#include "stdafx.h" #include "Emu/Memory/Memory.h" #include "Emu/System.h" #include "Emu/IdManager.h" #include "Emu/Cell/RawSPUThread.h" #include "Emu/Cell/lv2/sys_mmapper.h" #include "Emu/Cell/lv2/sys_event.h" #include "Thread.h" #include "sysinfo.h" #include #include #ifdef _WIN32 #include #include #include #else #ifdef __APPLE__ #define _XOPEN_SOURCE #define __USE_GNU #include #include #endif #if defined(__DragonFly__) || defined(__FreeBSD__) #include #define cpu_set_t cpuset_t #endif #include #include #include #include #include #include #endif #include "sync.h" thread_local u64 g_tls_fault_all = 0; thread_local u64 g_tls_fault_rsx = 0; thread_local u64 g_tls_fault_spu = 0; [[noreturn]] void catch_all_exceptions() { try { throw; } catch (const std::exception& e) { report_fatal_error("Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what()); } catch (...) { report_fatal_error("Unhandled exception (unknown)"); } } enum x64_reg_t : u32 { X64R_RAX = 0, X64R_RCX, X64R_RDX, X64R_RBX, X64R_RSP, X64R_RBP, X64R_RSI, X64R_RDI, X64R_R8, X64R_R9, X64R_R10, X64R_R11, X64R_R12, X64R_R13, X64R_R14, X64R_R15, X64R_XMM0 = 0, X64R_XMM1, X64R_XMM2, X64R_XMM3, X64R_XMM4, X64R_XMM5, X64R_XMM6, X64R_XMM7, X64R_XMM8, X64R_XMM9, X64R_XMM10, X64R_XMM11, X64R_XMM12, X64R_XMM13, X64R_XMM14, X64R_XMM15, X64R_AL, X64R_CL, X64R_DL, X64R_BL, X64R_AH, X64R_CH, X64R_DH, X64R_BH, X64_NOT_SET, X64_IMM8, X64_IMM16, X64_IMM32, X64_BIT_O = 0x90, X64_BIT_NO, X64_BIT_C, X64_BIT_NC, X64_BIT_Z, X64_BIT_NZ, X64_BIT_BE, X64_BIT_NBE, X64_BIT_S, X64_BIT_NS, X64_BIT_P, X64_BIT_NP, X64_BIT_L, X64_BIT_NL, X64_BIT_LE, X64_BIT_NLE, X64R_ECX = X64R_CL, }; enum x64_op_t : u32 { X64OP_NONE, X64OP_LOAD, // obtain and put the value into x64 register X64OP_LOAD_BE, X64OP_LOAD_CMP, X64OP_LOAD_TEST, X64OP_STORE, // take the value from x64 register or an immediate and use it X64OP_STORE_BE, X64OP_MOVS, X64OP_STOS, X64OP_XCHG, X64OP_CMPXCHG, X64OP_AND, // lock and [mem], ... X64OP_OR, // lock or [mem], ... X64OP_XOR, // lock xor [mem], ... X64OP_INC, // lock inc [mem] X64OP_DEC, // lock dec [mem] X64OP_ADD, // lock add [mem], ... X64OP_ADC, // lock adc [mem], ... X64OP_SUB, // lock sub [mem], ... X64OP_SBB, // lock sbb [mem], ... }; void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length) { // simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way out_length = 0; u8 rex = 0, pg2 = 0; bool oso = false, lock = false, repne = false, repe = false; enum : u8 { LOCK = 0xf0, REPNE = 0xf2, REPE = 0xf3, }; // check prefixes: for (;; code++, out_length++) { switch (const u8 prefix = *code) { case LOCK: // group 1 { if (lock) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length); } lock = true; continue; } case REPNE: // group 1 { if (repne) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length); } repne = true; continue; } case REPE: // group 1 { if (repe) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length); } repe = true; continue; } case 0x2e: // group 2 case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: { if (pg2) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2); } else { pg2 = prefix; // probably, segment register } continue; } case 0x66: // group 3 { if (oso) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length); } oso = true; continue; } case 0x67: // group 4 { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix); out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; return; } default: { if ((prefix & 0xf0) == 0x40) // check REX prefix { if (rex) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex); } else { rex = prefix; } continue; } } } break; } auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX); }; auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0); }; auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL); }; auto get_op_size = [](const u8 rex, const bool oso) -> size_t { return rex & 8 ? 8 : (oso ? 2 : 4); }; auto get_modRM_size = [](const u8* code) -> size_t { switch (*code >> 6) // check Mod { case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8) case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32) default: return 1; } }; const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1]; switch (op1) { case 0x0f: { out_length++, code++; switch (op2) { case 0x11: case 0x29: { if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = 16; out_length += get_modRM_size(code); return; } break; } case 0x7f: { if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = 16; out_length += get_modRM_size(code); return; } break; } case 0xb0: { if (!oso) // CMPXCHG r8/m8, r8 { out_op = X64OP_CMPXCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0xb1: { if (true) // CMPXCHG r/m, r (16, 32, 64) { out_op = X64OP_CMPXCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x90: case 0x91: case 0x92: case 0x93: case 0x94: case 0x95: case 0x96: case 0x97: case 0x98: case 0x9a: case 0x9b: case 0x9c: case 0x9d: case 0x9e: case 0x9f: { if (!lock) // SETcc { out_op = X64OP_STORE; out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x38: { out_length++, code++; switch (op3) { case 0xf0: case 0xf1: { if (!repne) // MOVBE { out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } } break; } } break; } case 0x20: { if (!oso) { out_op = X64OP_AND; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x21: { if (true) { out_op = X64OP_AND; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x80: { switch (auto mod_code = get_modRM_reg(code, 0)) { //case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } case 0x81: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_ADD; break; case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } case 0x83: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_ADD; break; case 1: out_op = X64OP_OR; break; case 2: out_op = X64OP_ADC; break; case 3: out_op = X64OP_SBB; break; case 4: out_op = X64OP_AND; break; case 5: out_op = X64OP_SUB; break; case 6: out_op = X64OP_XOR; break; default: out_op = X64OP_LOAD_CMP; break; } out_reg = X64_IMM8; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + 1; return; } case 0x86: { if (!oso) // XCHG r8/m8, r8 { out_op = X64OP_XCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x87: { if (true) // XCHG r/m, r (16, 32, 64) { out_op = X64OP_XCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x88: { if (!lock && !oso) // MOV r8/m8, r8 { out_op = X64OP_STORE; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x89: { if (!lock) // MOV r/m, r (16, 32, 64) { out_op = X64OP_STORE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x8a: { if (!lock && !oso) // MOV r8, r8/m8 { out_op = X64OP_LOAD; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x8b: { if (!lock) // MOV r, r/m (16, 32, 64) { out_op = X64OP_LOAD; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0xa4: { if (!oso && !lock && !repe && !rex) // MOVS { out_op = X64OP_MOVS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP MOVS { out_op = X64OP_MOVS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xaa: { if (!oso && !lock && !repe && !rex) // STOS { out_op = X64OP_STOS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP STOS { out_op = X64OP_STOS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xc4: // 3-byte VEX prefix case 0xc5: // 2-byte VEX prefix { // Last prefix byte: op2 or op3 const u8 opx = op1 == 0xc5 ? op2 : op3; // Implied prefixes rex |= op2 & 0x80 ? 0 : 0x4; // REX.R rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ??? oso = (opx & 0x3) == 0x1; repe = (opx & 0x3) == 0x2; repne = (opx & 0x3) == 0x3; const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f; const u8 vop1 = op1 == 0xc5 ? op3 : code[2]; const u8 vlen = (opx & 0x4) ? 32 : 16; const u8 vreg = (~opx >> 3) & 0xf; out_length += op1 == 0xc5 ? 2 : 3; code += op1 == 0xc5 ? 2 : 3; if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F { case 0x11: case 0x29: { if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = vlen; out_length += get_modRM_size(code); return; } break; } case 0x7f: { if (repe || oso) // VMOVDQU/VMOVDQA mem,reg { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = vlen; out_length += get_modRM_size(code); return; } break; } } break; } case 0xc6: { if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8 { out_op = X64OP_STORE; out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } break; } case 0xc7: { if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64) { out_op = X64OP_STORE; out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } break; } case 0xf6: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_LOAD_TEST; break; default: out_op = X64OP_NONE; break; // TODO... } out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } case 0xf7: { switch (auto mod_code = get_modRM_reg(code, 0)) { case 0: out_op = X64OP_LOAD_TEST; break; default: out_op = X64OP_NONE; break; // TODO... } out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } } out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; } #ifdef _WIN32 typedef CONTEXT x64_context; #define X64REG(context, reg) (&(&(context)->Rax)[reg]) #define XMMREG(context, reg) (reinterpret_cast(&(&(context)->Xmm0)[reg])) #define EFLAGS(context) ((context)->EFlags) #define ARG1(context) RCX(context) #define ARG2(context) RDX(context) #else typedef ucontext_t x64_context; #ifdef __APPLE__ #define X64REG(context, reg) (darwin_x64reg(context, reg)) #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg])) #define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags) uint64_t* darwin_x64reg(x64_context *context, int reg) { auto *state = &context->uc_mcontext->__ss; switch(reg) { case 0: return &state->__rax; case 1: return &state->__rcx; case 2: return &state->__rdx; case 3: return &state->__rbx; case 4: return &state->__rsp; case 5: return &state->__rbp; case 6: return &state->__rsi; case 7: return &state->__rdi; case 8: return &state->__r8; case 9: return &state->__r9; case 10: return &state->__r10; case 11: return &state->__r11; case 12: return &state->__r12; case 13: return &state->__r13; case 14: return &state->__r14; case 15: return &state->__r15; case 16: return &state->__rip; default: LOG_ERROR(GENERAL, "Invalid register index: %d", reg); return nullptr; } } #elif defined(__DragonFly__) || defined(__FreeBSD__) #define X64REG(context, reg) (freebsd_x64reg(context, reg)) #ifdef __DragonFly__ # define XMMREG(context, reg) (reinterpret_cast(((union savefpu*)(context)->uc_mcontext.mc_fpregs)->sv_xmm.sv_xmm[reg])) #else # define XMMREG(context, reg) (reinterpret_cast(((struct savefpu*)(context)->uc_mcontext.mc_fpstate)->sv_xmm[reg])) #endif #define EFLAGS(context) ((context)->uc_mcontext.mc_rflags) register_t* freebsd_x64reg(x64_context *context, int reg) { auto *state = &context->uc_mcontext; switch(reg) { case 0: return &state->mc_rax; case 1: return &state->mc_rcx; case 2: return &state->mc_rdx; case 3: return &state->mc_rbx; case 4: return &state->mc_rsp; case 5: return &state->mc_rbp; case 6: return &state->mc_rsi; case 7: return &state->mc_rdi; case 8: return &state->mc_r8; case 9: return &state->mc_r9; case 10: return &state->mc_r10; case 11: return &state->mc_r11; case 12: return &state->mc_r12; case 13: return &state->mc_r13; case 14: return &state->mc_r14; case 15: return &state->mc_r15; case 16: return &state->mc_rip; default: LOG_ERROR(GENERAL, "Invalid register index: %d", reg); return nullptr; } } #elif defined(__OpenBSD__) #define X64REG(context, reg) (openbsd_x64reg(context, reg)) #define XMMREG(context, reg) (reinterpret_cast((context)->sc_fpstate->fx_xmm[reg])) #define EFLAGS(context) ((context)->sc_rflags) long* openbsd_x64reg(x64_context *context, int reg) { auto *state = &context->uc_mcontext; switch(reg) { case 0: return &state->sc_rax; case 1: return &state->sc_rcx; case 2: return &state->sc_rdx; case 3: return &state->sc_rbx; case 4: return &state->sc_rsp; case 5: return &state->sc_rbp; case 6: return &state->sc_rsi; case 7: return &state->sc_rdi; case 8: return &state->sc_r8; case 9: return &state->sc_r9; case 10: return &state->sc_r10; case 11: return &state->sc_r11; case 12: return &state->sc_r12; case 13: return &state->sc_r13; case 14: return &state->sc_r14; case 15: return &state->sc_r15; case 16: return &state->sc_rip; default: LOG_ERROR(GENERAL, "Invalid register index: %d", reg); return nullptr; } } #elif defined(__NetBSD__) static const decltype(_REG_RAX) reg_table[] = { _REG_RAX, _REG_RCX, _REG_RDX, _REG_RBX, _REG_RSP, _REG_RBP, _REG_RSI, _REG_RDI, _REG_R8, _REG_R9, _REG_R10, _REG_R11, _REG_R12, _REG_R13, _REG_R14, _REG_R15, _REG_RIP }; #define X64REG(context, reg) (&(context)->uc_mcontext.__gregs[reg_table[reg]]) #define XMM_sig(context, reg) (reinterpret_cast(((struct fxsave64*)(context)->uc_mcontext.__fpregs)->fx_xmm[reg])) #define EFLAGS(context) ((context)->uc_mcontext.__gregs[_REG_RFL]) #else static const decltype(REG_RAX) reg_table[] = { REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP }; #define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]]) #ifdef __sun #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext.fpregs.fp_reg_set.fpchip_state.xmm[reg_table[reg]])) #else #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext.fpregs->_xmm[reg])) #endif // __sun #define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL]) #endif // __APPLE__ #define ARG1(context) RDI(context) #define ARG2(context) RSI(context) #endif #define RAX(c) (*X64REG((c), 0)) #define RCX(c) (*X64REG((c), 1)) #define RDX(c) (*X64REG((c), 2)) #define RSP(c) (*X64REG((c), 4)) #define RSI(c) (*X64REG((c), 6)) #define RDI(c) (*X64REG((c), 7)) #define RIP(c) (*X64REG((c), 16)) bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value) { // get x64 reg value (for store operations) if (reg - X64R_RAX < 16) { // load the value from x64 register const u64 reg_value = *X64REG(context, reg - X64R_RAX); switch (d_size) { case 1: out_value = (u8)reg_value; return true; case 2: out_value = (u16)reg_value; return true; case 4: out_value = (u32)reg_value; return true; case 8: out_value = reg_value; return true; } } else if (reg - X64R_AL < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AL)); return true; } else if (reg - X64R_AH < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8); return true; } else if (reg == X64_IMM8) { // load the immediate value (assuming it's at the end of the instruction) const s8 imm_value = *(s8*)(RIP(context) + i_size - 1); switch (d_size) { case 1: out_value = (u8)imm_value; return true; case 2: out_value = (u16)imm_value; return true; // sign-extended case 4: out_value = (u32)imm_value; return true; // sign-extended case 8: out_value = (u64)imm_value; return true; // sign-extended } } else if (reg == X64_IMM16) { const s16 imm_value = *(s16*)(RIP(context) + i_size - 2); switch (d_size) { case 2: out_value = (u16)imm_value; return true; } } else if (reg == X64_IMM32) { const s32 imm_value = *(s32*)(RIP(context) + i_size - 4); switch (d_size) { case 4: out_value = (u32)imm_value; return true; case 8: out_value = (u64)imm_value; return true; // sign-extended } } else if (reg == X64R_ECX) { out_value = (u32)RCX(context); return true; } else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE) { const u32 _cf = EFLAGS(context) & 0x1; const u32 _zf = EFLAGS(context) & 0x40; const u32 _sf = EFLAGS(context) & 0x80; const u32 _of = EFLAGS(context) & 0x800; const u32 _pf = EFLAGS(context) & 0x4; const u32 _l = (_sf << 4) ^ _of; // SF != OF switch (reg & ~1) { case X64_BIT_O: out_value = !!_of ^ (reg & 1); break; case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break; case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break; case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break; case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break; case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break; case X64_BIT_L: out_value = !!_l ^ (reg & 1); break; case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break; } return true; } LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", (u32)reg, d_size, i_size); return false; } bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value) { // save x64 reg value (for load operations) if (reg - X64R_RAX < 16) { // save the value into x64 register switch (d_size) { case 1: *X64REG(context, reg - X64R_RAX) = (value & 0xff) | (*X64REG(context, reg - X64R_RAX) & 0xffffff00); return true; case 2: *X64REG(context, reg - X64R_RAX) = (value & 0xffff) | (*X64REG(context, reg - X64R_RAX) & 0xffff0000); return true; case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true; case 8: *X64REG(context, reg - X64R_RAX) = value; return true; } } LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", (u32)reg, d_size, value); return false; } bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y, bool carry = true) { switch (d_size) { case 1: break; case 2: break; case 4: break; case 8: break; default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false; } const u64 sign = 1ull << (d_size * 8 - 1); // sign mask const u64 diff = x - y; const u64 summ = x + y; if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign) { EFLAGS(context) |= 0x1; // set CF } else if (carry) { EFLAGS(context) &= ~0x1; // clear CF } if (x == y) { EFLAGS(context) |= 0x40; // set ZF } else { EFLAGS(context) &= ~0x40; // clear ZF } if (diff & sign) { EFLAGS(context) |= 0x80; // set SF } else { EFLAGS(context) &= ~0x80; // clear SF } if ((x ^ summ) & (y ^ summ) & sign) { EFLAGS(context) |= 0x800; // set OF } else { EFLAGS(context) &= ~0x800; // clear OF } const u8 p1 = (u8)diff ^ ((u8)diff >> 4); const u8 p2 = p1 ^ (p1 >> 2); const u8 p3 = p2 ^ (p2 >> 1); if ((p3 & 1) == 0) { EFLAGS(context) |= 0x4; // set PF } else { EFLAGS(context) &= ~0x4; // clear PF } if (((x & y) | ((x ^ y) & ~summ)) & 0x8) { EFLAGS(context) |= 0x10; // set AF } else { EFLAGS(context) &= ~0x10; // clear AF } return true; } size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size) { if (op == X64OP_MOVS || op == X64OP_STOS) { if (EFLAGS(context) & 0x400 /* direction flag */) { // TODO return 0; } if (reg != X64_NOT_SET) // get "full" access size from RCX register { u64 counter; if (!get_x64_reg_value(context, reg, 8, i_size, counter)) { return -1; } return d_size * counter; } } return d_size; } namespace rsx { extern std::function g_access_violation_handler; } bool handle_access_violation(u32 addr, bool is_writing, x64_context* context) { g_tls_fault_all++; const auto cpu = get_current_cpu_thread(); if (rsx::g_access_violation_handler && rsx::g_access_violation_handler(addr, is_writing)) { g_tls_fault_rsx++; if (cpu) { cpu->test_state(); } return true; } auto code = (const u8*)RIP(context); x64_op_t op; x64_reg_t reg; size_t d_size; size_t i_size; // decode single x64 instruction that causes memory access decode_x64_reg_op(code, op, reg, d_size, i_size); auto report_opcode = [=]() { if (op == X64OP_NONE) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%p): unsupported opcode: %s", code, *(be_t*)code); } }; if ((d_size | d_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size); report_opcode(); return false; } // get length of data being accessed size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size); if ((a_size | a_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size); report_opcode(); return false; } // check if address is RawSPU MMIO register if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) { auto thread = idm::get((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET); if (!thread) { return false; } if (a_size != 4 || !d_size || !i_size) { LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size); report_opcode(); return false; } switch (op) { case X64OP_LOAD: case X64OP_LOAD_BE: case X64OP_LOAD_CMP: case X64OP_LOAD_TEST: { u32 value; if (is_writing || !thread->read_reg(addr, value)) { return false; } if (op != X64OP_LOAD_BE) { value = se_storage::swap(value); } if (op == X64OP_LOAD_CMP) { u64 rvalue; if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue)) { return false; } break; } if (op == X64OP_LOAD_TEST) { u64 rvalue; if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0)) { return false; } break; } if (!put_x64_reg_value(context, reg, d_size, value)) { return false; } break; } case X64OP_STORE: case X64OP_STORE_BE: { u64 reg_value; if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } if (!thread->write_reg(addr, op == X64OP_STORE ? se_storage::swap((u32)reg_value) : (u32)reg_value)) { return false; } break; } case X64OP_MOVS: // possibly, TODO case X64OP_STOS: default: { LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", (u32)op, (u32)reg, d_size, i_size); report_opcode(); return false; } } // skip processed instruction RIP(context) += i_size; g_tls_fault_spu++; return true; } if (vm::check_addr(addr, std::max(1, d_size), vm::page_allocated | (is_writing ? vm::page_writable : vm::page_readable))) { if (cpu) { cpu->test_state(); } return true; } if (cpu) { if (fxm::check()) { for (const auto& entry : fxm::get()->entries) { auto mem = vm::get(vm::any, entry.start_addr); if (!mem) { continue; } if (entry.start_addr <= addr && addr <= addr + mem->size - 1) { // Place the page fault event onto table so that other functions [sys_mmapper_free_address and ppu pagefault funcs] // know that this thread is page faulted and where. auto pf_entries = fxm::get_always(); { semaphore_lock pf_lock(pf_entries->pf_mutex); page_fault_event pf_event{ cpu->id, addr }; pf_entries->events.emplace_back(pf_event); } // Now, we notify the game that a page fault occurred so it can rectify it. // Note, for data3, were the memory readable AND we got a page fault, it must be due to a write violation since reads are allowed. be_t data1 = addr; be_t data2 = (SYS_MEMORY_PAGE_FAULT_TYPE_PPU_THREAD << 32) + cpu->id; // TODO: fix hack for now that assumes PPU thread always. be_t data3 = vm::check_addr(addr, a_size, vm::page_readable) ? SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY : SYS_MEMORY_PAGE_FAULT_CAUSE_NON_MAPPED; LOG_ERROR(MEMORY, "Page_fault %s location 0x%x because of %s memory", is_writing ? "writing" : "reading", addr, data3 == SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY ? "writing read-only" : "using unmapped"); error_code sending_error = sys_event_port_send(entry.port_id, data1, data2, data3); // If we fail due to being busy, wait a bit and try again. while (sending_error == CELL_EBUSY) { lv2_obj::sleep(*cpu, 1000); thread_ctrl::wait_for(1000); sending_error = sys_event_port_send(entry.port_id, data1, data2, data3); } if (sending_error) { fmt::throw_exception("Unknown error %x while trying to pass page fault.", sending_error.value); } lv2_obj::sleep(*cpu); thread_ctrl::wait(); return true; } } } vm::temporary_unlock(*cpu); LOG_FATAL(MEMORY, "Access violation %s location 0x%x", is_writing ? "writing" : "reading", addr); cpu->state += cpu_flag::dbg_pause; cpu->check_state(); } return true; } #ifdef __linux__ extern "C" struct dwarf_eh_bases { void* tbase; void* dbase; void* func; }; extern "C" struct fde* _Unwind_Find_FDE(void* pc, struct dwarf_eh_bases* bases); #endif // Detect leaf function static bool is_leaf_function(u64 rip) { #ifdef _WIN32 DWORD64 base = 0; if (const auto rtf = RtlLookupFunctionEntry(rip, &base, nullptr)) { // Access UNWIND_INFO structure const auto uw = (u8*)(base + rtf->UnwindData); // Leaf function has zero epilog size and no unwind codes return uw[0] == 1 && uw[1] == 0 && uw[2] == 0 && uw[3] == 0; } // No unwind info implies leaf function return true; #elif __linux__ struct dwarf_eh_bases bases; if (struct fde* f = _Unwind_Find_FDE(reinterpret_cast(rip), &bases)) { const auto words = (const u32*)f; if (words[0] < 0x14) { return true; } if (words[0] == 0x14 && !words[3] && !words[4]) { return true; } // TODO return false; } // No unwind info implies leaf function return true; #else // Unsupported return false; #endif } #ifdef _WIN32 static LONG exception_handler(PEXCEPTION_POINTERS pExp) { const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr; const u64 exec64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_exec_addr; const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0; if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull) { if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord)) { return EXCEPTION_CONTINUE_EXECUTION; } } if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && exec64 < 0x100000000ull) { if (thread_ctrl::get_current() && handle_access_violation((u32)exec64, is_writing, pExp->ContextRecord)) { return EXCEPTION_CONTINUE_EXECUTION; } } return EXCEPTION_CONTINUE_SEARCH; } static LONG exception_filter(PEXCEPTION_POINTERS pExp) { std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode); if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION) { const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading"; msg += fmt::format("Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress); } else { msg += fmt::format("Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress); for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++) { msg += fmt::format("ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]); } } std::vector modules; for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE)) { modules.resize(size); if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size)) { modules.clear(); break; } } msg += fmt::format("Instruction address: %p.\n", pExp->ContextRecord->Rip); DWORD64 unwind_base; if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr)) { // Get function address const DWORD64 func_addr = rtf->BeginAddress + unwind_base; msg += fmt::format("Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress); // Access UNWIND_INFO structure //const auto uw = (u8*)(unwind_base + rtf->UnwindData); } for (HMODULE module : modules) { MODULEINFO info; if (GetModuleInformation(GetCurrentProcess(), module, &info, sizeof(info))) { const DWORD64 base = (DWORD64)info.lpBaseOfDll; if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage) { std::string module_name; for (DWORD size = 15; module_name.size() != size;) { module_name.resize(size); size = GetModuleBaseNameA(GetCurrentProcess(), module, &module_name.front(), size + 1); if (!size) { module_name.clear(); break; } } msg += fmt::format("Module name: '%s'.\n", module_name); msg += fmt::format("Module base: %p.\n", info.lpBaseOfDll); } } } msg += fmt::format("RPCS3 image base: %p.\n", GetModuleHandle(NULL)); // TODO: print registers and the callstack // Report fatal error report_fatal_error(msg); return EXCEPTION_CONTINUE_SEARCH; } const bool s_exception_handler_set = []() -> bool { if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler)) { report_fatal_error("AddVectoredExceptionHandler() failed."); } if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter)) { report_fatal_error("SetUnhandledExceptionFilter() failed."); } return true; }(); #else static void signal_handler(int sig, siginfo_t* info, void* uct) { x64_context* context = (ucontext_t*)uct; #ifdef __APPLE__ const bool is_writing = context->uc_mcontext->__es.__err & 0x2; #elif defined(__DragonFly__) || defined(__FreeBSD__) const bool is_writing = context->uc_mcontext.mc_err & 0x2; #elif defined(__OpenBSD__) const bool is_writing = context->sc_err & 0x2; #elif defined(__NetBSD__) const bool is_writing = context->uc_mcontext.__gregs[_REG_ERR] & 0x2; #else const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2; #endif const u64 addr64 = (u64)info->si_addr - (u64)vm::g_base_addr; const u64 exec64 = (u64)info->si_addr - (u64)vm::g_exec_addr; const auto cause = is_writing ? "writing" : "reading"; if (addr64 < 0x100000000ull) { // Try to process access violation if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, context)) { return; } } if (exec64 < 0x100000000ull) { if (thread_ctrl::get_current() && handle_access_violation((u32)exec64, is_writing, context)) { return; } } // TODO (debugger interaction) report_fatal_error(fmt::format("Segfault %s location %p at %p.", cause, info->si_addr, RIP(context))); } const bool s_exception_handler_set = []() -> bool { struct ::sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = signal_handler; if (::sigaction(SIGSEGV, &sa, NULL) == -1) { std::printf("sigaction(SIGSEGV) failed (0x%x).", errno); std::abort(); } return true; }(); #endif // TODO extern atomic_t g_thread_count(0); thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr; extern thread_local std::string(*g_tls_log_prefix)(); DECLARE(thread_ctrl::g_native_core_layout) { native_core_arrangement::undefined }; void thread_ctrl::start(const std::shared_ptr& ctrl, task_stack task) { #ifdef _WIN32 using thread_result = uint; using thread_type = thread_result(__stdcall*)(void* arg); #else using thread_result = void*; using thread_type = thread_result(*)(void* arg); #endif // Thread entry point const thread_type entry = [](void* arg) -> thread_result { // Recover shared_ptr from short-circuited thread_ctrl object pointer const std::shared_ptr ctrl = static_cast(arg)->m_self; try { ctrl->initialize(); task_stack{std::move(ctrl->m_task)}.invoke(); } catch (...) { // Capture exception ctrl->finalize(std::current_exception()); return 0; } ctrl->finalize(nullptr); return 0; }; ctrl->m_self = ctrl; ctrl->m_task = std::move(task); // TODO: implement simple thread pool #ifdef _WIN32 std::uintptr_t thread = _beginthreadex(nullptr, 0, entry, ctrl.get(), 0, nullptr); verify("thread_ctrl::start" HERE), thread != 0; #else pthread_t thread; verify("thread_ctrl::start" HERE), pthread_create(&thread, nullptr, entry, ctrl.get()) == 0; #endif // TODO: this is unsafe and must be duplicated in thread_ctrl::initialize ctrl->m_thread = (uintptr_t)thread; } void thread_ctrl::initialize() { // Initialize TLS variable g_tls_this_thread = this; g_tls_log_prefix = [] { return g_tls_this_thread->m_name; }; ++g_thread_count; #ifdef _MSC_VER struct THREADNAME_INFO { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; }; // Set thread name for VS debugger if (IsDebuggerPresent()) { THREADNAME_INFO info; info.dwType = 0x1000; info.szName = m_name.c_str(); info.dwThreadID = -1; info.dwFlags = 0; __try { RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info); } __except (EXCEPTION_EXECUTE_HANDLER) { } } #endif } void thread_ctrl::finalize(std::exception_ptr eptr) noexcept { // Run atexit functions m_task.invoke(); m_task.reset(); #ifdef _WIN32 ULONG64 cycles{}; QueryThreadCycleTime(GetCurrentThread(), &cycles); FILETIME ctime, etime, ktime, utime; GetThreadTimes(GetCurrentThread(), &ctime, &etime, &ktime, &utime); const u64 time = ((ktime.dwLowDateTime | (u64)ktime.dwHighDateTime << 32) + (utime.dwLowDateTime | (u64)utime.dwHighDateTime << 32)) * 100ull; #elif defined(RUSAGE_THREAD) const u64 cycles = 0; // Not supported struct ::rusage stats{}; ::getrusage(RUSAGE_THREAD, &stats); const u64 time = (stats.ru_utime.tv_sec + stats.ru_stime.tv_sec) * 1000000000ull + (stats.ru_utime.tv_usec + stats.ru_stime.tv_usec) * 1000ull; #else const u64 cycles = 0; const u64 time = 0; #endif g_tls_log_prefix = [] { return g_tls_this_thread->m_name; }; LOG_NOTICE(GENERAL, "Thread time: %fs (%fGc); Faults: %u [rsx:%u, spu:%u];", time / 1000000000., cycles / 1000000000., g_tls_fault_all, g_tls_fault_rsx, g_tls_fault_spu); --g_thread_count; // Untangle circular reference, set exception semaphore_lock{m_mutex}, m_self.reset(), m_exception = eptr; // Signal joining waiters m_jcv.notify_all(); } void thread_ctrl::_push(task_stack task) { g_tls_this_thread->m_task.push(std::move(task)); } bool thread_ctrl::_wait_for(u64 usec) { auto _this = g_tls_this_thread; struct half_lock { semaphore<>& ref; void lock() { // Used to avoid additional lock + unlock } void unlock() { ref.post(); } } _lock{_this->m_mutex}; do { // Mutex is unlocked at the start and after the waiting if (u32 sig = _this->m_signal.load()) { thread_ctrl::test(); if (sig & 1) { _this->m_signal &= ~1; return true; } } if (usec == 0) { // No timeout: return immediately return false; } // Lock (semaphore) _this->m_mutex.wait(); // Double-check the value if (u32 sig = _this->m_signal.load()) { if (sig & 2 && _this->m_exception) { _this->_throw(); } if (sig & 1) { _this->m_signal &= ~1; _this->m_mutex.post(); return true; } } } while (_this->m_cond.wait(_lock, std::exchange(usec, usec > cond_variable::max_timeout ? -1 : 0))); // Timeout return false; } [[noreturn]] void thread_ctrl::_throw() { std::exception_ptr ex = std::exchange(m_exception, std::exception_ptr{}); m_signal &= ~3; m_mutex.post(); std::rethrow_exception(std::move(ex)); } void thread_ctrl::_notify(cond_variable thread_ctrl::* ptr) { // Optimized lock + unlock if (!m_mutex.get()) { m_mutex.wait(); m_mutex.post(); } (this->*ptr).notify_one(); } thread_ctrl::thread_ctrl(std::string&& name) : m_name(std::move(name)) { } thread_ctrl::~thread_ctrl() { if (m_thread) { #ifdef _WIN32 CloseHandle((HANDLE)m_thread.raw()); #else pthread_detach((pthread_t)m_thread.raw()); #endif } } std::exception_ptr thread_ctrl::get_exception() const { semaphore_lock lock(m_mutex); return m_exception; } void thread_ctrl::set_exception(std::exception_ptr ptr) { semaphore_lock lock(m_mutex); m_exception = ptr; if (m_exception) { m_signal |= 2; m_cond.notify_one(); } else { m_signal &= ~2; } } void thread_ctrl::join() { #ifdef _WIN32 //verify("thread_ctrl::join" HERE), WaitForSingleObjectEx((HANDLE)m_thread.load(), -1, false) == WAIT_OBJECT_0; #endif semaphore_lock lock(m_mutex); while (m_self) { m_jcv.wait(lock); } if (UNLIKELY(m_exception && !std::uncaught_exception())) { std::rethrow_exception(m_exception); } } void thread_ctrl::notify() { if (!(m_signal & 1)) { m_signal |= 1; _notify(&thread_ctrl::m_cond); } } void thread_ctrl::test() { const auto _this = g_tls_this_thread; if (_this->m_signal & 2) { _this->m_mutex.wait(); if (_this->m_exception) { _this->_throw(); } _this->m_mutex.post(); } } void thread_ctrl::detect_cpu_layout() { if (!g_native_core_layout.compare_and_swap_test(native_core_arrangement::undefined, native_core_arrangement::generic)) return; const auto system_id = utils::get_system_info(); if (system_id.find("Ryzen") != std::string::npos) { g_native_core_layout.store(native_core_arrangement::amd_ccx); } else if (system_id.find("i3") != std::string::npos || system_id.find("i7") != std::string::npos) { g_native_core_layout.store(native_core_arrangement::intel_ht); } } u16 thread_ctrl::get_affinity_mask(thread_class group) { detect_cpu_layout(); if (const auto thread_count = std::thread::hardware_concurrency()) { const u16 all_cores_mask = thread_count < 16 ? (u16)(~(UINT16_MAX << thread_count)): UINT16_MAX; switch (g_native_core_layout) { default: case native_core_arrangement::generic: { return all_cores_mask; } case native_core_arrangement::amd_ccx: { u16 spu_mask, ppu_mask, rsx_mask; if (thread_count >= 16) { // Threadripper, R7 // Assign threads 8-16 // It appears some windows code is bound to lower core addresses, binding 8-16 is alot faster than 0-7 ppu_mask = spu_mask = 0b1111111100000000; rsx_mask = all_cores_mask; } else if (thread_count == 12) { // 1600/2600 (x) ppu_mask = spu_mask = 0b111111000000; rsx_mask = all_cores_mask; } else { // R5 & R3 don't seem to improve performance no matter how these are shuffled ppu_mask = spu_mask = rsx_mask = 0b11111111 & all_cores_mask; } switch (group) { default: case thread_class::general: return all_cores_mask; case thread_class::rsx: return rsx_mask; case thread_class::ppu: return ppu_mask; case thread_class::spu: return spu_mask; } } case native_core_arrangement::intel_ht: { if (thread_count <= 4) { //i3 or worse switch (group) { case thread_class::rsx: case thread_class::ppu: return (0b0101 & all_cores_mask); case thread_class::spu: return (0b1010 & all_cores_mask); case thread_class::general: return all_cores_mask; } } return all_cores_mask; } } } return UINT16_MAX; } void thread_ctrl::set_native_priority(int priority) { #ifdef _WIN32 HANDLE _this_thread = GetCurrentThread(); INT native_priority = THREAD_PRIORITY_NORMAL; if (priority > 0) native_priority = THREAD_PRIORITY_ABOVE_NORMAL; if (priority < 0) native_priority = THREAD_PRIORITY_BELOW_NORMAL; if (!SetThreadPriority(_this_thread, native_priority)) { LOG_ERROR(GENERAL, "SetThreadPriority() failed: 0x%x", GetLastError()); } #else int policy; struct sched_param param; pthread_getschedparam(pthread_self(), &policy, ¶m); if (priority > 0) param.sched_priority = sched_get_priority_max(policy); if (priority < 0) param.sched_priority = sched_get_priority_min(policy); if (int err = pthread_setschedparam(pthread_self(), policy, ¶m)) { LOG_ERROR(GENERAL, "pthraed_setschedparam() failed: %d", err); } #endif } void thread_ctrl::set_thread_affinity_mask(u16 mask) { #ifdef _WIN32 HANDLE _this_thread = GetCurrentThread(); SetThreadAffinityMask(_this_thread, (DWORD_PTR)mask); #elif __APPLE__ thread_affinity_policy_data_t policy = { static_cast(mask) }; thread_port_t mach_thread = pthread_mach_thread_np(pthread_self()); thread_policy_set(mach_thread, THREAD_AFFINITY_POLICY, (thread_policy_t)&policy, 1); #elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__) cpu_set_t cs; CPU_ZERO(&cs); for (u32 core = 0; core < 16u; ++core) { if ((u32)mask & (1u << core)) { CPU_SET(core, &cs); } } pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs); #endif } named_thread::named_thread() { } named_thread::~named_thread() { } std::string named_thread::get_name() const { return fmt::format("('%s') Unnamed Thread", typeid(*this).name()); } void named_thread::start_thread(const std::shared_ptr& _this) { // Ensure it's not called from the constructor and the correct object is passed verify("named_thread::start_thread" HERE), _this.get() == this; // Run thread thread_ctrl::spawn(m_thread, get_name(), [this, _this]() { try { LOG_TRACE(GENERAL, "Thread started"); on_spawn(); on_task(); LOG_TRACE(GENERAL, "Thread ended"); } catch (const std::exception& e) { LOG_FATAL(GENERAL, "%s thrown: %s", typeid(e).name(), e.what()); Emu.Pause(); } on_exit(); }); } task_stack::task_base::~task_base() { }