#pragma once #include "util/types.hpp" #include "util/atomic.hpp" #include "util/shared_ptr.hpp" #include #include "mutex.h" #include "lockless.h" // Hardware core layout enum class native_core_arrangement : u32 { undefined, generic, intel_ht, amd_ccx }; enum class thread_class : u32 { general, rsx, spu, ppu }; enum class thread_state : u32 { created = 0, // Initial state aborting = 1, // The thread has been joined in the destructor or explicitly aborted errored = 2, // Set after the emergency_exit call finished = 3, // Final state, always set at the end of thread execution mask = 3 }; class need_wakeup {}; template class named_thread; class thread_base; template struct result_storage { static constexpr bool empty = true; using type = void; }; template struct result_storage>>, Args...> { using T = std::invoke_result_t; static_assert(std::is_default_constructible_v); alignas(T) std::byte data[sizeof(T)]; static constexpr bool empty = false; using type = T; T* _get() { return reinterpret_cast(&data); } const T* _get() const { return reinterpret_cast(&data); } void init() noexcept { new (data) T(); } void destroy() noexcept { _get()->~T(); } }; // Base class for task queue (linked list) class thread_future { friend class thread_base; shared_ptr next{}; shared_ptr* prev{}; protected: atomic_t exec{}; public: // Get reference to the atomic variable for inspection and waiting for const auto& get_wait() const { return exec; } // Wait (preset) void wait() const { exec.wait(nullptr); } }; template struct thread_thread_name : std::bool_constant {}; template struct thread_thread_name::thread_name)>> : std::bool_constant {}; // Thread base class class thread_base { public: // Native thread entry point function type #ifdef _WIN32 using native_entry = uint(__stdcall*)(void* arg); #else using native_entry = void*(*)(void* arg); #endif const native_entry entry_point; private: // Thread handle (platform-specific) atomic_t m_thread{0}; // Thread state and cycles atomic_t m_sync{0}; // Thread name atomic_ptr m_tname; // Thread task queue (reversed linked list) atomic_ptr m_taskq{}; // Start thread void start(); // Called at the thread start void initialize(void (*error_cb)()); // Called at the thread end, returns self handle u64 finalize(thread_state result) noexcept; // Cleanup after possibly deleting the thread instance static native_entry finalize(u64 _self) noexcept; // Set name for debugger static void set_name(std::string); // Make entry point static native_entry make_trampoline(u64(*)(thread_base*)); friend class thread_ctrl; template friend class named_thread; protected: thread_base(native_entry, std::string_view name); ~thread_base(); public: // Get CPU cycles since last time this function was called. First call returns 0. u64 get_cycles(); // Wait for the thread (it does NOT change thread state, and can be called from multiple threads) bool join(bool dtor = false) const; // Notify the thread void notify(); // Get thread id u64 get_native_id() const; // Add work to the queue void push(shared_ptr); private: // Clear task queue (execute unless aborting) void exec(); }; // Collection of global function for current thread class thread_ctrl final { // Current thread static thread_local thread_base* g_tls_this_thread; // Error handling details static thread_local void(*g_tls_error_callback)(); // Target cpu core layout static atomic_t g_native_core_layout; // Internal waiting function, may throw. Infinite value is -1. static void _wait_for(u64 usec, bool alert); friend class thread_base; // Optimized get_name() for logging static std::string get_name_cached(); public: // Get current thread name static std::string get_name() { return *g_tls_this_thread->m_tname.load(); } // Get thread name template static std::string get_name(const named_thread& thread) { return *static_cast(thread).m_tname.load(); } // Set current thread name (not recommended) static void set_name(std::string_view name) { g_tls_this_thread->m_tname.store(make_single(name)); } // Set thread name (not recommended) template static void set_name(named_thread& thread, std::string_view name) { static_cast(thread).m_tname.store(make_single(name)); } template static u64 get_cycles(named_thread& thread) { return static_cast(thread).get_cycles(); } template static void notify(named_thread& thread) { static_cast(thread).notify(); } template static u64 get_native_id(named_thread& thread) { return static_cast(thread).get_native_id(); } // Read current state, possibly executing some tasks static thread_state state(); // Wait once with timeout. May spuriously return false. static inline void wait_for(u64 usec, bool alert = true) { _wait_for(usec, alert); } // Wait. static inline void wait() { _wait_for(-1, true); } // Wait for both thread sync var and provided atomic var template static inline void wait_on(T& wait, U old, u64 usec = -1) { auto _this = g_tls_this_thread; if (_this->m_sync.bit_test_reset(2) || _this->m_taskq) { return; } atomic_wait::list<3> list{}; list.set<0, Op>(wait, old); list.set<1>(_this->m_sync, 0, 4 + 1); list.set<2>(_this->m_taskq, nullptr); list.wait(atomic_wait_timeout{usec <= 0xffff'ffff'ffff'ffff / 1000 ? usec * 1000 : 0xffff'ffff'ffff'ffff}); } // Exit. [[noreturn]] static void emergency_exit(std::string_view reason); // Get current thread (may be nullptr) static thread_base* get_current() { return g_tls_this_thread; } // Detect layout static void detect_cpu_layout(); // Returns a core affinity mask. Set whether to generate the high priority set or not static u64 get_affinity_mask(thread_class group); // Sets the native thread priority static void set_native_priority(int priority); // Sets the preferred affinity mask for this thread static void set_thread_affinity_mask(u64 mask); // Get process affinity mask static u64 get_process_affinity_mask(); // Miscellaneous static u64 get_thread_affinity_mask(); // Get current thread stack addr and size static std::pair get_thread_stack(); // Sets the native thread priority and returns it to zero at destructor struct scoped_priority { explicit scoped_priority(int prio) { set_native_priority(prio); } scoped_priority(const scoped_priority&) = delete; scoped_priority& operator=(const scoped_priority&) = delete; ~scoped_priority() { set_native_priority(0); } }; // Get thread ID (works for all threads) static u64 get_tid(); // Check whether current thread is main thread (usually Qt GUI) static bool is_main(); private: // Miscellaneous static const u64 process_affinity_mask; }; // Used internally template class thread_future_t : public thread_future, result_storage, Args...> { [[no_unique_address]] decltype(std::make_tuple(std::forward(std::declval())...)) m_args; [[no_unique_address]] Ctx m_func; using future = thread_future_t; public: thread_future_t(Ctx&& func, Args&&... args) : m_args(std::forward(args)...) , m_func(std::forward(func)) { thread_future::exec.raw() = +[](thread_base* tb, thread_future* tf) { const auto _this = static_cast(tf); if (!tb) [[unlikely]] { if constexpr (!future::empty && !Discard) { _this->init(); } return; } if constexpr (future::empty || Discard) { std::apply(_this->m_func, std::move(_this->m_args)); } else { new (_this->_get()) decltype(auto)(std::apply(_this->m_func, std::move(_this->m_args))); } }; } ~thread_future_t() { if constexpr (!future::empty && !Discard) { if (!this->exec) { this->destroy(); } } } decltype(auto) get() { while (this->exec) { this->wait(); } if constexpr (!future::empty && !Discard) { return *this->_get(); } } decltype(auto) get() const { while (this->exec) { this->wait(); } if constexpr (!future::empty && !Discard) { return *this->_get(); } } }; // Derived from the callable object Context, possibly a lambda template class named_thread final : public Context, result_storage, thread_base { using result = result_storage; using thread = thread_base; static u64 entry_point(thread_base* _base) { return static_cast(_base)->entry_point2(); } u64 entry_point2() { thread::initialize([]() { if constexpr (!result::empty) { // Construct using default constructor in the case of failure static_cast(static_cast(thread_ctrl::get_current()))->init(); } }); if constexpr (result::empty) { // No result if constexpr (std::is_invocable_v) { Context::operator()(); } else { // Default event loop while (thread_ctrl::state() != thread_state::aborting) { thread_ctrl::wait(); } } } else { // Construct the result using placement new (copy elision should happen) new (result::_get()) decltype(auto)(Context::operator()()); } return thread::finalize(thread_state::finished); } static inline thread::native_entry trampoline = thread::make_trampoline(entry_point); friend class thread_ctrl; public: // Default constructor template && thread_thread_name(), typename = std::enable_if_t> named_thread() : Context() , thread(trampoline, Context::thread_name) { thread::start(); } // Normal forwarding constructor template >> named_thread(std::string_view name, Args&&... args) : Context(std::forward(args)...) , thread(trampoline, name) { thread::start(); } // Lambda constructor, also the implicit deduction guide candidate named_thread(std::string_view name, Context&& f) : Context(std::forward(f)) , thread(trampoline, name) { thread::start(); } named_thread(const named_thread&) = delete; named_thread& operator=(const named_thread&) = delete; // Wait for the completion and access result (if not void) [[nodiscard]] decltype(auto) operator()() { thread::join(); if constexpr (!result::empty) { return *result::_get(); } } // Wait for the completion and access result (if not void) [[nodiscard]] decltype(auto) operator()() const { thread::join(); if constexpr (!result::empty) { return *result::_get(); } } // Send command to the thread to invoke directly (references should be passed via std::ref()) template auto operator()(Arg&& arg, Args&&... args) { // Overloaded operator() of the Context. constexpr bool v1 = std::is_invocable_v; // Anything invocable, not necessarily involving the Context. constexpr bool v2 = std::is_invocable_v; // Could be pointer to a non-static member function (or data member) of the Context. constexpr bool v3 = std::is_member_pointer_v> && std::is_invocable_v; // Only one invocation type shall be valid, otherwise we don't know. static_assert((v1 + v2 + v3) == 1, "Ambiguous or invalid named_thread call."); if constexpr (v1) { using future = thread_future_t; single_ptr target = make_single(*static_cast(this), std::forward(arg), std::forward(args)...); if constexpr (!Discard) { shared_ptr result = std::move(target); // Copy result thread::push(result); return result; } else { // Move target thread::push(std::move(target)); return; } } else if constexpr (v2) { using future = thread_future_t; single_ptr target = make_single(std::forward(arg), std::forward(args)...); if constexpr (!Discard) { shared_ptr result = std::move(target); thread::push(result); return result; } else { thread::push(std::move(target)); return; } } else if constexpr (v3) { using future = thread_future_t; single_ptr target = make_single(std::forward(arg), std::ref(*static_cast(this)), std::forward(args)...); if constexpr (!Discard) { shared_ptr result = std::move(target); thread::push(result); return result; } else { thread::push(std::move(target)); return; } } } // Access thread state operator thread_state() const { return static_cast(thread::m_sync.load() & 3); } // Try to abort by assigning thread_state::aborting (UB if assigning different state) named_thread& operator=(thread_state s) { if (s == thread_state::aborting && thread::m_sync.fetch_op([](u64& v){ return !(v & 3) && (v |= 1); }).second) { if (s == thread_state::aborting) { thread::m_sync.notify_one(1); } if constexpr (std::is_base_of_v) { this->wake_up(); } } return *this; } // Context type doesn't need virtual destructor ~named_thread() { // Assign aborting state forcefully operator=(thread_state::aborting); thread::join(true); if constexpr (!result::empty) { result::destroy(); } } }; // Group of named threads, similar to named_thread template class named_thread_group final { using Thread = named_thread; const u32 m_count; Thread* m_threads; void init_threads() { m_threads = static_cast(::operator new(sizeof(Thread) * m_count, std::align_val_t{alignof(Thread)})); } public: // Lambda constructor, also the implicit deduction guide candidate named_thread_group(std::string_view name, u32 count, const Context& f) : m_count(count) , m_threads(nullptr) { if (count == 0) { return; } init_threads(); // Create all threads for (u32 i = 0; i < m_count; i++) { new (static_cast(m_threads + i)) Thread(std::string(name) + std::to_string(i + 1), f); } } // Default constructor named_thread_group(std::string_view name, u32 count) : m_count(count) , m_threads(nullptr) { if (count == 0) { return; } init_threads(); // Create all threads for (u32 i = 0; i < m_count; i++) { new (static_cast(m_threads + i)) Thread(std::string(name) + std::to_string(i + 1)); } } named_thread_group(const named_thread_group&) = delete; named_thread_group& operator=(const named_thread_group&) = delete; // Wait for completion bool join() const { bool result = true; for (u32 i = 0; i < m_count; i++) { std::as_const(*std::launder(m_threads + i))(); if (std::as_const(*std::launder(m_threads + i)) != thread_state::finished) result = false; } return result; } // Join and access specific thread auto operator[](u32 index) const { return std::as_const(*std::launder(m_threads + index))(); } // Join and access specific thread auto operator[](u32 index) { return (*std::launder(m_threads + index))(); } // Dumb iterator auto begin() { return std::launder(m_threads); } // Dumb iterator auto end() { return m_threads + m_count; } u32 size() const { return m_count; } ~named_thread_group() { // Destroy all threads (it should join them) for (u32 i = 0; i < m_count; i++) { std::launder(m_threads + i)->~Thread(); } ::operator delete(static_cast(m_threads), std::align_val_t{alignof(Thread)}); } };