1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-26 04:32:35 +01:00

LV2: Unconditional Timer Synchronization Fix

This commit is contained in:
Eladash 2023-04-06 00:43:04 +03:00 committed by Ivan
parent bbbc5f6e6c
commit f57c8c1c35
5 changed files with 110 additions and 45 deletions

View File

@ -710,7 +710,7 @@ error_code sys_event_port_send(u32 eport_id, u64 data1, u64 data2, u64 data3)
{
if (lv2_obj::check(port.queue))
{
const u64 source = port.name ? port.name : (s64{process_getpid()} << 32) | u64{eport_id};
const u64 source = port.name ? port.name : (u64{process_getpid() + 0u} << 32) | u64{eport_id};
return port.queue->send(source, data1, data2, data3);
}

View File

@ -5,6 +5,8 @@
#include "Emu/Cell/ErrorCodes.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/timers.hpp"
#include "util/asm.hpp"
#include "Emu/System.h"
#include "Emu/system_config.h"
#include "sys_event.h"
@ -23,7 +25,7 @@ struct lv2_timer_thread
lv2_timer_thread();
void operator()();
SAVESTATE_INIT_POS(46); // Dependency ion LV2 objects (lv2_timer)
SAVESTATE_INIT_POS(46); // Dependency on LV2 objects (lv2_timer)
static constexpr auto thread_name = "Timer Thread"sv;
};
@ -46,7 +48,7 @@ void lv2_timer::save(utils::serial& ar)
ar(state), lv2_event_queue::save_ptr(ar, port.get()), ar(source, data1, data2, expire, period);
}
u64 lv2_timer::check()
u64 lv2_timer::check() noexcept
{
while (thread_ctrl::state() != thread_state::aborting)
{
@ -63,29 +65,7 @@ u64 lv2_timer::check()
lv2_obj::notify_all_t notify;
std::lock_guard lock(mutex);
if (next = expire; _now < next)
{
// expire was updated in the middle, don't send an event
continue;
}
if (port)
{
port->send(source, data1, data2, next);
}
if (period)
{
// Set next expiration time and check again
const u64 _next = next + period;
expire.release(_next > next ? _next : umax);
continue;
}
// Stop after oneshot
state.release(SYS_TIMER_STATE_STOP);
break;
return check_unlocked(_now);
}
return (next - _now);
@ -97,6 +77,33 @@ u64 lv2_timer::check()
return umax;
}
u64 lv2_timer::check_unlocked(u64 _now) noexcept
{
const u64 next = expire;
if (_now < next || state != SYS_TIMER_STATE_RUN)
{
return;
}
if (port)
{
port->send(source, data1, data2, next);
}
if (period)
{
// Set next expiration time and check again
const u64 expire0 = utils::add_saturate<u64>(next, period);
expire.release(_expire0);
return expire0 - _now;
}
// Stop after oneshot
state.release(SYS_TIMER_STATE_STOP);
return umax;
}
lv2_timer_thread::lv2_timer_thread()
{
idm::select<lv2_obj, lv2_timer>([&](u32 id, lv2_timer&)
@ -133,11 +140,11 @@ void lv2_timer_thread::operator()()
{
if (lv2_obj::check(timer))
{
const u64 adviced_sleep_time = timer->check();
const u64 advised_sleep_time = timer->check();
if (sleep_time > adviced_sleep_time)
if (sleep_time > advised_sleep_time)
{
sleep_time = adviced_sleep_time;
sleep_time = advised_sleep_time;
}
}
}
@ -216,9 +223,13 @@ error_code sys_timer_get_information(ppu_thread& ppu, u32 timer_id, vm::ptr<sys_
sys_timer.trace("sys_timer_get_information(timer_id=0x%x, info=*0x%x)", timer_id, info);
sys_timer_information_t _info{};
const u64 now = get_guest_system_time();
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [&](lv2_timer& timer)
{
std::lock_guard lock(timer.mutex);
timer.check_unlocked(now);
timer.get_information(_info);
});
@ -255,6 +266,7 @@ error_code _sys_timer_start(ppu_thread& ppu, u32 timer_id, u64 base_time, u64 pe
return CELL_ENOTCONN;
}
timer.check_unlocked(start_time);
if (timer.state != SYS_TIMER_STATE_STOP)
{
return CELL_EBUSY;
@ -266,9 +278,24 @@ error_code _sys_timer_start(ppu_thread& ppu, u32 timer_id, u64 base_time, u64 pe
return CELL_ETIMEDOUT;
}
// sys_timer_start_periodic() will use current time (TODO: is it correct?)
const u64 expire = base_time ? base_time : start_time + period;
timer.expire = expire > start_time ? expire : umax;
const u64 expire = period == 0 ? base_time : // oneshot
base_time == 0 ? utils::add_saturate(start_time, period) : // periodic timer with no base (using start time as base)
start_time < utils::add_saturate(base_time, period) ? utils::add_saturate(base_time, period) : // periodic with base time over start time
[&]() -> u64 // periodic timer base before start time (align to be at least a period over start time)
{
// Optimized from a loop in LV2:
// do
// {
// base_time += period;
// }
// while (base_time < start_time);
const u64 start_time_with_base_time_reminder = utils::add_saturate(start_time - start_time % period, base_time % period);
return utils::add_saturate(start_time_with_base_time_reminder, start_time_with_base_time_reminder < start_time ? period : 0);
}();
timer.expire = expire;
timer.period = period;
timer.state = SYS_TIMER_STATE_RUN;
return {};
@ -300,10 +327,10 @@ error_code sys_timer_stop(ppu_thread& ppu, u32 timer_id)
sys_timer.trace("sys_timer_stop()");
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [](lv2_timer& timer)
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [now = get_guest_system_time(), notify = lv2_obj::notify_all_t()](lv2_timer& timer)
{
std::lock_guard lock(timer.mutex);
timer.check_unlocked(now);
timer.state = SYS_TIMER_STATE_STOP;
});
@ -339,7 +366,7 @@ error_code sys_timer_connect_event_queue(ppu_thread& ppu, u32 timer_id, u32 queu
// Connect event queue
timer.port = std::static_pointer_cast<lv2_event_queue>(found->second);
timer.source = name ? name : (s64{process_getpid()} << 32) | u64{timer_id};
timer.source = name ? name : (u64{process_getpid() + 0u} << 32) | u64{timer_id};
timer.data1 = data1;
timer.data2 = data2;
return {};
@ -364,10 +391,11 @@ error_code sys_timer_disconnect_event_queue(ppu_thread& ppu, u32 timer_id)
sys_timer.warning("sys_timer_disconnect_event_queue(timer_id=0x%x)", timer_id);
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [](lv2_timer& timer) -> CellError
const auto timer = idm::check<lv2_obj, lv2_timer>(timer_id, [now = get_guest_system_time(), notify = lv2_obj::notify_all_t()](lv2_timer& timer) -> CellError
{
std::lock_guard lock(timer.mutex);
timer.check_unlocked(now);
timer.state = SYS_TIMER_STATE_STOP;
if (!lv2_obj::check(timer.port))

View File

@ -36,20 +36,19 @@ struct lv2_timer : lv2_obj
atomic_t<u64> expire{0}; // Next expiration time
atomic_t<u64> period{0}; // Period (oneshot if 0)
u64 check();
u64 check() noexcept;
u64 check_unlocked(u64 _now) noexcept;
lv2_timer() noexcept
: lv2_obj{1}
{
}
void get_information(sys_timer_information_t& info)
void get_information(sys_timer_information_t& info) const
{
reader_lock lock(mutex);
if (state == SYS_TIMER_STATE_RUN)
{
info.timer_state = SYS_TIMER_STATE_RUN;
info.timer_state = state;
info.next_expire = expire;
info.period = period;
}

View File

@ -527,11 +527,30 @@ void kernel_explorer::update()
{
auto& timer = static_cast<lv2_timer&>(obj);
sys_timer_information_t info;
timer.get_information(info);
u32 timer_state{SYS_TIMER_STATE_STOP};
std::shared_ptr<lv2_event_queue> port;
u64 source = 0;
u64 data1 = 0;
u64 data2 = 0;
add_leaf(node, qstr(fmt::format("Timer 0x%08x: State: %s, Period: 0x%llx, Next Expire: 0x%llx", id, info.timer_state ? "Running" : "Stopped"
, info.period, info.next_expire)));
u64 expire = 0; // Next expiration time
u64 period = 0; // Period (oneshot if 0)
if (reader_lock r_lock(timer.mutex); true)
{
timer_state = timer.state;
port = timer.port;
source = timer.source;
data1 = timer.data1;
data2 = timer.data2;
expire = timer.expire; // Next expiration time
period = timer.period; // Period (oneshot if 0)
}
add_leaf(node, qstr(fmt::format("Timer 0x%08x: State: %s, Period: 0x%llx, Next Expire: 0x%llx, Queue ID: 0x%08x, Source: 0x%08x, Data1: 0x%08x, Data2: 0x%08x", id, timer_state ? "Running" : "Stopped"
, period, expire, port ? port->id : 0, source, data1, data2)));
break;
}
case SYS_SEMAPHORE_OBJECT:

View File

@ -389,6 +389,25 @@ namespace utils
return static_cast<T>(value / align + (value > 0 ? T{(value % align) > (align / 2)} : 0 - T{(value % align) < (align / 2)}));
}
template <UnsignedInt T>
constexpr T add_saturate(T addend1, T addend2)
{
return static_cast<T>(~addend1) < addend2 ? T{umax} : static_cast<T>(addend1 + addend2);
}
template <UnsignedInt T>
constexpr T sub_saturate(T minuend, T subtrahend)
{
return minuend < subtrahend ? T{0} : static_cast<T>(minuend - subtrahend);
}
template <UnsignedInt T>
constexpr T mul_saturate(T factor1, T factor2)
{
return T{umax} / factor1 < factor2 ? T{umax} : static_cast<T>(factor1 * factor2);
}
// Hack. Pointer cast util to workaround UB. Use with extreme care.
template <typename T, typename U>
[[nodiscard]] T* bless(U* ptr)