SHA1 ======== \n");
#if defined(MY_CPU_ARM_OR_ARM64) && defined(_MSC_VER)
/* there was bug in MSVC compiler for ARM64 -O2 before version VS2019 16.10 (19.29.30037).
It generated incorrect SHA-1 code.
21.03 : we test sha1-hardware code at runtime initialization */
#pragma message("== SHA1 code: MSC compiler : failure-check code was inserted")
UInt32 state[5] = { 0, 1, 2, 3, 4 } ;
Byte data[64];
unsigned i;
for (i = 0; i < sizeof(data); i += 2)
{
data[i ] = (Byte)(i);
data[i + 1] = (Byte)(i + 1);
}
Sha1_UpdateBlocks_HW(state, data, sizeof(data) / 64);
if ( state[0] != 0x9acd7297
|| state[1] != 0x4624d898
|| state[2] != 0x0bf079f0
|| state[3] != 0x031e61b3
|| state[4] != 0x8323fe20)
{
// printf("\n========== SHA-1 hardware version failure ======== \n");
}
else
#endif
{
f = f_hw = Sha1_UpdateBlocks_HW;
}
}
g_SHA1_FUNC_UPDATE_BLOCKS = f;
g_SHA1_FUNC_UPDATE_BLOCKS_HW = f_hw;
#endif
}
#undef kNumW
#undef w
#undef w0
#undef w1
#undef f0
#undef f1
#undef f2
#undef f3
#undef T1
#undef T5
#undef M5
#undef R1
#undef R2
#undef R4
#undef R5
#undef R20_START
#undef R_PRE
#undef R_MAIN
#undef STEP_PRE
#undef STEP_MAIN
#undef Z7_SHA1_BIG_W
#undef Z7_SHA1_UNROLL
#undef Z7_COMPILER_SHA1_SUPPORTED

View File

@ -1,76 +0,0 @@
/* Sha1.h -- SHA-1 Hash
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_SHA1_H
#define ZIP7_INC_SHA1_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA1_NUM_BLOCK_WORDS 16
#define SHA1_NUM_DIGEST_WORDS 5
#define SHA1_BLOCK_SIZE (SHA1_NUM_BLOCK_WORDS * 4)
#define SHA1_DIGEST_SIZE (SHA1_NUM_DIGEST_WORDS * 4)
typedef void (Z7_FASTCALL *SHA1_FUNC_UPDATE_BLOCKS)(UInt32 state[5], const Byte *data, size_t numBlocks);
/*
if (the system supports different SHA1 code implementations)
{
(CSha1::func_UpdateBlocks) will be used
(CSha1::func_UpdateBlocks) can be set by
Sha1_Init() - to default (fastest)
Sha1_SetFunction() - to any algo
}
else
{
(CSha1::func_UpdateBlocks) is ignored.
}
*/
typedef struct
{
SHA1_FUNC_UPDATE_BLOCKS func_UpdateBlocks;
UInt64 count;
UInt64 _pad_2[2];
UInt32 state[SHA1_NUM_DIGEST_WORDS];
UInt32 _pad_3[3];
Byte buffer[SHA1_BLOCK_SIZE];
} CSha1;
#define SHA1_ALGO_DEFAULT 0
#define SHA1_ALGO_SW 1
#define SHA1_ALGO_HW 2
/*
Sha1_SetFunction()
return:
0 - (algo) value is not supported, and func_UpdateBlocks was not changed
1 - func_UpdateBlocks was set according (algo) value.
*/
BoolInt Sha1_SetFunction(CSha1 *p, unsigned algo);
void Sha1_InitState(CSha1 *p);
void Sha1_Init(CSha1 *p);
void Sha1_Update(CSha1 *p, const Byte *data, size_t size);
void Sha1_Final(CSha1 *p, Byte *digest);
void Sha1_PrepareBlock(const CSha1 *p, Byte *block, unsigned size);
void Sha1_GetBlockDigest(const CSha1 *p, const Byte *data, Byte *destDigest);
// void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
/*
call Sha1Prepare() once at program start.
It prepares all supported implementations, and detects the fastest implementation.
*/
void Sha1Prepare(void);
EXTERN_C_END
#endif

View File

@ -1,386 +0,0 @@
/* Sha1Opt.c -- SHA-1 optimized code for SHA-1 hardware instructions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Compiler.h"
#include "CpuArch.h"
#if defined(_MSC_VER)
#if (_MSC_VER < 1900) && (_MSC_VER >= 1200)
// #define USE_MY_MM
#endif
#endif
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1600) // fix that check
#define USE_HW_SHA
#elif defined(Z7_LLVM_CLANG_VERSION) && (Z7_LLVM_CLANG_VERSION >= 30800) \
|| defined(Z7_APPLE_CLANG_VERSION) && (Z7_APPLE_CLANG_VERSION >= 50100) \
|| defined(Z7_GCC_VERSION) && (Z7_GCC_VERSION >= 40900)
#define USE_HW_SHA
#if !defined(_INTEL_COMPILER)
// icc defines __GNUC__, but icc doesn't support __attribute__(__target__)
#if !defined(__SHA__) || !defined(__SSSE3__)
#define ATTRIB_SHA __attribute__((__target__("sha,ssse3")))
#endif
#endif
#elif defined(_MSC_VER)
#ifdef USE_MY_MM
#define USE_VER_MIN 1300
#else
#define USE_VER_MIN 1900
#endif
#if (_MSC_VER >= USE_VER_MIN)
#define USE_HW_SHA
#endif
#endif
// #endif // MY_CPU_X86_OR_AMD64
#ifdef USE_HW_SHA
// #pragma message("Sha1 HW")
// sse/sse2/ssse3:
#include <tmmintrin.h>
// sha*:
#include <immintrin.h>
#if defined (__clang__) && defined(_MSC_VER)
// #if !defined(__SSSE3__)
// #endif
#if !defined(__SHA__)
#include <shaintrin.h>
#endif
#else
#ifdef USE_MY_MM
#include "My_mm.h"
#endif
#endif
/*
SHA1 uses:
SSE2:
_mm_loadu_si128
_mm_storeu_si128
_mm_set_epi32
_mm_add_epi32
_mm_shuffle_epi32 / pshufd
_mm_xor_si128
_mm_cvtsi128_si32
_mm_cvtsi32_si128
SSSE3:
_mm_shuffle_epi8 / pshufb
SHA:
_mm_sha1*
*/
#define XOR_SI128(dest, src) dest = _mm_xor_si128(dest, src);
#define SHUFFLE_EPI8(dest, mask) dest = _mm_shuffle_epi8(dest, mask);
#define SHUFFLE_EPI32(dest, mask) dest = _mm_shuffle_epi32(dest, mask);
#ifdef __clang__
#define SHA1_RNDS4_RET_TYPE_CAST (__m128i)
#else
#define SHA1_RNDS4_RET_TYPE_CAST
#endif
#define SHA1_RND4(abcd, e0, f) abcd = SHA1_RNDS4_RET_TYPE_CAST _mm_sha1rnds4_epu32(abcd, e0, f);
#define SHA1_NEXTE(e, m) e = _mm_sha1nexte_epu32(e, m);
#define ADD_EPI32(dest, src) dest = _mm_add_epi32(dest, src);
#define SHA1_MSG1(dest, src) dest = _mm_sha1msg1_epu32(dest, src);
#define SHA1_MSG2(dest, src) dest = _mm_sha1msg2_epu32(dest, src);
#define LOAD_SHUFFLE(m, k) \
m = _mm_loadu_si128((const __m128i *)(const void *)(data + (k) * 16)); \
SHUFFLE_EPI8(m, mask) \
#define SM1(m0, m1, m2, m3) \
SHA1_MSG1(m0, m1) \
#define SM2(m0, m1, m2, m3) \
XOR_SI128(m3, m1) \
SHA1_MSG2(m3, m2) \
#define SM3(m0, m1, m2, m3) \
XOR_SI128(m3, m1) \
SM1(m0, m1, m2, m3) \
SHA1_MSG2(m3, m2) \
#define NNN(m0, m1, m2, m3)
#define R4(k, e0, e1, m0, m1, m2, m3, OP) \
e1 = abcd; \
SHA1_RND4(abcd, e0, (k) / 5) \
SHA1_NEXTE(e1, m1) \
OP(m0, m1, m2, m3) \
#define R16(k, mx, OP0, OP1, OP2, OP3) \
R4 ( (k)*4+0, e0,e1, m0,m1,m2,m3, OP0 ) \
R4 ( (k)*4+1, e1,e0, m1,m2,m3,m0, OP1 ) \
R4 ( (k)*4+2, e0,e1, m2,m3,m0,m1, OP2 ) \
R4 ( (k)*4+3, e1,e0, m3,mx,m1,m2, OP3 ) \
#define PREPARE_STATE \
SHUFFLE_EPI32 (abcd, 0x1B) \
SHUFFLE_EPI32 (e0, 0x1B) \
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks)
{
const __m128i mask = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
__m128i abcd, e0;
if (numBlocks == 0)
return;
abcd = _mm_loadu_si128((const __m128i *) (const void *) &state[0]); // dbca
e0 = _mm_cvtsi32_si128((int)state[4]); // 000e
PREPARE_STATE
do
{
__m128i abcd_save, e2;
__m128i m0, m1, m2, m3;
__m128i e1;
abcd_save = abcd;
e2 = e0;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
ADD_EPI32(e0, m0)
R16 ( 0, m0, SM1, SM3, SM3, SM3 )
R16 ( 1, m0, SM3, SM3, SM3, SM3 )
R16 ( 2, m0, SM3, SM3, SM3, SM3 )
R16 ( 3, m0, SM3, SM3, SM3, SM3 )
R16 ( 4, e2, SM2, NNN, NNN, NNN )
ADD_EPI32(abcd, abcd_save)
data += 64;
}
while (--numBlocks);
PREPARE_STATE
_mm_storeu_si128((__m128i *) (void *) state, abcd);
*(state+4) = (UInt32)_mm_cvtsi128_si32(e0);
}
#endif // USE_HW_SHA
#elif defined(MY_CPU_ARM_OR_ARM64)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_SHA
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_SHA
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_SHA
#endif
#endif
#ifdef USE_HW_SHA
// #pragma message("=== Sha1 HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_SHA __attribute__((__target__("+crypto")))
#else
#define ATTRIB_SHA __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint32x4_t v128;
// typedef __n128 v128; // MSVC
#ifdef MY_CPU_BE
#define MY_rev32_for_LE(x)
#else
#define MY_rev32_for_LE(x) x = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(x)))
#endif
#define LOAD_128(_p) (*(const v128 *)(const void *)(_p))
#define STORE_128(_p, _v) *(v128 *)(void *)(_p) = (_v)
#define LOAD_SHUFFLE(m, k) \
m = LOAD_128((data + (k) * 16)); \
MY_rev32_for_LE(m); \
#define SU0(dest, src2, src3) dest = vsha1su0q_u32(dest, src2, src3);
#define SU1(dest, src) dest = vsha1su1q_u32(dest, src);
#define C(e) abcd = vsha1cq_u32(abcd, e, t);
#define P(e) abcd = vsha1pq_u32(abcd, e, t);
#define M(e) abcd = vsha1mq_u32(abcd, e, t);
#define H(e) e = vsha1h_u32(vgetq_lane_u32(abcd, 0))
#define T(m, c) t = vaddq_u32(m, c)
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
v128 abcd;
v128 c0, c1, c2, c3;
uint32_t e0;
if (numBlocks == 0)
return;
c0 = vdupq_n_u32(0x5a827999);
c1 = vdupq_n_u32(0x6ed9eba1);
c2 = vdupq_n_u32(0x8f1bbcdc);
c3 = vdupq_n_u32(0xca62c1d6);
abcd = LOAD_128(&state[0]);
e0 = state[4];
do
{
v128 abcd_save;
v128 m0, m1, m2, m3;
v128 t;
uint32_t e0_save, e1;
abcd_save = abcd;
e0_save = e0;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
T(m0, c0); H(e1); C(e0);
T(m1, c0); SU0(m0, m1, m2); H(e0); C(e1);
T(m2, c0); SU0(m1, m2, m3); SU1(m0, m3); H(e1); C(e0);
T(m3, c0); SU0(m2, m3, m0); SU1(m1, m0); H(e0); C(e1);
T(m0, c0); SU0(m3, m0, m1); SU1(m2, m1); H(e1); C(e0);
T(m1, c1); SU0(m0, m1, m2); SU1(m3, m2); H(e0); P(e1);
T(m2, c1); SU0(m1, m2, m3); SU1(m0, m3); H(e1); P(e0);
T(m3, c1); SU0(m2, m3, m0); SU1(m1, m0); H(e0); P(e1);
T(m0, c1); SU0(m3, m0, m1); SU1(m2, m1); H(e1); P(e0);
T(m1, c1); SU0(m0, m1, m2); SU1(m3, m2); H(e0); P(e1);
T(m2, c2); SU0(m1, m2, m3); SU1(m0, m3); H(e1); M(e0);
T(m3, c2); SU0(m2, m3, m0); SU1(m1, m0); H(e0); M(e1);
T(m0, c2); SU0(m3, m0, m1); SU1(m2, m1); H(e1); M(e0);
T(m1, c2); SU0(m0, m1, m2); SU1(m3, m2); H(e0); M(e1);
T(m2, c2); SU0(m1, m2, m3); SU1(m0, m3); H(e1); M(e0);
T(m3, c3); SU0(m2, m3, m0); SU1(m1, m0); H(e0); P(e1);
T(m0, c3); SU0(m3, m0, m1); SU1(m2, m1); H(e1); P(e0);
T(m1, c3); SU1(m3, m2); H(e0); P(e1);
T(m2, c3); H(e1); P(e0);
T(m3, c3); H(e0); P(e1);
abcd = vaddq_u32(abcd, abcd_save);
e0 += e0_save;
data += 64;
}
while (--numBlocks);
STORE_128(&state[0], abcd);
state[4] = e0;
}
#endif // USE_HW_SHA
#endif // MY_CPU_ARM_OR_ARM64
#ifndef USE_HW_SHA
// #error Stop_Compiling_UNSUPPORTED_SHA
// #include <stdlib.h>
// #include "Sha1.h"
void Z7_FASTCALL Sha1_UpdateBlocks(UInt32 state[5], const Byte *data, size_t numBlocks);
#pragma message("Sha1 HW-SW stub was used")
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks);
void Z7_FASTCALL Sha1_UpdateBlocks_HW(UInt32 state[5], const Byte *data, size_t numBlocks)
{
Sha1_UpdateBlocks(state, data, numBlocks);
/*
UNUSED_VAR(state);
UNUSED_VAR(data);
UNUSED_VAR(numBlocks);
exit(1);
return;
*/
}
#endif
#undef SU0
#undef SU1
#undef C
#undef P
#undef M
#undef H
#undef T
#undef MY_rev32_for_LE
#undef NNN
#undef LOAD_128
#undef STORE_128
#undef LOAD_SHUFFLE
#undef SM1
#undef SM2
#undef SM3
#undef NNN
#undef R4
#undef R16
#undef PREPARE_STATE
#undef USE_HW_SHA
#undef ATTRIB_SHA
#undef USE_VER_MIN

View File

@ -1,516 +0,0 @@
/* Sha256.c -- SHA-256 Hash
2023-04-02 : Igor Pavlov : Public domain
This code is based on public domain code from Wei Dai's Crypto++ library. */
#include "Precomp.h"
#include <string.h>
#include "CpuArch.h"
#include "RotateDefs.h"
#include "Sha256.h"
#if defined(_MSC_VER) && (_MSC_VER < 1900)
// #define USE_MY_MM
#endif
#ifdef MY_CPU_X86_OR_AMD64
#ifdef _MSC_VER
#if _MSC_VER >= 1200
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__INTEL_COMPILER)
#if (__INTEL_COMPILER >= 1800) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#endif
#elif defined(MY_CPU_ARM_OR_ARM64)
#ifdef _MSC_VER
#if _MSC_VER >= 1910
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define Z7_COMPILER_SHA256_SUPPORTED
#endif
#endif
#endif
void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef Z7_COMPILER_SHA256_SUPPORTED
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
static SHA256_FUNC_UPDATE_BLOCKS g_SHA256_FUNC_UPDATE_BLOCKS = Sha256_UpdateBlocks;
static SHA256_FUNC_UPDATE_BLOCKS g_SHA256_FUNC_UPDATE_BLOCKS_HW;
#define SHA256_UPDATE_BLOCKS(p) p->func_UpdateBlocks
#else
#define SHA256_UPDATE_BLOCKS(p) Sha256_UpdateBlocks
#endif
BoolInt Sha256_SetFunction(CSha256 *p, unsigned algo)
{
SHA256_FUNC_UPDATE_BLOCKS func = Sha256_UpdateBlocks;
#ifdef Z7_COMPILER_SHA256_SUPPORTED
if (algo != SHA256_ALGO_SW)
{
if (algo == SHA256_ALGO_DEFAULT)
func = g_SHA256_FUNC_UPDATE_BLOCKS;
else
{
if (algo != SHA256_ALGO_HW)
return False;
func = g_SHA256_FUNC_UPDATE_BLOCKS_HW;
if (!func)
return False;
}
}
#else
if (algo > 1)
return False;
#endif
p->func_UpdateBlocks = func;
return True;
}
/* define it for speed optimization */
#ifdef Z7_SFX
#define STEP_PRE 1
#define STEP_MAIN 1
#else
#define STEP_PRE 2
#define STEP_MAIN 4
// #define Z7_SHA256_UNROLL
#endif
#undef Z7_SHA256_BIG_W
#if STEP_MAIN != 16
#define Z7_SHA256_BIG_W
#endif
void Sha256_InitState(CSha256 *p)
{
p->count = 0;
p->state[0] = 0x6a09e667;
p->state[1] = 0xbb67ae85;
p->state[2] = 0x3c6ef372;
p->state[3] = 0xa54ff53a;
p->state[4] = 0x510e527f;
p->state[5] = 0x9b05688c;
p->state[6] = 0x1f83d9ab;
p->state[7] = 0x5be0cd19;
}
void Sha256_Init(CSha256 *p)
{
p->func_UpdateBlocks =
#ifdef Z7_COMPILER_SHA256_SUPPORTED
g_SHA256_FUNC_UPDATE_BLOCKS;
#else
NULL;
#endif
Sha256_InitState(p);
}
#define S0(x) (rotrFixed(x, 2) ^ rotrFixed(x,13) ^ rotrFixed(x, 22))
#define S1(x) (rotrFixed(x, 6) ^ rotrFixed(x,11) ^ rotrFixed(x, 25))
#define s0(x) (rotrFixed(x, 7) ^ rotrFixed(x,18) ^ (x >> 3))
#define s1(x) (rotrFixed(x,17) ^ rotrFixed(x,19) ^ (x >> 10))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
#define W_PRE(i) (W[(i) + (size_t)(j)] = GetBe32(data + ((size_t)(j) + i) * 4))
#define blk2_main(j, i) s1(w(j, (i)-2)) + w(j, (i)-7) + s0(w(j, (i)-15))
#ifdef Z7_SHA256_BIG_W
// we use +i instead of +(i) to change the order to solve CLANG compiler warning for signed/unsigned.
#define w(j, i) W[(size_t)(j) + i]
#define blk2(j, i) (w(j, i) = w(j, (i)-16) + blk2_main(j, i))
#else
#if STEP_MAIN == 16
#define w(j, i) W[(i) & 15]
#else
#define w(j, i) W[((size_t)(j) + (i)) & 15]
#endif
#define blk2(j, i) (w(j, i) += blk2_main(j, i))
#endif
#define W_MAIN(i) blk2(j, i)
#define T1(wx, i) \
tmp = h + S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
h = g; \
g = f; \
f = e; \
e = d + tmp; \
tmp += S0(a) + Maj(a, b, c); \
d = c; \
c = b; \
b = a; \
a = tmp; \
#define R1_PRE(i) T1( W_PRE, i)
#define R1_MAIN(i) T1( W_MAIN, i)
#if (!defined(Z7_SHA256_UNROLL) || STEP_MAIN < 8) && (STEP_MAIN >= 4)
#define R2_MAIN(i) \
R1_MAIN(i) \
R1_MAIN(i + 1) \
#endif
#if defined(Z7_SHA256_UNROLL) && STEP_MAIN >= 8
#define T4( a,b,c,d,e,f,g,h, wx, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
tmp = h; \
h += d; \
d = tmp + S0(a) + Maj(a, b, c); \
#define R4( wx, i) \
T4 ( a,b,c,d,e,f,g,h, wx, (i )); \
T4 ( d,a,b,c,h,e,f,g, wx, (i+1)); \
T4 ( c,d,a,b,g,h,e,f, wx, (i+2)); \
T4 ( b,c,d,a,f,g,h,e, wx, (i+3)); \
#define R4_PRE(i) R4( W_PRE, i)
#define R4_MAIN(i) R4( W_MAIN, i)
#define T8( a,b,c,d,e,f,g,h, wx, i) \
h += S1(e) + Ch(e,f,g) + K[(i)+(size_t)(j)] + wx(i); \
d += h; \
h += S0(a) + Maj(a, b, c); \
#define R8( wx, i) \
T8 ( a,b,c,d,e,f,g,h, wx, i ); \
T8 ( h,a,b,c,d,e,f,g, wx, i+1); \
T8 ( g,h,a,b,c,d,e,f, wx, i+2); \
T8 ( f,g,h,a,b,c,d,e, wx, i+3); \
T8 ( e,f,g,h,a,b,c,d, wx, i+4); \
T8 ( d,e,f,g,h,a,b,c, wx, i+5); \
T8 ( c,d,e,f,g,h,a,b, wx, i+6); \
T8 ( b,c,d,e,f,g,h,a, wx, i+7); \
#define R8_PRE(i) R8( W_PRE, i)
#define R8_MAIN(i) R8( W_MAIN, i)
#endif
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
// static
extern MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define K SHA256_K_ARRAY
Z7_NO_INLINE
void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks)
{
UInt32 W
#ifdef Z7_SHA256_BIG_W
[64];
#else
[16];
#endif
unsigned j;
UInt32 a,b,c,d,e,f,g,h;
#if !defined(Z7_SHA256_UNROLL) || (STEP_MAIN <= 4) || (STEP_PRE <= 4)
UInt32 tmp;
#endif
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
while (numBlocks)
{
for (j = 0; j < 16; j += STEP_PRE)
{
#if STEP_PRE > 4
#if STEP_PRE < 8
R4_PRE(0);
#else
R8_PRE(0);
#if STEP_PRE == 16
R8_PRE(8);
#endif
#endif
#else
R1_PRE(0)
#if STEP_PRE >= 2
R1_PRE(1)
#if STEP_PRE >= 4
R1_PRE(2)
R1_PRE(3)
#endif
#endif
#endif
}
for (j = 16; j < 64; j += STEP_MAIN)
{
#if defined(Z7_SHA256_UNROLL) && STEP_MAIN >= 8
#if STEP_MAIN < 8
R4_MAIN(0)
#else
R8_MAIN(0)
#if STEP_MAIN == 16
R8_MAIN(8)
#endif
#endif
#else
R1_MAIN(0)
#if STEP_MAIN >= 2
R1_MAIN(1)
#if STEP_MAIN >= 4
R2_MAIN(2)
#if STEP_MAIN >= 8
R2_MAIN(4)
R2_MAIN(6)
#if STEP_MAIN >= 16
R2_MAIN(8)
R2_MAIN(10)
R2_MAIN(12)
R2_MAIN(14)
#endif
#endif
#endif
#endif
#endif
}
a += state[0]; state[0] = a;
b += state[1]; state[1] = b;
c += state[2]; state[2] = c;
d += state[3]; state[3] = d;
e += state[4]; state[4] = e;
f += state[5]; state[5] = f;
g += state[6]; state[6] = g;
h += state[7]; state[7] = h;
data += 64;
numBlocks--;
}
/* Wipe variables */
/* memset(W, 0, sizeof(W)); */
}
#undef S0
#undef S1
#undef s0
#undef s1
#undef K
#define Sha256_UpdateBlock(p) SHA256_UPDATE_BLOCKS(p)(p->state, p->buffer, 1)
void Sha256_Update(CSha256 *p, const Byte *data, size_t size)
{
if (size == 0)
return;
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned num;
p->count += size;
num = 64 - pos;
if (num > size)
{
memcpy(p->buffer + pos, data, size);
return;
}
if (pos != 0)
{
size -= num;
memcpy(p->buffer + pos, data, num);
data += num;
Sha256_UpdateBlock(p);
}
}
{
size_t numBlocks = size >> 6;
SHA256_UPDATE_BLOCKS(p)(p->state, data, numBlocks);
size &= 0x3F;
if (size == 0)
return;
data += (numBlocks << 6);
memcpy(p->buffer, data, size);
}
}
void Sha256_Final(CSha256 *p, Byte *digest)
{
unsigned pos = (unsigned)p->count & 0x3F;
unsigned i;
p->buffer[pos++] = 0x80;
if (pos > (64 - 8))
{
while (pos != 64) { p->buffer[pos++] = 0; }
// memset(&p->buf.buffer[pos], 0, 64 - pos);
Sha256_UpdateBlock(p);
pos = 0;
}
/*
if (pos & 3)
{
p->buffer[pos] = 0;
p->buffer[pos + 1] = 0;
p->buffer[pos + 2] = 0;
pos += 3;
pos &= ~3;
}
{
for (; pos < 64 - 8; pos += 4)
*(UInt32 *)(&p->buffer[pos]) = 0;
}
*/
memset(&p->buffer[pos], 0, (64 - 8) - pos);
{
UInt64 numBits = (p->count << 3);
SetBe32(p->buffer + 64 - 8, (UInt32)(numBits >> 32))
SetBe32(p->buffer + 64 - 4, (UInt32)(numBits))
}
Sha256_UpdateBlock(p);
for (i = 0; i < 8; i += 2)
{
UInt32 v0 = p->state[i];
UInt32 v1 = p->state[(size_t)i + 1];
SetBe32(digest , v0)
SetBe32(digest + 4, v1)
digest += 8;
}
Sha256_InitState(p);
}
void Sha256Prepare(void)
{
#ifdef Z7_COMPILER_SHA256_SUPPORTED
SHA256_FUNC_UPDATE_BLOCKS f, f_hw;
f = Sha256_UpdateBlocks;
f_hw = NULL;
#ifdef MY_CPU_X86_OR_AMD64
#ifndef USE_MY_MM
if (CPU_IsSupported_SHA()
&& CPU_IsSupported_SSSE3()
// && CPU_IsSupported_SSE41()
)
#endif
#else
if (CPU_IsSupported_SHA2())
#endif
{
// printf("\n========== HW SHA256 ======== \n");
f = f_hw = Sha256_UpdateBlocks_HW;
}
g_SHA256_FUNC_UPDATE_BLOCKS = f;
g_SHA256_FUNC_UPDATE_BLOCKS_HW = f_hw;
#endif
}
#undef S0
#undef S1
#undef s0
#undef s1
#undef Ch
#undef Maj
#undef W_MAIN
#undef W_PRE
#undef w
#undef blk2_main
#undef blk2
#undef T1
#undef T4
#undef T8
#undef R1_PRE
#undef R1_MAIN
#undef R2_MAIN
#undef R4
#undef R4_PRE
#undef R4_MAIN
#undef R8
#undef R8_PRE
#undef R8_MAIN
#undef STEP_PRE
#undef STEP_MAIN
#undef Z7_SHA256_BIG_W
#undef Z7_SHA256_UNROLL
#undef Z7_COMPILER_SHA256_SUPPORTED

View File

@ -1,76 +0,0 @@
/* Sha256.h -- SHA-256 Hash
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_SHA256_H
#define ZIP7_INC_SHA256_H
#include "7zTypes.h"
EXTERN_C_BEGIN
#define SHA256_NUM_BLOCK_WORDS 16
#define SHA256_NUM_DIGEST_WORDS 8
#define SHA256_BLOCK_SIZE (SHA256_NUM_BLOCK_WORDS * 4)
#define SHA256_DIGEST_SIZE (SHA256_NUM_DIGEST_WORDS * 4)
typedef void (Z7_FASTCALL *SHA256_FUNC_UPDATE_BLOCKS)(UInt32 state[8], const Byte *data, size_t numBlocks);
/*
if (the system supports different SHA256 code implementations)
{
(CSha256::func_UpdateBlocks) will be used
(CSha256::func_UpdateBlocks) can be set by
Sha256_Init() - to default (fastest)
Sha256_SetFunction() - to any algo
}
else
{
(CSha256::func_UpdateBlocks) is ignored.
}
*/
typedef struct
{
SHA256_FUNC_UPDATE_BLOCKS func_UpdateBlocks;
UInt64 count;
UInt64 _pad_2[2];
UInt32 state[SHA256_NUM_DIGEST_WORDS];
Byte buffer[SHA256_BLOCK_SIZE];
} CSha256;
#define SHA256_ALGO_DEFAULT 0
#define SHA256_ALGO_SW 1
#define SHA256_ALGO_HW 2
/*
Sha256_SetFunction()
return:
0 - (algo) value is not supported, and func_UpdateBlocks was not changed
1 - func_UpdateBlocks was set according (algo) value.
*/
BoolInt Sha256_SetFunction(CSha256 *p, unsigned algo);
void Sha256_InitState(CSha256 *p);
void Sha256_Init(CSha256 *p);
void Sha256_Update(CSha256 *p, const Byte *data, size_t size);
void Sha256_Final(CSha256 *p, Byte *digest);
// void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
/*
call Sha256Prepare() once at program start.
It prepares all supported implementations, and detects the fastest implementation.
*/
void Sha256Prepare(void);
EXTERN_C_END
#endif

View File

@ -1,386 +0,0 @@
/* Sha256Opt.c -- SHA-256 optimized code for SHA-256 hardware instructions
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Compiler.h"
#include "CpuArch.h"
#if defined(_MSC_VER)
#if (_MSC_VER < 1900) && (_MSC_VER >= 1200)
// #define USE_MY_MM
#endif
#endif
#ifdef MY_CPU_X86_OR_AMD64
#if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1600) // fix that check
#define USE_HW_SHA
#elif defined(Z7_LLVM_CLANG_VERSION) && (Z7_LLVM_CLANG_VERSION >= 30800) \
|| defined(Z7_APPLE_CLANG_VERSION) && (Z7_APPLE_CLANG_VERSION >= 50100) \
|| defined(Z7_GCC_VERSION) && (Z7_GCC_VERSION >= 40900)
#define USE_HW_SHA
#if !defined(_INTEL_COMPILER)
// icc defines __GNUC__, but icc doesn't support __attribute__(__target__)
#if !defined(__SHA__) || !defined(__SSSE3__)
#define ATTRIB_SHA __attribute__((__target__("sha,ssse3")))
#endif
#endif
#elif defined(_MSC_VER)
#ifdef USE_MY_MM
#define USE_VER_MIN 1300
#else
#define USE_VER_MIN 1900
#endif
#if (_MSC_VER >= USE_VER_MIN)
#define USE_HW_SHA
#endif
#endif
// #endif // MY_CPU_X86_OR_AMD64
#ifdef USE_HW_SHA
// #pragma message("Sha256 HW")
// sse/sse2/ssse3:
#include <tmmintrin.h>
// sha*:
#include <immintrin.h>
#if defined (__clang__) && defined(_MSC_VER)
// #if !defined(__SSSE3__)
// #endif
#if !defined(__SHA__)
#include <shaintrin.h>
#endif
#else
#ifdef USE_MY_MM
#include "My_mm.h"
#endif
#endif
/*
SHA256 uses:
SSE2:
_mm_loadu_si128
_mm_storeu_si128
_mm_set_epi32
_mm_add_epi32
_mm_shuffle_epi32 / pshufd
SSSE3:
_mm_shuffle_epi8 / pshufb
_mm_alignr_epi8
SHA:
_mm_sha256*
*/
// K array must be aligned for 16-bytes at least.
// The compiler can look align attribute and selects
// movdqu - for code without align attribute
// movdqa - for code with align attribute
extern
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
#define K SHA256_K_ARRAY
#define ADD_EPI32(dest, src) dest = _mm_add_epi32(dest, src);
#define SHA256_MSG1(dest, src) dest = _mm_sha256msg1_epu32(dest, src);
#define SHA25G_MSG2(dest, src) dest = _mm_sha256msg2_epu32(dest, src);
#define LOAD_SHUFFLE(m, k) \
m = _mm_loadu_si128((const __m128i *)(const void *)(data + (k) * 16)); \
m = _mm_shuffle_epi8(m, mask); \
#define SM1(g0, g1, g2, g3) \
SHA256_MSG1(g3, g0); \
#define SM2(g0, g1, g2, g3) \
tmp = _mm_alignr_epi8(g1, g0, 4); \
ADD_EPI32(g2, tmp) \
SHA25G_MSG2(g2, g1); \
// #define LS0(k, g0, g1, g2, g3) LOAD_SHUFFLE(g0, k)
// #define LS1(k, g0, g1, g2, g3) LOAD_SHUFFLE(g1, k+1)
#define NNN(g0, g1, g2, g3)
#define RND2(t0, t1) \
t0 = _mm_sha256rnds2_epu32(t0, t1, msg);
#define RND2_0(m, k) \
msg = _mm_add_epi32(m, *(const __m128i *) (const void *) &K[(k) * 4]); \
RND2(state0, state1); \
msg = _mm_shuffle_epi32(msg, 0x0E); \
#define RND2_1 \
RND2(state1, state0); \
// We use scheme with 3 rounds ahead for SHA256_MSG1 / 2 rounds ahead for SHA256_MSG2
#define R4(k, g0, g1, g2, g3, OP0, OP1) \
RND2_0(g0, k) \
OP0(g0, g1, g2, g3) \
RND2_1 \
OP1(g0, g1, g2, g3) \
#define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \
R4 ( (k)*4+0, m0,m1,m2,m3, OP0, OP1 ) \
R4 ( (k)*4+1, m1,m2,m3,m0, OP2, OP3 ) \
R4 ( (k)*4+2, m2,m3,m0,m1, OP4, OP5 ) \
R4 ( (k)*4+3, m3,m0,m1,m2, OP6, OP7 ) \
#define PREPARE_STATE \
tmp = _mm_shuffle_epi32(state0, 0x1B); /* abcd */ \
state0 = _mm_shuffle_epi32(state1, 0x1B); /* efgh */ \
state1 = state0; \
state0 = _mm_unpacklo_epi64(state0, tmp); /* cdgh */ \
state1 = _mm_unpackhi_epi64(state1, tmp); /* abef */ \
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
const __m128i mask = _mm_set_epi32(0x0c0d0e0f, 0x08090a0b, 0x04050607, 0x00010203);
__m128i tmp;
__m128i state0, state1;
if (numBlocks == 0)
return;
state0 = _mm_loadu_si128((const __m128i *) (const void *) &state[0]);
state1 = _mm_loadu_si128((const __m128i *) (const void *) &state[4]);
PREPARE_STATE
do
{
__m128i state0_save, state1_save;
__m128i m0, m1, m2, m3;
__m128i msg;
// #define msg tmp
state0_save = state0;
state1_save = state1;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 )
R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 )
R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 )
R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN )
ADD_EPI32(state0, state0_save)
ADD_EPI32(state1, state1_save)
data += 64;
}
while (--numBlocks);
PREPARE_STATE
_mm_storeu_si128((__m128i *) (void *) &state[0], state0);
_mm_storeu_si128((__m128i *) (void *) &state[4], state1);
}
#endif // USE_HW_SHA
#elif defined(MY_CPU_ARM_OR_ARM64)
#if defined(__clang__)
#if (__clang_major__ >= 8) // fix that check
#define USE_HW_SHA
#endif
#elif defined(__GNUC__)
#if (__GNUC__ >= 6) // fix that check
#define USE_HW_SHA
#endif
#elif defined(_MSC_VER)
#if _MSC_VER >= 1910
#define USE_HW_SHA
#endif
#endif
#ifdef USE_HW_SHA
// #pragma message("=== Sha256 HW === ")
#if defined(__clang__) || defined(__GNUC__)
#ifdef MY_CPU_ARM64
#define ATTRIB_SHA __attribute__((__target__("+crypto")))
#else
#define ATTRIB_SHA __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#else
// _MSC_VER
// for arm32
#define _ARM_USE_NEW_NEON_INTRINSICS
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
typedef uint32x4_t v128;
// typedef __n128 v128; // MSVC
#ifdef MY_CPU_BE
#define MY_rev32_for_LE(x)
#else
#define MY_rev32_for_LE(x) x = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(x)))
#endif
#define LOAD_128(_p) (*(const v128 *)(const void *)(_p))
#define STORE_128(_p, _v) *(v128 *)(void *)(_p) = (_v)
#define LOAD_SHUFFLE(m, k) \
m = LOAD_128((data + (k) * 16)); \
MY_rev32_for_LE(m); \
// K array must be aligned for 16-bytes at least.
extern
MY_ALIGN(64)
const UInt32 SHA256_K_ARRAY[64];
#define K SHA256_K_ARRAY
#define SHA256_SU0(dest, src) dest = vsha256su0q_u32(dest, src);
#define SHA25G_SU1(dest, src2, src3) dest = vsha256su1q_u32(dest, src2, src3);
#define SM1(g0, g1, g2, g3) SHA256_SU0(g3, g0)
#define SM2(g0, g1, g2, g3) SHA25G_SU1(g2, g0, g1)
#define NNN(g0, g1, g2, g3)
#define R4(k, g0, g1, g2, g3, OP0, OP1) \
msg = vaddq_u32(g0, *(const v128 *) (const void *) &K[(k) * 4]); \
tmp = state0; \
state0 = vsha256hq_u32( state0, state1, msg ); \
state1 = vsha256h2q_u32( state1, tmp, msg ); \
OP0(g0, g1, g2, g3); \
OP1(g0, g1, g2, g3); \
#define R16(k, OP0, OP1, OP2, OP3, OP4, OP5, OP6, OP7) \
R4 ( (k)*4+0, m0, m1, m2, m3, OP0, OP1 ) \
R4 ( (k)*4+1, m1, m2, m3, m0, OP2, OP3 ) \
R4 ( (k)*4+2, m2, m3, m0, m1, OP4, OP5 ) \
R4 ( (k)*4+3, m3, m0, m1, m2, OP6, OP7 ) \
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
#ifdef ATTRIB_SHA
ATTRIB_SHA
#endif
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
v128 state0, state1;
if (numBlocks == 0)
return;
state0 = LOAD_128(&state[0]);
state1 = LOAD_128(&state[4]);
do
{
v128 state0_save, state1_save;
v128 m0, m1, m2, m3;
v128 msg, tmp;
state0_save = state0;
state1_save = state1;
LOAD_SHUFFLE (m0, 0)
LOAD_SHUFFLE (m1, 1)
LOAD_SHUFFLE (m2, 2)
LOAD_SHUFFLE (m3, 3)
R16 ( 0, NNN, NNN, SM1, NNN, SM1, SM2, SM1, SM2 );
R16 ( 1, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 2, SM1, SM2, SM1, SM2, SM1, SM2, SM1, SM2 );
R16 ( 3, SM1, SM2, NNN, SM2, NNN, NNN, NNN, NNN );
state0 = vaddq_u32(state0, state0_save);
state1 = vaddq_u32(state1, state1_save);
data += 64;
}
while (--numBlocks);
STORE_128(&state[0], state0);
STORE_128(&state[4], state1);
}
#endif // USE_HW_SHA
#endif // MY_CPU_ARM_OR_ARM64
#ifndef USE_HW_SHA
// #error Stop_Compiling_UNSUPPORTED_SHA
// #include <stdlib.h>
// #include "Sha256.h"
void Z7_FASTCALL Sha256_UpdateBlocks(UInt32 state[8], const Byte *data, size_t numBlocks);
#pragma message("Sha256 HW-SW stub was used")
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks);
void Z7_FASTCALL Sha256_UpdateBlocks_HW(UInt32 state[8], const Byte *data, size_t numBlocks)
{
Sha256_UpdateBlocks(state, data, numBlocks);
/*
UNUSED_VAR(state);
UNUSED_VAR(data);
UNUSED_VAR(numBlocks);
exit(1);
return;
*/
}
#endif
#undef K
#undef RND2
#undef RND2_0
#undef RND2_1
#undef MY_rev32_for_LE
#undef NNN
#undef LOAD_128
#undef STORE_128
#undef LOAD_SHUFFLE
#undef SM1
#undef SM2
#undef NNN
#undef R4
#undef R16
#undef PREPARE_STATE
#undef USE_HW_SHA
#undef ATTRIB_SHA
#undef USE_VER_MIN

141
3rdparty/7z/src/Sort.c vendored
View File

@ -1,141 +0,0 @@
/* Sort.c -- Sort functions
2014-04-05 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Sort.h"
#define HeapSortDown(p, k, size, temp) \
{ for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && p[s + 1] > p[s]) s++; \
if (temp >= p[s]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSort(UInt32 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt32 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt32 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
void HeapSort64(UInt64 *p, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt64 temp = p[i];
size_t k = i;
HeapSortDown(p, k, size, temp)
}
while (--i != 0);
}
/*
do
{
size_t k = 1;
UInt64 temp = p[size];
p[size--] = p[1];
HeapSortDown(p, k, size, temp)
}
while (size > 1);
*/
while (size > 3)
{
UInt64 temp = p[size];
size_t k = (p[3] > p[2]) ? 3 : 2;
p[size--] = p[1];
p[1] = p[k];
HeapSortDown(p, k, size, temp)
}
{
UInt64 temp = p[size];
p[size] = p[1];
if (size > 2 && p[2] < temp)
{
p[1] = p[2];
p[2] = temp;
}
else
p[1] = temp;
}
}
/*
#define HeapSortRefDown(p, vals, n, size, temp) \
{ size_t k = n; UInt32 val = vals[temp]; for (;;) { \
size_t s = (k << 1); \
if (s > size) break; \
if (s < size && vals[p[s + 1]] > vals[p[s]]) s++; \
if (val >= vals[p[s]]) break; \
p[k] = p[s]; k = s; \
} p[k] = temp; }
void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size)
{
if (size <= 1)
return;
p--;
{
size_t i = size / 2;
do
{
UInt32 temp = p[i];
HeapSortRefDown(p, vals, i, size, temp);
}
while (--i != 0);
}
do
{
UInt32 temp = p[size];
p[size--] = p[1];
HeapSortRefDown(p, vals, 1, size, temp);
}
while (size > 1);
}
*/

View File

@ -1,18 +0,0 @@
/* Sort.h -- Sort functions
2023-03-05 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_SORT_H
#define ZIP7_INC_SORT_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void HeapSort(UInt32 *p, size_t size);
void HeapSort64(UInt64 *p, size_t size);
/* void HeapSortRef(UInt32 *p, UInt32 *vals, size_t size); */
EXTERN_C_END
#endif

View File

@ -1,800 +0,0 @@
/* SwapBytes.c -- Byte Swap conversion filter
2023-04-07 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "Compiler.h"
#include "CpuArch.h"
#include "RotateDefs.h"
#include "SwapBytes.h"
typedef UInt16 CSwapUInt16;
typedef UInt32 CSwapUInt32;
// #define k_SwapBytes_Mode_BASE 0
#ifdef MY_CPU_X86_OR_AMD64
#define k_SwapBytes_Mode_SSE2 1
#define k_SwapBytes_Mode_SSSE3 2
#define k_SwapBytes_Mode_AVX2 3
// #if defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 1900)
#if defined(__clang__) && (__clang_major__ >= 4) \
|| defined(Z7_GCC_VERSION) && (Z7_GCC_VERSION >= 40701)
#define k_SwapBytes_Mode_MAX k_SwapBytes_Mode_AVX2
#define SWAP_ATTRIB_SSE2 __attribute__((__target__("sse2")))
#define SWAP_ATTRIB_SSSE3 __attribute__((__target__("ssse3")))
#define SWAP_ATTRIB_AVX2 __attribute__((__target__("avx2")))
#elif defined(_MSC_VER)
#if (_MSC_VER == 1900)
#pragma warning(disable : 4752) // found Intel(R) Advanced Vector Extensions; consider using /arch:AVX
#endif
#if (_MSC_VER >= 1900)
#define k_SwapBytes_Mode_MAX k_SwapBytes_Mode_AVX2
#elif (_MSC_VER >= 1500) // (VS2008)
#define k_SwapBytes_Mode_MAX k_SwapBytes_Mode_SSSE3
#elif (_MSC_VER >= 1310) // (VS2003)
#define k_SwapBytes_Mode_MAX k_SwapBytes_Mode_SSE2
#endif
#endif // _MSC_VER
/*
// for debug
#ifdef k_SwapBytes_Mode_MAX
#undef k_SwapBytes_Mode_MAX
#endif
*/
#ifndef k_SwapBytes_Mode_MAX
#define k_SwapBytes_Mode_MAX 0
#endif
#if (k_SwapBytes_Mode_MAX != 0) && defined(MY_CPU_AMD64)
#define k_SwapBytes_Mode_MIN k_SwapBytes_Mode_SSE2
#else
#define k_SwapBytes_Mode_MIN 0
#endif
#if (k_SwapBytes_Mode_MAX >= k_SwapBytes_Mode_AVX2)
#define USE_SWAP_AVX2
#endif
#if (k_SwapBytes_Mode_MAX >= k_SwapBytes_Mode_SSSE3)
#define USE_SWAP_SSSE3
#endif
#if (k_SwapBytes_Mode_MAX >= k_SwapBytes_Mode_SSE2)
#define USE_SWAP_128
#endif
#if k_SwapBytes_Mode_MAX <= k_SwapBytes_Mode_MIN || !defined(USE_SWAP_128)
#define FORCE_SWAP_MODE
#endif
#ifdef USE_SWAP_128
/*
<mmintrin.h> MMX
<xmmintrin.h> SSE
<emmintrin.h> SSE2
<pmmintrin.h> SSE3
<tmmintrin.h> SSSE3
<smmintrin.h> SSE4.1
<nmmintrin.h> SSE4.2
<ammintrin.h> SSE4A
<wmmintrin.h> AES
<immintrin.h> AVX, AVX2, FMA
*/
#include <emmintrin.h> // sse2
// typedef __m128i v128;
#define SWAP2_128(i) { \
const __m128i v = *(const __m128i *)(const void *)(items + (i) * 8); \
*( __m128i *)( void *)(items + (i) * 8) = \
_mm_or_si128( \
_mm_slli_epi16(v, 8), \
_mm_srli_epi16(v, 8)); }
// _mm_or_si128() has more ports to execute than _mm_add_epi16().
static
#ifdef SWAP_ATTRIB_SSE2
SWAP_ATTRIB_SSE2
#endif
void
Z7_FASTCALL
SwapBytes2_128(CSwapUInt16 *items, const CSwapUInt16 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP2_128(0) SWAP2_128(1) items += 2 * 8;
SWAP2_128(0) SWAP2_128(1) items += 2 * 8;
}
while (items != lim);
}
/*
// sse2
#define SWAP4_128_pack(i) { \
__m128i v = *(const __m128i *)(const void *)(items + (i) * 4); \
__m128i v0 = _mm_unpacklo_epi8(v, mask); \
__m128i v1 = _mm_unpackhi_epi8(v, mask); \
v0 = _mm_shufflelo_epi16(v0, 0x1b); \
v1 = _mm_shufflelo_epi16(v1, 0x1b); \
v0 = _mm_shufflehi_epi16(v0, 0x1b); \
v1 = _mm_shufflehi_epi16(v1, 0x1b); \
*(__m128i *)(void *)(items + (i) * 4) = _mm_packus_epi16(v0, v1); }
static
#ifdef SWAP_ATTRIB_SSE2
SWAP_ATTRIB_SSE2
#endif
void
Z7_FASTCALL
SwapBytes4_128_pack(CSwapUInt32 *items, const CSwapUInt32 *lim)
{
const __m128i mask = _mm_setzero_si128();
// const __m128i mask = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, 0);
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP4_128_pack(0); items += 1 * 4;
// SWAP4_128_pack(0); SWAP4_128_pack(1); items += 2 * 4;
}
while (items != lim);
}
// sse2
#define SWAP4_128_shift(i) { \
__m128i v = *(const __m128i *)(const void *)(items + (i) * 4); \
__m128i v2; \
v2 = _mm_or_si128( \
_mm_slli_si128(_mm_and_si128(v, mask), 1), \
_mm_and_si128(_mm_srli_si128(v, 1), mask)); \
v = _mm_or_si128( \
_mm_slli_epi32(v, 24), \
_mm_srli_epi32(v, 24)); \
*(__m128i *)(void *)(items + (i) * 4) = _mm_or_si128(v2, v); }
static
#ifdef SWAP_ATTRIB_SSE2
SWAP_ATTRIB_SSE2
#endif
void
Z7_FASTCALL
SwapBytes4_128_shift(CSwapUInt32 *items, const CSwapUInt32 *lim)
{
#define M1 0xff00
const __m128i mask = _mm_set_epi32(M1, M1, M1, M1);
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
// SWAP4_128_shift(0) SWAP4_128_shift(1) items += 2 * 4;
// SWAP4_128_shift(0) SWAP4_128_shift(1) items += 2 * 4;
SWAP4_128_shift(0); items += 1 * 4;
}
while (items != lim);
}
*/
#if defined(USE_SWAP_SSSE3) || defined(USE_SWAP_AVX2)
#define SWAP_SHUF_REV_SEQ_2_VALS(v) (v)+1, (v)
#define SWAP_SHUF_REV_SEQ_4_VALS(v) (v)+3, (v)+2, (v)+1, (v)
#define SWAP2_SHUF_MASK_16_BYTES \
SWAP_SHUF_REV_SEQ_2_VALS (0 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (1 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (2 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (3 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (4 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (5 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (6 * 2), \
SWAP_SHUF_REV_SEQ_2_VALS (7 * 2)
#define SWAP4_SHUF_MASK_16_BYTES \
SWAP_SHUF_REV_SEQ_4_VALS (0 * 4), \
SWAP_SHUF_REV_SEQ_4_VALS (1 * 4), \
SWAP_SHUF_REV_SEQ_4_VALS (2 * 4), \
SWAP_SHUF_REV_SEQ_4_VALS (3 * 4)
#if defined(USE_SWAP_AVX2)
/* if we use 256_BIT_INIT_MASK, each static array mask will be larger for 16 bytes */
// #define SWAP_USE_256_BIT_INIT_MASK
#endif
#if defined(SWAP_USE_256_BIT_INIT_MASK) && defined(USE_SWAP_AVX2)
#define SWAP_MASK_INIT_SIZE 32
#else
#define SWAP_MASK_INIT_SIZE 16
#endif
MY_ALIGN(SWAP_MASK_INIT_SIZE)
static const Byte k_ShufMask_Swap2[] =
{
SWAP2_SHUF_MASK_16_BYTES
#if SWAP_MASK_INIT_SIZE > 16
, SWAP2_SHUF_MASK_16_BYTES
#endif
};
MY_ALIGN(SWAP_MASK_INIT_SIZE)
static const Byte k_ShufMask_Swap4[] =
{
SWAP4_SHUF_MASK_16_BYTES
#if SWAP_MASK_INIT_SIZE > 16
, SWAP4_SHUF_MASK_16_BYTES
#endif
};
#ifdef USE_SWAP_SSSE3
#include <tmmintrin.h> // ssse3
#define SHUF_128(i) *(items + (i)) = \
_mm_shuffle_epi8(*(items + (i)), mask); // SSSE3
// Z7_NO_INLINE
static
#ifdef SWAP_ATTRIB_SSSE3
SWAP_ATTRIB_SSSE3
#endif
Z7_ATTRIB_NO_VECTORIZE
void
Z7_FASTCALL
ShufBytes_128(void *items8, const void *lim8, const void *mask128_ptr)
{
__m128i *items = (__m128i *)items8;
const __m128i *lim = (const __m128i *)lim8;
// const __m128i mask = _mm_set_epi8(SHUF_SWAP2_MASK_16_VALS);
// const __m128i mask = _mm_set_epi8(SHUF_SWAP4_MASK_16_VALS);
// const __m128i mask = _mm_load_si128((const __m128i *)(const void *)&(k_ShufMask_Swap4[0]));
// const __m128i mask = _mm_load_si128((const __m128i *)(const void *)&(k_ShufMask_Swap4[0]));
// const __m128i mask = *(const __m128i *)(const void *)&(k_ShufMask_Swap4[0]);
const __m128i mask = *(const __m128i *)mask128_ptr;
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SHUF_128(0) SHUF_128(1) items += 2;
SHUF_128(0) SHUF_128(1) items += 2;
}
while (items != lim);
}
#endif // USE_SWAP_SSSE3
#ifdef USE_SWAP_AVX2
#include <immintrin.h> // avx, avx2
#if defined(__clang__)
#include <avxintrin.h>
#include <avx2intrin.h>
#endif
#define SHUF_256(i) *(items + (i)) = \
_mm256_shuffle_epi8(*(items + (i)), mask); // AVX2
// Z7_NO_INLINE
static
#ifdef SWAP_ATTRIB_AVX2
SWAP_ATTRIB_AVX2
#endif
Z7_ATTRIB_NO_VECTORIZE
void
Z7_FASTCALL
ShufBytes_256(void *items8, const void *lim8, const void *mask128_ptr)
{
__m256i *items = (__m256i *)items8;
const __m256i *lim = (const __m256i *)lim8;
/*
UNUSED_VAR(mask128_ptr)
__m256i mask =
for Swap4: _mm256_setr_epi8(SWAP4_SHUF_MASK_16_BYTES, SWAP4_SHUF_MASK_16_BYTES);
for Swap2: _mm256_setr_epi8(SWAP2_SHUF_MASK_16_BYTES, SWAP2_SHUF_MASK_16_BYTES);
*/
const __m256i mask =
#if SWAP_MASK_INIT_SIZE > 16
*(const __m256i *)(const void *)mask128_ptr;
#else
/* msvc: broadcastsi128() version reserves the stack for no reason
msvc 19.29-: _mm256_insertf128_si256() / _mm256_set_m128i)) versions use non-avx movdqu xmm0,XMMWORD PTR [r8]
msvc 19.30+ (VS2022): replaces _mm256_set_m128i(m,m) to vbroadcastf128(m) as we want
*/
// _mm256_broadcastsi128_si256(*mask128_ptr);
/*
#define MY_mm256_set_m128i(hi, lo) _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 1)
MY_mm256_set_m128i
*/
_mm256_set_m128i(
*(const __m128i *)mask128_ptr,
*(const __m128i *)mask128_ptr);
#endif
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SHUF_256(0) SHUF_256(1) items += 2;
SHUF_256(0) SHUF_256(1) items += 2;
}
while (items != lim);
}
#endif // USE_SWAP_AVX2
#endif // USE_SWAP_SSSE3 || USE_SWAP_AVX2
#endif // USE_SWAP_128
// compile message "NEON intrinsics not available with the soft-float ABI"
#elif defined(MY_CPU_ARM_OR_ARM64) || \
(defined(__ARM_ARCH) && (__ARM_ARCH >= 7))
// #elif defined(MY_CPU_ARM64)
#if defined(__clang__) && (__clang_major__ >= 8) \
|| defined(__GNUC__) && (__GNUC__ >= 8)
#if (defined(__ARM_ARCH) && (__ARM_ARCH >= 7)) \
|| defined(MY_CPU_ARM64)
#define USE_SWAP_128
#endif
#ifdef MY_CPU_ARM64
// #define SWAP_ATTRIB_NEON __attribute__((__target__("")))
#else
// #define SWAP_ATTRIB_NEON __attribute__((__target__("fpu=crypto-neon-fp-armv8")))
#endif
#elif defined(_MSC_VER)
#if (_MSC_VER >= 1910)
#define USE_SWAP_128
#endif
#endif
#if defined(_MSC_VER) && defined(MY_CPU_ARM64)
#include <arm64_neon.h>
#else
#include <arm_neon.h>
#endif
#ifndef USE_SWAP_128
#define FORCE_SWAP_MODE
#else
#ifdef MY_CPU_ARM64
// for debug : comment it
#define FORCE_SWAP_MODE
#else
#define k_SwapBytes_Mode_NEON 1
#endif
// typedef uint8x16_t v128;
#define SWAP2_128(i) *(uint8x16_t *) (void *)(items + (i) * 8) = \
vrev16q_u8(*(const uint8x16_t *)(const void *)(items + (i) * 8));
#define SWAP4_128(i) *(uint8x16_t *) (void *)(items + (i) * 4) = \
vrev32q_u8(*(const uint8x16_t *)(const void *)(items + (i) * 4));
// Z7_NO_INLINE
static
#ifdef SWAP_ATTRIB_NEON
SWAP_ATTRIB_NEON
#endif
Z7_ATTRIB_NO_VECTORIZE
void
Z7_FASTCALL
SwapBytes2_128(CSwapUInt16 *items, const CSwapUInt16 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP2_128(0) SWAP2_128(1) items += 2 * 8;
SWAP2_128(0) SWAP2_128(1) items += 2 * 8;
}
while (items != lim);
}
// Z7_NO_INLINE
static
#ifdef SWAP_ATTRIB_NEON
SWAP_ATTRIB_NEON
#endif
Z7_ATTRIB_NO_VECTORIZE
void
Z7_FASTCALL
SwapBytes4_128(CSwapUInt32 *items, const CSwapUInt32 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP4_128(0) SWAP4_128(1) items += 2 * 4;
SWAP4_128(0) SWAP4_128(1) items += 2 * 4;
}
while (items != lim);
}
#endif // USE_SWAP_128
#else // MY_CPU_ARM_OR_ARM64
#define FORCE_SWAP_MODE
#endif // MY_CPU_ARM_OR_ARM64
#if defined(Z7_MSC_VER_ORIGINAL) && defined(MY_CPU_X86)
/* _byteswap_ushort() in MSVC x86 32-bit works via slow { mov dh, al; mov dl, ah }
So we use own versions of byteswap function */
#if (_MSC_VER < 1400 ) // old MSVC-X86 without _rotr16() support
#define SWAP2_16(i) { UInt32 v = items[i]; v += (v << 16); v >>= 8; items[i] = (CSwapUInt16)v; }
#else // is new MSVC-X86 with fast _rotr16()
#include <intrin.h>
#define SWAP2_16(i) { items[i] = _rotr16(items[i], 8); }
#endif
#else // is not MSVC-X86
#define SWAP2_16(i) { CSwapUInt16 v = items[i]; items[i] = Z7_BSWAP16(v); }
#endif // MSVC-X86
#if defined(Z7_CPU_FAST_BSWAP_SUPPORTED)
#define SWAP4_32(i) { CSwapUInt32 v = items[i]; items[i] = Z7_BSWAP32(v); }
#else
#define SWAP4_32(i) \
{ UInt32 v = items[i]; \
v = ((v & 0xff00ff) << 8) + ((v >> 8) & 0xff00ff); \
v = rotlFixed(v, 16); \
items[i] = v; }
#endif
#if defined(FORCE_SWAP_MODE) && defined(USE_SWAP_128)
#define DEFAULT_Swap2 SwapBytes2_128
#if !defined(MY_CPU_X86_OR_AMD64)
#define DEFAULT_Swap4 SwapBytes4_128
#endif
#endif
#if !defined(DEFAULT_Swap2) || !defined(DEFAULT_Swap4)
#define SWAP_BASE_FUNCS_PREFIXES \
Z7_FORCE_INLINE \
static \
Z7_ATTRIB_NO_VECTOR \
void Z7_FASTCALL
#ifdef MY_CPU_64BIT
#if defined(MY_CPU_ARM64) \
&& defined(__ARM_ARCH) && (__ARM_ARCH >= 8) \
&& ( (defined(__GNUC__) && (__GNUC__ >= 4)) \
|| (defined(__clang__) && (__clang_major__ >= 4)))
#define SWAP2_64_VAR(v) asm ("rev16 %x0,%x0" : "+r" (v));
#define SWAP4_64_VAR(v) asm ("rev32 %x0,%x0" : "+r" (v));
#else // is not ARM64-GNU
#if !defined(MY_CPU_X86_OR_AMD64) || (k_SwapBytes_Mode_MIN == 0) || !defined(USE_SWAP_128)
#define SWAP2_64_VAR(v) \
v = ( 0x00ff00ff00ff00ff & (v >> 8)) \
+ ((0x00ff00ff00ff00ff & v) << 8);
/* plus gives faster code in MSVC */
#endif
#ifdef Z7_CPU_FAST_BSWAP_SUPPORTED
#define SWAP4_64_VAR(v) \
v = Z7_BSWAP64(v); \
v = Z7_ROTL64(v, 32);
#else
#define SWAP4_64_VAR(v) \
v = ( 0x000000ff000000ff & (v >> 24)) \
+ ((0x000000ff000000ff & v) << 24 ) \
+ ( 0x0000ff000000ff00 & (v >> 8)) \
+ ((0x0000ff000000ff00 & v) << 8 ) \
;
#endif
#endif // ARM64-GNU
#ifdef SWAP2_64_VAR
#define SWAP2_64(i) { \
UInt64 v = *(const UInt64 *)(const void *)(items + (i) * 4); \
SWAP2_64_VAR(v) \
*(UInt64 *)(void *)(items + (i) * 4) = v; }
SWAP_BASE_FUNCS_PREFIXES
SwapBytes2_64(CSwapUInt16 *items, const CSwapUInt16 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP2_64(0) SWAP2_64(1) items += 2 * 4;
SWAP2_64(0) SWAP2_64(1) items += 2 * 4;
}
while (items != lim);
}
#define DEFAULT_Swap2 SwapBytes2_64
#if !defined(FORCE_SWAP_MODE)
#define SWAP2_DEFAULT_MODE 0
#endif
#else // !defined(SWAP2_64_VAR)
#define DEFAULT_Swap2 SwapBytes2_128
#if !defined(FORCE_SWAP_MODE)
#define SWAP2_DEFAULT_MODE 1
#endif
#endif // SWAP2_64_VAR
#define SWAP4_64(i) { \
UInt64 v = *(const UInt64 *)(const void *)(items + (i) * 2); \
SWAP4_64_VAR(v) \
*(UInt64 *)(void *)(items + (i) * 2) = v; }
SWAP_BASE_FUNCS_PREFIXES
SwapBytes4_64(CSwapUInt32 *items, const CSwapUInt32 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP4_64(0) SWAP4_64(1) items += 2 * 2;
SWAP4_64(0) SWAP4_64(1) items += 2 * 2;
}
while (items != lim);
}
#define DEFAULT_Swap4 SwapBytes4_64
#else // is not 64BIT
#if defined(MY_CPU_ARM_OR_ARM64) \
&& defined(__ARM_ARCH) && (__ARM_ARCH >= 6) \
&& ( (defined(__GNUC__) && (__GNUC__ >= 4)) \
|| (defined(__clang__) && (__clang_major__ >= 4)))
#ifdef MY_CPU_64BIT
#define SWAP2_32_VAR(v) asm ("rev16 %w0,%w0" : "+r" (v));
#else
#define SWAP2_32_VAR(v) asm ("rev16 %0,%0" : "+r" (v)); // for clang/gcc
// asm ("rev16 %r0,%r0" : "+r" (a)); // for gcc
#endif
#elif defined(_MSC_VER) && (_MSC_VER < 1300) && defined(MY_CPU_X86) \
|| !defined(Z7_CPU_FAST_BSWAP_SUPPORTED) \
|| !defined(Z7_CPU_FAST_ROTATE_SUPPORTED)
// old msvc doesn't support _byteswap_ulong()
#define SWAP2_32_VAR(v) \
v = ((v & 0xff00ff) << 8) + ((v >> 8) & 0xff00ff);
#else // is not ARM and is not old-MSVC-X86 and fast BSWAP/ROTATE are supported
#define SWAP2_32_VAR(v) \
v = Z7_BSWAP32(v); \
v = rotlFixed(v, 16);
#endif // GNU-ARM*
#define SWAP2_32(i) { \
UInt32 v = *(const UInt32 *)(const void *)(items + (i) * 2); \
SWAP2_32_VAR(v); \
*(UInt32 *)(void *)(items + (i) * 2) = v; }
SWAP_BASE_FUNCS_PREFIXES
SwapBytes2_32(CSwapUInt16 *items, const CSwapUInt16 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP2_32(0) SWAP2_32(1) items += 2 * 2;
SWAP2_32(0) SWAP2_32(1) items += 2 * 2;
}
while (items != lim);
}
SWAP_BASE_FUNCS_PREFIXES
SwapBytes4_32(CSwapUInt32 *items, const CSwapUInt32 *lim)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
do
{
SWAP4_32(0) SWAP4_32(1) items += 2;
SWAP4_32(0) SWAP4_32(1) items += 2;
}
while (items != lim);
}
#define DEFAULT_Swap2 SwapBytes2_32
#define DEFAULT_Swap4 SwapBytes4_32
#if !defined(FORCE_SWAP_MODE)
#define SWAP2_DEFAULT_MODE 0
#endif
#endif // MY_CPU_64BIT
#endif // if !defined(DEFAULT_Swap2) || !defined(DEFAULT_Swap4)
#if !defined(FORCE_SWAP_MODE)
static unsigned g_SwapBytes_Mode;
#endif
/* size of largest unrolled loop iteration: 128 bytes = 4 * 32 bytes (AVX). */
#define SWAP_ITERATION_BLOCK_SIZE_MAX (1 << 7)
// 32 bytes for (AVX) or 2 * 16-bytes for NEON.
#define SWAP_VECTOR_ALIGN_SIZE (1 << 5)
Z7_NO_INLINE
void z7_SwapBytes2(CSwapUInt16 *items, size_t numItems)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (; numItems != 0 && ((unsigned)(ptrdiff_t)items & (SWAP_VECTOR_ALIGN_SIZE - 1)) != 0; numItems--)
{
SWAP2_16(0)
items++;
}
{
const size_t k_Align_Mask = SWAP_ITERATION_BLOCK_SIZE_MAX / sizeof(CSwapUInt16) - 1;
size_t numItems2 = numItems;
CSwapUInt16 *lim;
numItems &= k_Align_Mask;
numItems2 &= ~(size_t)k_Align_Mask;
lim = items + numItems2;
if (numItems2 != 0)
{
#if !defined(FORCE_SWAP_MODE)
#ifdef MY_CPU_X86_OR_AMD64
#ifdef USE_SWAP_AVX2
if (g_SwapBytes_Mode > k_SwapBytes_Mode_SSSE3)
ShufBytes_256((__m256i *)(void *)items,
(const __m256i *)(const void *)lim,
(const __m128i *)(const void *)&(k_ShufMask_Swap2[0]));
else
#endif
#ifdef USE_SWAP_SSSE3
if (g_SwapBytes_Mode >= k_SwapBytes_Mode_SSSE3)
ShufBytes_128((__m128i *)(void *)items,
(const __m128i *)(const void *)lim,
(const __m128i *)(const void *)&(k_ShufMask_Swap2[0]));
else
#endif
#endif // MY_CPU_X86_OR_AMD64
#if SWAP2_DEFAULT_MODE == 0
if (g_SwapBytes_Mode != 0)
SwapBytes2_128(items, lim);
else
#endif
#endif // FORCE_SWAP_MODE
DEFAULT_Swap2(items, lim);
}
items = lim;
}
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (; numItems != 0; numItems--)
{
SWAP2_16(0)
items++;
}
}
Z7_NO_INLINE
void z7_SwapBytes4(CSwapUInt32 *items, size_t numItems)
{
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (; numItems != 0 && ((unsigned)(ptrdiff_t)items & (SWAP_VECTOR_ALIGN_SIZE - 1)) != 0; numItems--)
{
SWAP4_32(0)
items++;
}
{
const size_t k_Align_Mask = SWAP_ITERATION_BLOCK_SIZE_MAX / sizeof(CSwapUInt32) - 1;
size_t numItems2 = numItems;
CSwapUInt32 *lim;
numItems &= k_Align_Mask;
numItems2 &= ~(size_t)k_Align_Mask;
lim = items + numItems2;
if (numItems2 != 0)
{
#if !defined(FORCE_SWAP_MODE)
#ifdef MY_CPU_X86_OR_AMD64
#ifdef USE_SWAP_AVX2
if (g_SwapBytes_Mode > k_SwapBytes_Mode_SSSE3)
ShufBytes_256((__m256i *)(void *)items,
(const __m256i *)(const void *)lim,
(const __m128i *)(const void *)&(k_ShufMask_Swap4[0]));
else
#endif
#ifdef USE_SWAP_SSSE3
if (g_SwapBytes_Mode >= k_SwapBytes_Mode_SSSE3)
ShufBytes_128((__m128i *)(void *)items,
(const __m128i *)(const void *)lim,
(const __m128i *)(const void *)&(k_ShufMask_Swap4[0]));
else
#endif
#else // MY_CPU_X86_OR_AMD64
if (g_SwapBytes_Mode != 0)
SwapBytes4_128(items, lim);
else
#endif // MY_CPU_X86_OR_AMD64
#endif // FORCE_SWAP_MODE
DEFAULT_Swap4(items, lim);
}
items = lim;
}
Z7_PRAGMA_OPT_DISABLE_LOOP_UNROLL_VECTORIZE
for (; numItems != 0; numItems--)
{
SWAP4_32(0)
items++;
}
}
// #define SHOW_HW_STATUS
#ifdef SHOW_HW_STATUS
#include <stdio.h>
#define PRF(x) x
#else
#define PRF(x)
#endif
void z7_SwapBytesPrepare(void)
{
#ifndef FORCE_SWAP_MODE
unsigned mode = 0; // k_SwapBytes_Mode_BASE;
#ifdef MY_CPU_ARM_OR_ARM64
{
if (CPU_IsSupported_NEON())
{
// #pragma message ("=== SwapBytes NEON")
PRF(printf("\n=== SwapBytes NEON\n");)
mode = k_SwapBytes_Mode_NEON;
}
}
#else // MY_CPU_ARM_OR_ARM64
{
#ifdef USE_SWAP_AVX2
if (CPU_IsSupported_AVX2())
{
// #pragma message ("=== SwapBytes AVX2")
PRF(printf("\n=== SwapBytes AVX2\n");)
mode = k_SwapBytes_Mode_AVX2;
}
else
#endif
#ifdef USE_SWAP_SSSE3
if (CPU_IsSupported_SSSE3())
{
// #pragma message ("=== SwapBytes SSSE3")
PRF(printf("\n=== SwapBytes SSSE3\n");)
mode = k_SwapBytes_Mode_SSSE3;
}
else
#endif
#if !defined(MY_CPU_AMD64)
if (CPU_IsSupported_SSE2())
#endif
{
// #pragma message ("=== SwapBytes SSE2")
PRF(printf("\n=== SwapBytes SSE2\n");)
mode = k_SwapBytes_Mode_SSE2;
}
}
#endif // MY_CPU_ARM_OR_ARM64
g_SwapBytes_Mode = mode;
// g_SwapBytes_Mode = 0; // for debug
#endif // FORCE_SWAP_MODE
PRF(printf("\n=== SwapBytesPrepare\n");)
}
#undef PRF

View File

@ -1,17 +0,0 @@
/* SwapBytes.h -- Byte Swap conversion filter
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_SWAP_BYTES_H
#define ZIP7_INC_SWAP_BYTES_H
#include "7zTypes.h"
EXTERN_C_BEGIN
void z7_SwapBytes2(UInt16 *data, size_t numItems);
void z7_SwapBytes4(UInt32 *data, size_t numItems);
void z7_SwapBytesPrepare(void);
EXTERN_C_END
#endif

View File

@ -1,562 +0,0 @@
/* Threads.c -- multithreading library
2023-03-04 : Igor Pavlov : Public domain */
#include "Precomp.h"
#ifdef _WIN32
#ifndef USE_THREADS_CreateThread
#include <process.h>
#endif
#include "Threads.h"
static WRes GetError(void)
{
const DWORD res = GetLastError();
return res ? (WRes)res : 1;
}
static WRes HandleToWRes(HANDLE h) { return (h != NULL) ? 0 : GetError(); }
static WRes BOOLToWRes(BOOL v) { return v ? 0 : GetError(); }
WRes HandlePtr_Close(HANDLE *p)
{
if (*p != NULL)
{
if (!CloseHandle(*p))
return GetError();
*p = NULL;
}
return 0;
}
WRes Handle_WaitObject(HANDLE h)
{
DWORD dw = WaitForSingleObject(h, INFINITE);
/*
(dw) result:
WAIT_OBJECT_0 // 0
WAIT_ABANDONED // 0x00000080 : is not compatible with Win32 Error space
WAIT_TIMEOUT // 0x00000102 : is compatible with Win32 Error space
WAIT_FAILED // 0xFFFFFFFF
*/
if (dw == WAIT_FAILED)
{
dw = GetLastError();
if (dw == 0)
return WAIT_FAILED;
}
return (WRes)dw;
}
#define Thread_Wait(p) Handle_WaitObject(*(p))
WRes Thread_Wait_Close(CThread *p)
{
WRes res = Thread_Wait(p);
WRes res2 = Thread_Close(p);
return (res != 0 ? res : res2);
}
WRes Thread_Create(CThread *p, THREAD_FUNC_TYPE func, LPVOID param)
{
/* Windows Me/98/95: threadId parameter may not be NULL in _beginthreadex/CreateThread functions */
#ifdef USE_THREADS_CreateThread
DWORD threadId;
*p = CreateThread(NULL, 0, func, param, 0, &threadId);
#else
unsigned threadId;
*p = (HANDLE)(_beginthreadex(NULL, 0, func, param, 0, &threadId));
#endif
/* maybe we must use errno here, but probably GetLastError() is also OK. */
return HandleToWRes(*p);
}
WRes Thread_Create_With_Affinity(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, CAffinityMask affinity)
{
#ifdef USE_THREADS_CreateThread
UNUSED_VAR(affinity)
return Thread_Create(p, func, param);
#else
/* Windows Me/98/95: threadId parameter may not be NULL in _beginthreadex/CreateThread functions */
HANDLE h;
WRes wres;
unsigned threadId;
h = (HANDLE)(_beginthreadex(NULL, 0, func, param, CREATE_SUSPENDED, &threadId));
*p = h;
wres = HandleToWRes(h);
if (h)
{
{
// DWORD_PTR prevMask =
SetThreadAffinityMask(h, (DWORD_PTR)affinity);
/*
if (prevMask == 0)
{
// affinity change is non-critical error, so we can ignore it
// wres = GetError();
}
*/
}
{
DWORD prevSuspendCount = ResumeThread(h);
/* ResumeThread() returns:
0 : was_not_suspended
1 : was_resumed
-1 : error
*/
if (prevSuspendCount == (DWORD)-1)
wres = GetError();
}
}
/* maybe we must use errno here, but probably GetLastError() is also OK. */
return wres;
#endif
}
static WRes Event_Create(CEvent *p, BOOL manualReset, int signaled)
{
*p = CreateEvent(NULL, manualReset, (signaled ? TRUE : FALSE), NULL);
return HandleToWRes(*p);
}
WRes Event_Set(CEvent *p) { return BOOLToWRes(SetEvent(*p)); }
WRes Event_Reset(CEvent *p) { return BOOLToWRes(ResetEvent(*p)); }
WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled) { return Event_Create(p, TRUE, signaled); }
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled) { return Event_Create(p, FALSE, signaled); }
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p) { return ManualResetEvent_Create(p, 0); }
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p) { return AutoResetEvent_Create(p, 0); }
WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount)
{
// negative ((LONG)maxCount) is not supported in WIN32::CreateSemaphore()
*p = CreateSemaphore(NULL, (LONG)initCount, (LONG)maxCount, NULL);
return HandleToWRes(*p);
}
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount)
{
// if (Semaphore_IsCreated(p))
{
WRes wres = Semaphore_Close(p);
if (wres != 0)
return wres;
}
return Semaphore_Create(p, initCount, maxCount);
}
static WRes Semaphore_Release(CSemaphore *p, LONG releaseCount, LONG *previousCount)
{ return BOOLToWRes(ReleaseSemaphore(*p, releaseCount, previousCount)); }
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num)
{ return Semaphore_Release(p, (LONG)num, NULL); }
WRes Semaphore_Release1(CSemaphore *p) { return Semaphore_ReleaseN(p, 1); }
WRes CriticalSection_Init(CCriticalSection *p)
{
/* InitializeCriticalSection() can raise exception:
Windows XP, 2003 : can raise a STATUS_NO_MEMORY exception
Windows Vista+ : no exceptions */
#ifdef _MSC_VER
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#endif
__try
#endif
{
InitializeCriticalSection(p);
/* InitializeCriticalSectionAndSpinCount(p, 0); */
}
#ifdef _MSC_VER
__except (EXCEPTION_EXECUTE_HANDLER) { return ERROR_NOT_ENOUGH_MEMORY; }
#endif
return 0;
}
#else // _WIN32
// ---------- POSIX ----------
#ifndef __APPLE__
#ifndef Z7_AFFINITY_DISABLE
// _GNU_SOURCE can be required for pthread_setaffinity_np() / CPU_ZERO / CPU_SET
// clang < 3.6 : unknown warning group '-Wreserved-id-macro'
// clang 3.6 - 12.01 : gives warning "macro name is a reserved identifier"
// clang >= 13 : do not give warning
#if !defined(_GNU_SOURCE)
#if defined(__clang__) && (__clang_major__ >= 4) && (__clang_major__ <= 12)
#pragma GCC diagnostic ignored "-Wreserved-id-macro"
#endif
#define _GNU_SOURCE
#endif // !defined(_GNU_SOURCE)
#endif // Z7_AFFINITY_DISABLE
#endif // __APPLE__
#include "Threads.h"
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#ifdef Z7_AFFINITY_SUPPORTED
// #include <sched.h>
#endif
// #include <stdio.h>
// #define PRF(p) p
#define PRF(p)
#define Print(s) PRF(printf("\n%s\n", s);)
WRes Thread_Create_With_CpuSet(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, const CCpuSet *cpuSet)
{
// new thread in Posix probably inherits affinity from parrent thread
Print("Thread_Create_With_CpuSet")
pthread_attr_t attr;
int ret;
// int ret2;
p->_created = 0;
RINOK(pthread_attr_init(&attr))
ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
if (!ret)
{
if (cpuSet)
{
#ifdef Z7_AFFINITY_SUPPORTED
/*
printf("\n affinity :");
unsigned i;
for (i = 0; i < sizeof(*cpuSet) && i < 8; i++)
{
Byte b = *((const Byte *)cpuSet + i);
char temp[32];
#define GET_HEX_CHAR(t) ((char)(((t < 10) ? ('0' + t) : ('A' + (t - 10)))))
temp[0] = GET_HEX_CHAR((b & 0xF));
temp[1] = GET_HEX_CHAR((b >> 4));
// temp[0] = GET_HEX_CHAR((b >> 4)); // big-endian
// temp[1] = GET_HEX_CHAR((b & 0xF)); // big-endian
temp[2] = 0;
printf("%s", temp);
}
printf("\n");
*/
// ret2 =
pthread_attr_setaffinity_np(&attr, sizeof(*cpuSet), cpuSet);
// if (ret2) ret = ret2;
#endif
}
ret = pthread_create(&p->_tid, &attr, func, param);
if (!ret)
{
p->_created = 1;
/*
if (cpuSet)
{
// ret2 =
pthread_setaffinity_np(p->_tid, sizeof(*cpuSet), cpuSet);
// if (ret2) ret = ret2;
}
*/
}
}
// ret2 =
pthread_attr_destroy(&attr);
// if (ret2 != 0) ret = ret2;
return ret;
}
WRes Thread_Create(CThread *p, THREAD_FUNC_TYPE func, LPVOID param)
{
return Thread_Create_With_CpuSet(p, func, param, NULL);
}
WRes Thread_Create_With_Affinity(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, CAffinityMask affinity)
{
Print("Thread_Create_WithAffinity")
CCpuSet cs;
unsigned i;
CpuSet_Zero(&cs);
for (i = 0; i < sizeof(affinity) * 8; i++)
{
if (affinity == 0)
break;
if (affinity & 1)
{
CpuSet_Set(&cs, i);
}
affinity >>= 1;
}
return Thread_Create_With_CpuSet(p, func, param, &cs);
}
WRes Thread_Close(CThread *p)
{
// Print("Thread_Close")
int ret;
if (!p->_created)
return 0;
ret = pthread_detach(p->_tid);
p->_tid = 0;
p->_created = 0;
return ret;
}
WRes Thread_Wait_Close(CThread *p)
{
// Print("Thread_Wait_Close")
void *thread_return;
int ret;
if (!p->_created)
return EINVAL;
ret = pthread_join(p->_tid, &thread_return);
// probably we can't use that (_tid) after pthread_join(), so we close thread here
p->_created = 0;
p->_tid = 0;
return ret;
}
static WRes Event_Create(CEvent *p, int manualReset, int signaled)
{
RINOK(pthread_mutex_init(&p->_mutex, NULL))
RINOK(pthread_cond_init(&p->_cond, NULL))
p->_manual_reset = manualReset;
p->_state = (signaled ? True : False);
p->_created = 1;
return 0;
}
WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled)
{ return Event_Create(p, True, signaled); }
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p)
{ return ManualResetEvent_Create(p, 0); }
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled)
{ return Event_Create(p, False, signaled); }
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p)
{ return AutoResetEvent_Create(p, 0); }
WRes Event_Set(CEvent *p)
{
RINOK(pthread_mutex_lock(&p->_mutex))
p->_state = True;
int res1 = pthread_cond_broadcast(&p->_cond);
int res2 = pthread_mutex_unlock(&p->_mutex);
return (res2 ? res2 : res1);
}
WRes Event_Reset(CEvent *p)
{
RINOK(pthread_mutex_lock(&p->_mutex))
p->_state = False;
return pthread_mutex_unlock(&p->_mutex);
}
WRes Event_Wait(CEvent *p)
{
RINOK(pthread_mutex_lock(&p->_mutex))
while (p->_state == False)
{
// ETIMEDOUT
// ret =
pthread_cond_wait(&p->_cond, &p->_mutex);
// if (ret != 0) break;
}
if (p->_manual_reset == False)
{
p->_state = False;
}
return pthread_mutex_unlock(&p->_mutex);
}
WRes Event_Close(CEvent *p)
{
if (!p->_created)
return 0;
p->_created = 0;
{
int res1 = pthread_mutex_destroy(&p->_mutex);
int res2 = pthread_cond_destroy(&p->_cond);
return (res1 ? res1 : res2);
}
}
WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount)
{
if (initCount > maxCount || maxCount < 1)
return EINVAL;
RINOK(pthread_mutex_init(&p->_mutex, NULL))
RINOK(pthread_cond_init(&p->_cond, NULL))
p->_count = initCount;
p->_maxCount = maxCount;
p->_created = 1;
return 0;
}
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount)
{
if (Semaphore_IsCreated(p))
{
/*
WRes wres = Semaphore_Close(p);
if (wres != 0)
return wres;
*/
if (initCount > maxCount || maxCount < 1)
return EINVAL;
// return EINVAL; // for debug
p->_count = initCount;
p->_maxCount = maxCount;
return 0;
}
return Semaphore_Create(p, initCount, maxCount);
}
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 releaseCount)
{
UInt32 newCount;
int ret;
if (releaseCount < 1)
return EINVAL;
RINOK(pthread_mutex_lock(&p->_mutex))
newCount = p->_count + releaseCount;
if (newCount > p->_maxCount)
ret = ERROR_TOO_MANY_POSTS; // EINVAL;
else
{
p->_count = newCount;
ret = pthread_cond_broadcast(&p->_cond);
}
RINOK(pthread_mutex_unlock(&p->_mutex))
return ret;
}
WRes Semaphore_Wait(CSemaphore *p)
{
RINOK(pthread_mutex_lock(&p->_mutex))
while (p->_count < 1)
{
pthread_cond_wait(&p->_cond, &p->_mutex);
}
p->_count--;
return pthread_mutex_unlock(&p->_mutex);
}
WRes Semaphore_Close(CSemaphore *p)
{
if (!p->_created)
return 0;
p->_created = 0;
{
int res1 = pthread_mutex_destroy(&p->_mutex);
int res2 = pthread_cond_destroy(&p->_cond);
return (res1 ? res1 : res2);
}
}
WRes CriticalSection_Init(CCriticalSection *p)
{
// Print("CriticalSection_Init")
if (!p)
return EINTR;
return pthread_mutex_init(&p->_mutex, NULL);
}
void CriticalSection_Enter(CCriticalSection *p)
{
// Print("CriticalSection_Enter")
if (p)
{
// int ret =
pthread_mutex_lock(&p->_mutex);
}
}
void CriticalSection_Leave(CCriticalSection *p)
{
// Print("CriticalSection_Leave")
if (p)
{
// int ret =
pthread_mutex_unlock(&p->_mutex);
}
}
void CriticalSection_Delete(CCriticalSection *p)
{
// Print("CriticalSection_Delete")
if (p)
{
// int ret =
pthread_mutex_destroy(&p->_mutex);
}
}
LONG InterlockedIncrement(LONG volatile *addend)
{
// Print("InterlockedIncrement")
#ifdef USE_HACK_UNSAFE_ATOMIC
LONG val = *addend + 1;
*addend = val;
return val;
#else
#if defined(__clang__) && (__clang_major__ >= 8)
#pragma GCC diagnostic ignored "-Watomic-implicit-seq-cst"
#endif
return __sync_add_and_fetch(addend, 1);
#endif
}
#endif // _WIN32
WRes AutoResetEvent_OptCreate_And_Reset(CAutoResetEvent *p)
{
if (Event_IsCreated(p))
return Event_Reset(p);
return AutoResetEvent_CreateNotSignaled(p);
}
#undef PRF
#undef Print

View File

@ -1,240 +0,0 @@
/* Threads.h -- multithreading library
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_THREADS_H
#define ZIP7_INC_THREADS_H
#ifdef _WIN32
#include "7zWindows.h"
#else
#if defined(__linux__)
#if !defined(__APPLE__) && !defined(_AIX) && !defined(__ANDROID__)
#ifndef Z7_AFFINITY_DISABLE
#define Z7_AFFINITY_SUPPORTED
// #pragma message(" ==== Z7_AFFINITY_SUPPORTED")
// #define _GNU_SOURCE
#endif
#endif
#endif
#include <pthread.h>
#endif
#include "7zTypes.h"
EXTERN_C_BEGIN
#ifdef _WIN32
WRes HandlePtr_Close(HANDLE *h);
WRes Handle_WaitObject(HANDLE h);
typedef HANDLE CThread;
#define Thread_CONSTRUCT(p) { *(p) = NULL; }
#define Thread_WasCreated(p) (*(p) != NULL)
#define Thread_Close(p) HandlePtr_Close(p)
// #define Thread_Wait(p) Handle_WaitObject(*(p))
#ifdef UNDER_CE
// if (USE_THREADS_CreateThread is defined), we use _beginthreadex()
// if (USE_THREADS_CreateThread is not definned), we use CreateThread()
#define USE_THREADS_CreateThread
#endif
typedef
#ifdef USE_THREADS_CreateThread
DWORD
#else
unsigned
#endif
THREAD_FUNC_RET_TYPE;
#define THREAD_FUNC_RET_ZERO 0
typedef DWORD_PTR CAffinityMask;
typedef DWORD_PTR CCpuSet;
#define CpuSet_Zero(p) *(p) = (0)
#define CpuSet_Set(p, cpu) *(p) |= ((DWORD_PTR)1 << (cpu))
#else // _WIN32
typedef struct
{
pthread_t _tid;
int _created;
} CThread;
#define Thread_CONSTRUCT(p) { (p)->_tid = 0; (p)->_created = 0; }
#define Thread_WasCreated(p) ((p)->_created != 0)
WRes Thread_Close(CThread *p);
// #define Thread_Wait Thread_Wait_Close
typedef void * THREAD_FUNC_RET_TYPE;
#define THREAD_FUNC_RET_ZERO NULL
typedef UInt64 CAffinityMask;
#ifdef Z7_AFFINITY_SUPPORTED
typedef cpu_set_t CCpuSet;
#define CpuSet_Zero(p) CPU_ZERO(p)
#define CpuSet_Set(p, cpu) CPU_SET(cpu, p)
#define CpuSet_IsSet(p, cpu) CPU_ISSET(cpu, p)
#else
typedef UInt64 CCpuSet;
#define CpuSet_Zero(p) *(p) = (0)
#define CpuSet_Set(p, cpu) *(p) |= ((UInt64)1 << (cpu))
#define CpuSet_IsSet(p, cpu) ((*(p) & ((UInt64)1 << (cpu))) != 0)
#endif
#endif // _WIN32
#define THREAD_FUNC_CALL_TYPE Z7_STDCALL
#if defined(_WIN32) && defined(__GNUC__)
/* GCC compiler for x86 32-bit uses the rule:
the stack is 16-byte aligned before CALL instruction for function calling.
But only root function main() contains instructions that
set 16-byte alignment for stack pointer. And another functions
just keep alignment, if it was set in some parent function.
The problem:
if we create new thread in MinGW (GCC) 32-bit x86 via _beginthreadex() or CreateThread(),
the root function of thread doesn't set 16-byte alignment.
And stack frames in all child functions also will be unaligned in that case.
Here we set (force_align_arg_pointer) attribute for root function of new thread.
Do we need (force_align_arg_pointer) also for another systems? */
#define THREAD_FUNC_ATTRIB_ALIGN_ARG __attribute__((force_align_arg_pointer))
// #define THREAD_FUNC_ATTRIB_ALIGN_ARG // for debug : bad alignment in SSE functions
#else
#define THREAD_FUNC_ATTRIB_ALIGN_ARG
#endif
#define THREAD_FUNC_DECL THREAD_FUNC_ATTRIB_ALIGN_ARG THREAD_FUNC_RET_TYPE THREAD_FUNC_CALL_TYPE
typedef THREAD_FUNC_RET_TYPE (THREAD_FUNC_CALL_TYPE * THREAD_FUNC_TYPE)(void *);
WRes Thread_Create(CThread *p, THREAD_FUNC_TYPE func, LPVOID param);
WRes Thread_Create_With_Affinity(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, CAffinityMask affinity);
WRes Thread_Wait_Close(CThread *p);
#ifdef _WIN32
#define Thread_Create_With_CpuSet(p, func, param, cs) \
Thread_Create_With_Affinity(p, func, param, *cs)
#else
WRes Thread_Create_With_CpuSet(CThread *p, THREAD_FUNC_TYPE func, LPVOID param, const CCpuSet *cpuSet);
#endif
#ifdef _WIN32
typedef HANDLE CEvent;
typedef CEvent CAutoResetEvent;
typedef CEvent CManualResetEvent;
#define Event_Construct(p) *(p) = NULL
#define Event_IsCreated(p) (*(p) != NULL)
#define Event_Close(p) HandlePtr_Close(p)
#define Event_Wait(p) Handle_WaitObject(*(p))
WRes Event_Set(CEvent *p);
WRes Event_Reset(CEvent *p);
WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled);
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p);
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled);
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p);
typedef HANDLE CSemaphore;
#define Semaphore_Construct(p) *(p) = NULL
#define Semaphore_IsCreated(p) (*(p) != NULL)
#define Semaphore_Close(p) HandlePtr_Close(p)
#define Semaphore_Wait(p) Handle_WaitObject(*(p))
WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num);
WRes Semaphore_Release1(CSemaphore *p);
typedef CRITICAL_SECTION CCriticalSection;
WRes CriticalSection_Init(CCriticalSection *p);
#define CriticalSection_Delete(p) DeleteCriticalSection(p)
#define CriticalSection_Enter(p) EnterCriticalSection(p)
#define CriticalSection_Leave(p) LeaveCriticalSection(p)
#else // _WIN32
typedef struct _CEvent
{
int _created;
int _manual_reset;
int _state;
pthread_mutex_t _mutex;
pthread_cond_t _cond;
} CEvent;
typedef CEvent CAutoResetEvent;
typedef CEvent CManualResetEvent;
#define Event_Construct(p) (p)->_created = 0
#define Event_IsCreated(p) ((p)->_created)
WRes ManualResetEvent_Create(CManualResetEvent *p, int signaled);
WRes ManualResetEvent_CreateNotSignaled(CManualResetEvent *p);
WRes AutoResetEvent_Create(CAutoResetEvent *p, int signaled);
WRes AutoResetEvent_CreateNotSignaled(CAutoResetEvent *p);
WRes Event_Set(CEvent *p);
WRes Event_Reset(CEvent *p);
WRes Event_Wait(CEvent *p);
WRes Event_Close(CEvent *p);
typedef struct _CSemaphore
{
int _created;
UInt32 _count;
UInt32 _maxCount;
pthread_mutex_t _mutex;
pthread_cond_t _cond;
} CSemaphore;
#define Semaphore_Construct(p) (p)->_created = 0
#define Semaphore_IsCreated(p) ((p)->_created)
WRes Semaphore_Create(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_OptCreateInit(CSemaphore *p, UInt32 initCount, UInt32 maxCount);
WRes Semaphore_ReleaseN(CSemaphore *p, UInt32 num);
#define Semaphore_Release1(p) Semaphore_ReleaseN(p, 1)
WRes Semaphore_Wait(CSemaphore *p);
WRes Semaphore_Close(CSemaphore *p);
typedef struct _CCriticalSection
{
pthread_mutex_t _mutex;
} CCriticalSection;
WRes CriticalSection_Init(CCriticalSection *p);
void CriticalSection_Delete(CCriticalSection *cs);
void CriticalSection_Enter(CCriticalSection *cs);
void CriticalSection_Leave(CCriticalSection *cs);
LONG InterlockedIncrement(LONG volatile *addend);
#endif // _WIN32
WRes AutoResetEvent_OptCreate_And_Reset(CAutoResetEvent *p);
EXTERN_C_END
#endif

90
3rdparty/7z/src/Xz.c vendored
View File

@ -1,90 +0,0 @@
/* Xz.c - Xz
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "7zCrc.h"
#include "CpuArch.h"
#include "Xz.h"
#include "XzCrc64.h"
const Byte XZ_SIG[XZ_SIG_SIZE] = { 0xFD, '7', 'z', 'X', 'Z', 0 };
/* const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE] = { 'Y', 'Z' }; */
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v)
{
unsigned i = 0;
do
{
buf[i++] = (Byte)((v & 0x7F) | 0x80);
v >>= 7;
}
while (v != 0);
buf[(size_t)i - 1] &= 0x7F;
return i;
}
void Xz_Construct(CXzStream *p)
{
p->numBlocks = 0;
p->blocks = NULL;
p->flags = 0;
}
void Xz_Free(CXzStream *p, ISzAllocPtr alloc)
{
ISzAlloc_Free(alloc, p->blocks);
p->numBlocks = 0;
p->blocks = NULL;
}
unsigned XzFlags_GetCheckSize(CXzStreamFlags f)
{
unsigned t = XzFlags_GetCheckType(f);
return (t == 0) ? 0 : ((unsigned)4 << ((t - 1) / 3));
}
void XzCheck_Init(CXzCheck *p, unsigned mode)
{
p->mode = mode;
switch (mode)
{
case XZ_CHECK_CRC32: p->crc = CRC_INIT_VAL; break;
case XZ_CHECK_CRC64: p->crc64 = CRC64_INIT_VAL; break;
case XZ_CHECK_SHA256: Sha256_Init(&p->sha); break;
}
}
void XzCheck_Update(CXzCheck *p, const void *data, size_t size)
{
switch (p->mode)
{
case XZ_CHECK_CRC32: p->crc = CrcUpdate(p->crc, data, size); break;
case XZ_CHECK_CRC64: p->crc64 = Crc64Update(p->crc64, data, size); break;
case XZ_CHECK_SHA256: Sha256_Update(&p->sha, (const Byte *)data, size); break;
}
}
int XzCheck_Final(CXzCheck *p, Byte *digest)
{
switch (p->mode)
{
case XZ_CHECK_CRC32:
SetUi32(digest, CRC_GET_DIGEST(p->crc))
break;
case XZ_CHECK_CRC64:
{
int i;
UInt64 v = CRC64_GET_DIGEST(p->crc64);
for (i = 0; i < 8; i++, v >>= 8)
digest[i] = (Byte)(v & 0xFF);
break;
}
case XZ_CHECK_SHA256:
Sha256_Final(&p->sha, digest);
break;
default:
return 0;
}
return 1;
}

535
3rdparty/7z/src/Xz.h vendored
View File

@ -1,535 +0,0 @@
/* Xz.h - Xz interface
2023-04-13 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_XZ_H
#define ZIP7_INC_XZ_H
#include "Sha256.h"
#include "Delta.h"
EXTERN_C_BEGIN
#define XZ_ID_Subblock 1
#define XZ_ID_Delta 3
#define XZ_ID_X86 4
#define XZ_ID_PPC 5
#define XZ_ID_IA64 6
#define XZ_ID_ARM 7
#define XZ_ID_ARMT 8
#define XZ_ID_SPARC 9
#define XZ_ID_ARM64 0xa
#define XZ_ID_LZMA2 0x21
unsigned Xz_ReadVarInt(const Byte *p, size_t maxSize, UInt64 *value);
unsigned Xz_WriteVarInt(Byte *buf, UInt64 v);
/* ---------- xz block ---------- */
#define XZ_BLOCK_HEADER_SIZE_MAX 1024
#define XZ_NUM_FILTERS_MAX 4
#define XZ_BF_NUM_FILTERS_MASK 3
#define XZ_BF_PACK_SIZE (1 << 6)
#define XZ_BF_UNPACK_SIZE (1 << 7)
#define XZ_FILTER_PROPS_SIZE_MAX 20
typedef struct
{
UInt64 id;
UInt32 propsSize;
Byte props[XZ_FILTER_PROPS_SIZE_MAX];
} CXzFilter;
typedef struct
{
UInt64 packSize;
UInt64 unpackSize;
Byte flags;
CXzFilter filters[XZ_NUM_FILTERS_MAX];
} CXzBlock;
#define XzBlock_GetNumFilters(p) (((unsigned)(p)->flags & XZ_BF_NUM_FILTERS_MASK) + 1)
#define XzBlock_HasPackSize(p) (((p)->flags & XZ_BF_PACK_SIZE) != 0)
#define XzBlock_HasUnpackSize(p) (((p)->flags & XZ_BF_UNPACK_SIZE) != 0)
#define XzBlock_HasUnsupportedFlags(p) (((p)->flags & ~(XZ_BF_NUM_FILTERS_MASK | XZ_BF_PACK_SIZE | XZ_BF_UNPACK_SIZE)) != 0)
SRes XzBlock_Parse(CXzBlock *p, const Byte *header);
SRes XzBlock_ReadHeader(CXzBlock *p, ISeqInStreamPtr inStream, BoolInt *isIndex, UInt32 *headerSizeRes);
/* ---------- xz stream ---------- */
#define XZ_SIG_SIZE 6
#define XZ_FOOTER_SIG_SIZE 2
extern const Byte XZ_SIG[XZ_SIG_SIZE];
/*
extern const Byte XZ_FOOTER_SIG[XZ_FOOTER_SIG_SIZE];
*/
#define XZ_FOOTER_SIG_0 'Y'
#define XZ_FOOTER_SIG_1 'Z'
#define XZ_STREAM_FLAGS_SIZE 2
#define XZ_STREAM_CRC_SIZE 4
#define XZ_STREAM_HEADER_SIZE (XZ_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE)
#define XZ_STREAM_FOOTER_SIZE (XZ_FOOTER_SIG_SIZE + XZ_STREAM_FLAGS_SIZE + XZ_STREAM_CRC_SIZE + 4)
#define XZ_CHECK_MASK 0xF
#define XZ_CHECK_NO 0
#define XZ_CHECK_CRC32 1
#define XZ_CHECK_CRC64 4
#define XZ_CHECK_SHA256 10
typedef struct
{
unsigned mode;
UInt32 crc;
UInt64 crc64;
CSha256 sha;
} CXzCheck;
void XzCheck_Init(CXzCheck *p, unsigned mode);
void XzCheck_Update(CXzCheck *p, const void *data, size_t size);
int XzCheck_Final(CXzCheck *p, Byte *digest);
typedef UInt16 CXzStreamFlags;
#define XzFlags_IsSupported(f) ((f) <= XZ_CHECK_MASK)
#define XzFlags_GetCheckType(f) ((f) & XZ_CHECK_MASK)
#define XzFlags_HasDataCrc32(f) (Xz_GetCheckType(f) == XZ_CHECK_CRC32)
unsigned XzFlags_GetCheckSize(CXzStreamFlags f);
SRes Xz_ParseHeader(CXzStreamFlags *p, const Byte *buf);
SRes Xz_ReadHeader(CXzStreamFlags *p, ISeqInStreamPtr inStream);
typedef struct
{
UInt64 unpackSize;
UInt64 totalSize;
} CXzBlockSizes;
typedef struct
{
CXzStreamFlags flags;
// Byte _pad[6];
size_t numBlocks;
CXzBlockSizes *blocks;
UInt64 startOffset;
} CXzStream;
void Xz_Construct(CXzStream *p);
void Xz_Free(CXzStream *p, ISzAllocPtr alloc);
#define XZ_SIZE_OVERFLOW ((UInt64)(Int64)-1)
UInt64 Xz_GetUnpackSize(const CXzStream *p);
UInt64 Xz_GetPackSize(const CXzStream *p);
typedef struct
{
size_t num;
size_t numAllocated;
CXzStream *streams;
} CXzs;
void Xzs_Construct(CXzs *p);
void Xzs_Free(CXzs *p, ISzAllocPtr alloc);
SRes Xzs_ReadBackward(CXzs *p, ILookInStreamPtr inStream, Int64 *startOffset, ICompressProgressPtr progress, ISzAllocPtr alloc);
UInt64 Xzs_GetNumBlocks(const CXzs *p);
UInt64 Xzs_GetUnpackSize(const CXzs *p);
// ECoderStatus values are identical to ELzmaStatus values of LZMA2 decoder
typedef enum
{
CODER_STATUS_NOT_SPECIFIED, /* use main error code instead */
CODER_STATUS_FINISHED_WITH_MARK, /* stream was finished with end mark. */
CODER_STATUS_NOT_FINISHED, /* stream was not finished */
CODER_STATUS_NEEDS_MORE_INPUT /* you must provide more input bytes */
} ECoderStatus;
// ECoderFinishMode values are identical to ELzmaFinishMode
typedef enum
{
CODER_FINISH_ANY, /* finish at any point */
CODER_FINISH_END /* block must be finished at the end */
} ECoderFinishMode;
typedef struct
{
void *p; // state object;
void (*Free)(void *p, ISzAllocPtr alloc);
SRes (*SetProps)(void *p, const Byte *props, size_t propSize, ISzAllocPtr alloc);
void (*Init)(void *p);
SRes (*Code2)(void *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
int srcWasFinished, ECoderFinishMode finishMode,
// int *wasFinished,
ECoderStatus *status);
SizeT (*Filter)(void *p, Byte *data, SizeT size);
} IStateCoder;
typedef struct
{
UInt32 methodId;
UInt32 delta;
UInt32 ip;
UInt32 X86_State;
Byte delta_State[DELTA_STATE_SIZE];
} CXzBcFilterStateBase;
typedef SizeT (*Xz_Func_BcFilterStateBase_Filter)(CXzBcFilterStateBase *p, Byte *data, SizeT size);
SRes Xz_StateCoder_Bc_SetFromMethod_Func(IStateCoder *p, UInt64 id,
Xz_Func_BcFilterStateBase_Filter func, ISzAllocPtr alloc);
#define MIXCODER_NUM_FILTERS_MAX 4
typedef struct
{
ISzAllocPtr alloc;
Byte *buf;
unsigned numCoders;
Byte *outBuf;
size_t outBufSize;
size_t outWritten; // is equal to lzmaDecoder.dicPos (in outBuf mode)
BoolInt wasFinished;
SRes res;
ECoderStatus status;
// BoolInt SingleBufMode;
int finished[MIXCODER_NUM_FILTERS_MAX - 1];
size_t pos[MIXCODER_NUM_FILTERS_MAX - 1];
size_t size[MIXCODER_NUM_FILTERS_MAX - 1];
UInt64 ids[MIXCODER_NUM_FILTERS_MAX];
SRes results[MIXCODER_NUM_FILTERS_MAX];
IStateCoder coders[MIXCODER_NUM_FILTERS_MAX];
} CMixCoder;
typedef enum
{
XZ_STATE_STREAM_HEADER,
XZ_STATE_STREAM_INDEX,
XZ_STATE_STREAM_INDEX_CRC,
XZ_STATE_STREAM_FOOTER,
XZ_STATE_STREAM_PADDING,
XZ_STATE_BLOCK_HEADER,
XZ_STATE_BLOCK,
XZ_STATE_BLOCK_FOOTER
} EXzState;
typedef struct
{
EXzState state;
UInt32 pos;
unsigned alignPos;
unsigned indexPreSize;
CXzStreamFlags streamFlags;
UInt32 blockHeaderSize;
UInt64 packSize;
UInt64 unpackSize;
UInt64 numBlocks; // number of finished blocks in current stream
UInt64 indexSize;
UInt64 indexPos;
UInt64 padSize;
UInt64 numStartedStreams;
UInt64 numFinishedStreams;
UInt64 numTotalBlocks;
UInt32 crc;
CMixCoder decoder;
CXzBlock block;
CXzCheck check;
CSha256 sha;
BoolInt parseMode;
BoolInt headerParsedOk;
BoolInt decodeToStreamSignature;
unsigned decodeOnlyOneBlock;
Byte *outBuf;
size_t outBufSize;
size_t outDataWritten; // the size of data in (outBuf) that were fully unpacked
Byte shaDigest[SHA256_DIGEST_SIZE];
Byte buf[XZ_BLOCK_HEADER_SIZE_MAX];
} CXzUnpacker;
/* alloc : aligned for cache line allocation is better */
void XzUnpacker_Construct(CXzUnpacker *p, ISzAllocPtr alloc);
void XzUnpacker_Init(CXzUnpacker *p);
void XzUnpacker_SetOutBuf(CXzUnpacker *p, Byte *outBuf, size_t outBufSize);
void XzUnpacker_Free(CXzUnpacker *p);
/*
XzUnpacker
The sequence for decoding functions:
{
XzUnpacker_Construct()
[Decoding_Calls]
XzUnpacker_Free()
}
[Decoding_Calls]
There are 3 types of interfaces for [Decoding_Calls] calls:
Interface-1 : Partial output buffers:
{
XzUnpacker_Init()
for()
{
XzUnpacker_Code();
}
XzUnpacker_IsStreamWasFinished()
}
Interface-2 : Direct output buffer:
Use it, if you know exact size of decoded data, and you need
whole xz unpacked data in one output buffer.
xz unpacker doesn't allocate additional buffer for lzma2 dictionary in that mode.
{
XzUnpacker_Init()
XzUnpacker_SetOutBufMode(); // to set output buffer and size
for()
{
XzUnpacker_Code(); // (dest = NULL) in XzUnpacker_Code()
}
XzUnpacker_IsStreamWasFinished()
}
Interface-3 : Direct output buffer : One call full decoding
It unpacks whole input buffer to output buffer in one call.
It uses Interface-2 internally.
{
XzUnpacker_CodeFull()
XzUnpacker_IsStreamWasFinished()
}
*/
/*
finishMode:
It has meaning only if the decoding reaches output limit (*destLen).
CODER_FINISH_ANY - use smallest number of input bytes
CODER_FINISH_END - read EndOfStream marker after decoding
Returns:
SZ_OK
status:
CODER_STATUS_NOT_FINISHED,
CODER_STATUS_NEEDS_MORE_INPUT - the decoder can return it in two cases:
1) it needs more input data to finish current xz stream
2) xz stream was finished successfully. But the decoder supports multiple
concatented xz streams. So it expects more input data for new xz streams.
Call XzUnpacker_IsStreamWasFinished() to check that latest xz stream was finished successfully.
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_DATA - Data error
SZ_ERROR_UNSUPPORTED - Unsupported method or method properties
SZ_ERROR_CRC - CRC error
// SZ_ERROR_INPUT_EOF - It needs more bytes in input buffer (src).
SZ_ERROR_NO_ARCHIVE - the error with xz Stream Header with one of the following reasons:
- xz Stream Signature failure
- CRC32 of xz Stream Header is failed
- The size of Stream padding is not multiple of four bytes.
It's possible to get that error, if xz stream was finished and the stream
contains some another data. In that case you can call XzUnpacker_GetExtraSize()
function to get real size of xz stream.
*/
SRes XzUnpacker_Code(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen, int srcFinished,
ECoderFinishMode finishMode, ECoderStatus *status);
SRes XzUnpacker_CodeFull(CXzUnpacker *p, Byte *dest, SizeT *destLen,
const Byte *src, SizeT *srcLen,
ECoderFinishMode finishMode, ECoderStatus *status);
/*
If you decode full xz stream(s), then you can call XzUnpacker_IsStreamWasFinished()
after successful XzUnpacker_CodeFull() or after last call of XzUnpacker_Code().
*/
BoolInt XzUnpacker_IsStreamWasFinished(const CXzUnpacker *p);
/*
XzUnpacker_GetExtraSize() returns then number of unconfirmed bytes,
if it's in (XZ_STATE_STREAM_HEADER) state or in (XZ_STATE_STREAM_PADDING) state.
These bytes can be some data after xz archive, or
it can be start of new xz stream.
Call XzUnpacker_GetExtraSize() after XzUnpacker_Code() function to detect real size of
xz stream in two cases, if XzUnpacker_Code() returns:
res == SZ_OK && status == CODER_STATUS_NEEDS_MORE_INPUT
res == SZ_ERROR_NO_ARCHIVE
*/
UInt64 XzUnpacker_GetExtraSize(const CXzUnpacker *p);
/*
for random block decoding:
XzUnpacker_Init();
set CXzUnpacker::streamFlags
XzUnpacker_PrepareToRandomBlockDecoding()
loop
{
XzUnpacker_Code()
XzUnpacker_IsBlockFinished()
}
*/
void XzUnpacker_PrepareToRandomBlockDecoding(CXzUnpacker *p);
BoolInt XzUnpacker_IsBlockFinished(const CXzUnpacker *p);
#define XzUnpacker_GetPackSizeForIndex(p) ((p)->packSize + (p)->blockHeaderSize + XzFlags_GetCheckSize((p)->streamFlags))
/* ---- Single-Thread and Multi-Thread xz Decoding with Input/Output Streams ---- */
/*
if (CXzDecMtProps::numThreads > 1), the decoder can try to use
Multi-Threading. The decoder analyses xz block header, and if
there are pack size and unpack size values stored in xz block header,
the decoder reads compressed data of block to internal buffers,
and then it can start parallel decoding, if there are another blocks.
The decoder can switch back to Single-Thread decoding after some conditions.
The sequence of calls for xz decoding with in/out Streams:
{
XzDecMt_Create()
XzDecMtProps_Init(XzDecMtProps) to set default values of properties
// then you can change some XzDecMtProps parameters with required values
// here you can set the number of threads and (memUseMax) - the maximum
Memory usage for multithreading decoding.
for()
{
XzDecMt_Decode() // one call per one file
}
XzDecMt_Destroy()
}
*/
typedef struct
{
size_t inBufSize_ST; // size of input buffer for Single-Thread decoding
size_t outStep_ST; // size of output buffer for Single-Thread decoding
BoolInt ignoreErrors; // if set to 1, the decoder can ignore some errors and it skips broken parts of data.
#ifndef Z7_ST
unsigned numThreads; // the number of threads for Multi-Thread decoding. if (umThreads == 1) it will use Single-thread decoding
size_t inBufSize_MT; // size of small input data buffers for Multi-Thread decoding. Big number of such small buffers can be created
size_t memUseMax; // the limit of total memory usage for Multi-Thread decoding.
// it's recommended to set (memUseMax) manually to value that is smaller of total size of RAM in computer.
#endif
} CXzDecMtProps;
void XzDecMtProps_Init(CXzDecMtProps *p);
typedef struct CXzDecMt CXzDecMt;
typedef CXzDecMt * CXzDecMtHandle;
// Z7_DECLARE_HANDLE(CXzDecMtHandle)
/*
alloc : XzDecMt uses CAlignOffsetAlloc internally for addresses allocated by (alloc).
allocMid : for big allocations, aligned allocation is better
*/
CXzDecMtHandle XzDecMt_Create(ISzAllocPtr alloc, ISzAllocPtr allocMid);
void XzDecMt_Destroy(CXzDecMtHandle p);
typedef struct
{
Byte UnpackSize_Defined;
Byte NumStreams_Defined;
Byte NumBlocks_Defined;
Byte DataAfterEnd; // there are some additional data after good xz streams, and that data is not new xz stream.
Byte DecodingTruncated; // Decoding was Truncated, we need only partial output data
UInt64 InSize; // pack size processed. That value doesn't include the data after
// end of xz stream, if that data was not correct
UInt64 OutSize;
UInt64 NumStreams;
UInt64 NumBlocks;
SRes DecodeRes; // the error code of xz streams data decoding
SRes ReadRes; // error code from ISeqInStream:Read()
SRes ProgressRes; // error code from ICompressProgress:Progress()
SRes CombinedRes; // Combined result error code that shows main rusult
// = S_OK, if there is no error.
// but check also (DataAfterEnd) that can show additional minor errors.
SRes CombinedRes_Type; // = SZ_ERROR_READ, if error from ISeqInStream
// = SZ_ERROR_PROGRESS, if error from ICompressProgress
// = SZ_ERROR_WRITE, if error from ISeqOutStream
// = SZ_ERROR_* codes for decoding
} CXzStatInfo;
void XzStatInfo_Clear(CXzStatInfo *p);
/*
XzDecMt_Decode()
SRes: it's combined decoding result. It also is equal to stat->CombinedRes.
SZ_OK - no error
check also output value in (stat->DataAfterEnd)
that can show additional possible error
SZ_ERROR_MEM - Memory allocation error
SZ_ERROR_NO_ARCHIVE - is not xz archive
SZ_ERROR_ARCHIVE - Headers error
SZ_ERROR_DATA - Data Error
SZ_ERROR_UNSUPPORTED - Unsupported method or method properties
SZ_ERROR_CRC - CRC Error
SZ_ERROR_INPUT_EOF - it needs more input data
SZ_ERROR_WRITE - ISeqOutStream error
(SZ_ERROR_READ) - ISeqInStream errors
(SZ_ERROR_PROGRESS) - ICompressProgress errors
// SZ_ERROR_THREAD - error in multi-threading functions
MY_SRes_HRESULT_FROM_WRes(WRes_error) - error in multi-threading function
*/
SRes XzDecMt_Decode(CXzDecMtHandle p,
const CXzDecMtProps *props,
const UInt64 *outDataSize, // NULL means undefined
int finishMode, // 0 - partial unpacking is allowed, 1 - xz stream(s) must be finished
ISeqOutStreamPtr outStream,
// Byte *outBuf, size_t *outBufSize,
ISeqInStreamPtr inStream,
// const Byte *inData, size_t inDataSize,
CXzStatInfo *stat, // out: decoding results and statistics
int *isMT, // out: 0 means that ST (Single-Thread) version was used
// 1 means that MT (Multi-Thread) version was used
ICompressProgressPtr progress);
EXTERN_C_END
#endif

View File

@ -1,80 +0,0 @@
/* XzCrc64.c -- CRC64 calculation
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "XzCrc64.h"
#include "CpuArch.h"
#define kCrc64Poly UINT64_CONST(0xC96C5795D7870F42)
#ifdef MY_CPU_LE
#define CRC64_NUM_TABLES 4
#else
#define CRC64_NUM_TABLES 5
UInt64 Z7_FASTCALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
#ifndef MY_CPU_BE
UInt64 Z7_FASTCALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
#endif
typedef UInt64 (Z7_FASTCALL *CRC64_FUNC)(UInt64 v, const void *data, size_t size, const UInt64 *table);
static CRC64_FUNC g_Crc64Update;
UInt64 g_Crc64Table[256 * CRC64_NUM_TABLES];
UInt64 Z7_FASTCALL Crc64Update(UInt64 v, const void *data, size_t size)
{
return g_Crc64Update(v, data, size, g_Crc64Table);
}
UInt64 Z7_FASTCALL Crc64Calc(const void *data, size_t size)
{
return g_Crc64Update(CRC64_INIT_VAL, data, size, g_Crc64Table) ^ CRC64_INIT_VAL;
}
void Z7_FASTCALL Crc64GenerateTable(void)
{
UInt32 i;
for (i = 0; i < 256; i++)
{
UInt64 r = i;
unsigned j;
for (j = 0; j < 8; j++)
r = (r >> 1) ^ (kCrc64Poly & ((UInt64)0 - (r & 1)));
g_Crc64Table[i] = r;
}
for (i = 256; i < 256 * CRC64_NUM_TABLES; i++)
{
const UInt64 r = g_Crc64Table[(size_t)i - 256];
g_Crc64Table[i] = g_Crc64Table[r & 0xFF] ^ (r >> 8);
}
#ifdef MY_CPU_LE
g_Crc64Update = XzCrc64UpdateT4;
#else
{
#ifndef MY_CPU_BE
UInt32 k = 1;
if (*(const Byte *)&k == 1)
g_Crc64Update = XzCrc64UpdateT4;
else
#endif
{
for (i = 256 * CRC64_NUM_TABLES - 1; i >= 256; i--)
{
const UInt64 x = g_Crc64Table[(size_t)i - 256];
g_Crc64Table[i] = Z7_BSWAP64(x);
}
g_Crc64Update = XzCrc64UpdateT1_BeT4;
}
}
#endif
}
#undef kCrc64Poly
#undef CRC64_NUM_TABLES

View File

@ -1,26 +0,0 @@
/* XzCrc64.h -- CRC64 calculation
2023-04-02 : Igor Pavlov : Public domain */
#ifndef ZIP7_INC_XZ_CRC64_H
#define ZIP7_INC_XZ_CRC64_H
#include <stddef.h>
#include "7zTypes.h"
EXTERN_C_BEGIN
extern UInt64 g_Crc64Table[];
void Z7_FASTCALL Crc64GenerateTable(void);
#define CRC64_INIT_VAL UINT64_CONST(0xFFFFFFFFFFFFFFFF)
#define CRC64_GET_DIGEST(crc) ((crc) ^ CRC64_INIT_VAL)
#define CRC64_UPDATE_BYTE(crc, b) (g_Crc64Table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 Z7_FASTCALL Crc64Update(UInt64 crc, const void *data, size_t size);
UInt64 Z7_FASTCALL Crc64Calc(const void *data, size_t size);
EXTERN_C_END
#endif

View File

@ -1,61 +0,0 @@
/* XzCrc64Opt.c -- CRC64 calculation
2023-04-02 : Igor Pavlov : Public domain */
#include "Precomp.h"
#include "CpuArch.h"
#ifndef MY_CPU_BE
#define CRC64_UPDATE_BYTE_2(crc, b) (table[((crc) ^ (b)) & 0xFF] ^ ((crc) >> 8))
UInt64 Z7_FASTCALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
UInt64 Z7_FASTCALL XzCrc64UpdateT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC64_UPDATE_BYTE_2(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
const UInt32 d = (UInt32)v ^ *(const UInt32 *)(const void *)p;
v = (v >> 32)
^ (table + 0x300)[((d ) & 0xFF)]
^ (table + 0x200)[((d >> 8) & 0xFF)]
^ (table + 0x100)[((d >> 16) & 0xFF)]
^ (table + 0x000)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC64_UPDATE_BYTE_2(v, *p);
return v;
}
#endif
#ifndef MY_CPU_LE
#define CRC64_UPDATE_BYTE_2_BE(crc, b) (table[(Byte)((crc) >> 56) ^ (b)] ^ ((crc) << 8))
UInt64 Z7_FASTCALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table);
UInt64 Z7_FASTCALL XzCrc64UpdateT1_BeT4(UInt64 v, const void *data, size_t size, const UInt64 *table)
{
const Byte *p = (const Byte *)data;
table += 0x100;
v = Z7_BSWAP64(v);
for (; size > 0 && ((unsigned)(ptrdiff_t)p & 3) != 0; size--, p++)
v = CRC64_UPDATE_BYTE_2_BE(v, *p);
for (; size >= 4; size -= 4, p += 4)
{
const UInt32 d = (UInt32)(v >> 32) ^ *(const UInt32 *)(const void *)p;
v = (v << 32)
^ (table + 0x000)[((d ) & 0xFF)]
^ (table + 0x100)[((d >> 8) & 0xFF)]
^ (table + 0x200)[((d >> 16) & 0xFF)]
^ (table + 0x300)[((d >> 24))];
}
for (; size > 0; size--, p++)
v = CRC64_UPDATE_BYTE_2_BE(v, *p);
return Z7_BSWAP64(v);
}
#endif

Some files were not shown because too many files have changed in this diff Show More