#include "stdafx.h" #include "Log.h" #include "rpcs3/Ini.h" #include "Emu/System.h" #include "Emu/CPU/CPUThreadManager.h" #include "Emu/CPU/CPUThread.h" #include "Emu/Cell/RawSPUThread.h" #include "Emu/SysCalls/SysCalls.h" #include "Thread.h" #ifdef _WIN32 #include #else #ifdef __APPLE__ #define _XOPEN_SOURCE #define __USE_GNU #endif #include #include #endif void SetCurrentThreadDebugName(const char* threadName) { #if defined(_MSC_VER) // this is VS-specific way to set thread names for the debugger #pragma pack(push,8) struct THREADNAME_INFO { DWORD dwType; LPCSTR szName; DWORD dwThreadID; DWORD dwFlags; } info; #pragma pack(pop) info.dwType = 0x1000; info.szName = threadName; info.dwThreadID = -1; info.dwFlags = 0; __try { RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info); } __except (EXCEPTION_EXECUTE_HANDLER) { } #endif } enum x64_reg_t : u32 { X64R_RAX = 0, X64R_RCX, X64R_RDX, X64R_RBX, X64R_RSP, X64R_RBP, X64R_RSI, X64R_RDI, X64R_R8, X64R_R9, X64R_R10, X64R_R11, X64R_R12, X64R_R13, X64R_R14, X64R_R15, X64R_XMM0 = 0, X64R_XMM1, X64R_XMM2, X64R_XMM3, X64R_XMM4, X64R_XMM5, X64R_XMM6, X64R_XMM7, X64R_XMM8, X64R_XMM9, X64R_XMM10, X64R_XMM11, X64R_XMM12, X64R_XMM13, X64R_XMM14, X64R_XMM15, X64R_AL, X64R_CL, X64R_DL, X64R_BL, X64R_AH, X64R_CH, X64R_DH, X64R_BH, X64_NOT_SET, X64_IMM8, X64_IMM16, X64_IMM32, X64R_ECX = X64R_CL, }; enum x64_op_t : u32 { X64OP_NONE, X64OP_LOAD, // obtain and put the value into x64 register X64OP_STORE, // take the value from x64 register or an immediate and use it // example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register) // example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers) X64OP_MOVS, X64OP_STOS, X64OP_XCHG, X64OP_CMPXCHG, X64OP_LOAD_AND_STORE, // lock and [mem],reg }; void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length) { // simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way out_length = 0; u8 rex = 0, pg2 = 0; bool oso = false, lock = false, repne = false, repe = false; enum : u8 { LOCK = 0xf0, REPNE = 0xf2, REPE = 0xf3, }; // check prefixes: for (;; code++, out_length++) { switch (const u8 prefix = *code) { case LOCK: // group 1 { if (lock) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length); } lock = true; continue; } case REPNE: // group 1 { if (repne) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length); } repne = true; continue; } case REPE: // group 1 { if (repe) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length); } repe = true; continue; } case 0x2e: // group 2 case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: { if (pg2) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2); } else { pg2 = prefix; // probably, segment register } continue; } case 0x66: // group 3 { if (oso) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length); } oso = true; continue; } case 0x67: // group 4 { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix); out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; return; } default: { if ((prefix & 0xf0) == 0x40) // check REX prefix { if (rex) { LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex); } else { rex = prefix; } continue; } } } break; } auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX); }; auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0); }; auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t { return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL); }; auto get_op_size = [](const u8 rex, const bool oso) -> size_t { return rex & 8 ? 8 : (oso ? 2 : 4); }; auto get_modRM_size = [](const u8* code) -> size_t { switch (*code >> 6) // check Mod { case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8) case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32) default: return 1; } }; const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1]; switch (op1) { case 0x0f: { out_length++, code++; switch (op2) { case 0x7f: { if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm { out_op = X64OP_STORE; out_reg = get_modRM_reg_xmm(code, rex); out_size = 16; out_length += get_modRM_size(code); return; } break; } case 0xb0: { if (!oso) // CMPXCHG r8/m8, r8 { out_op = X64OP_CMPXCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0xb1: { if (true) // CMPXCHG r/m, r (16, 32, 64) { out_op = X64OP_CMPXCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } } break; } case 0x20: { if (!oso) { out_op = X64OP_LOAD_AND_STORE; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x21: { if (true) { out_op = X64OP_LOAD_AND_STORE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x86: { if (!oso) // XCHG r8/m8, r8 { out_op = X64OP_XCHG; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x87: { if (true) // XCHG r/m, r (16, 32, 64) { out_op = X64OP_XCHG; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x88: { if (!lock && !oso) // MOV r8/m8, r8 { out_op = X64OP_STORE; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x89: { if (!lock) // MOV r/m, r (16, 32, 64) { out_op = X64OP_STORE; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0x8a: { if (!lock && !oso) // MOV r8, r8/m8 { out_op = X64OP_LOAD; out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code); out_size = 1; out_length += get_modRM_size(code); return; } break; } case 0x8b: { if (!lock) // MOV r, r/m (16, 32, 64) { out_op = X64OP_LOAD; out_reg = get_modRM_reg(code, rex); out_size = get_op_size(rex, oso); out_length += get_modRM_size(code); return; } break; } case 0xa4: { if (!oso && !lock && !repe && !rex) // MOVS { out_op = X64OP_MOVS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP MOVS { out_op = X64OP_MOVS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xaa: { if (!oso && !lock && !repe && !rex) // STOS { out_op = X64OP_STOS; out_reg = X64_NOT_SET; out_size = 1; return; } if (!oso && !lock && repe) // REP STOS { out_op = X64OP_STOS; out_reg = rex & 8 ? X64R_RCX : X64R_ECX; out_size = 1; return; } break; } case 0xc6: { if (!lock && !oso && get_modRM_reg(code, 0) == X64R_RAX) // MOV r8/m8, imm8 { out_op = X64OP_STORE; out_reg = X64_IMM8; out_size = 1; out_length += get_modRM_size(code) + 1; return; } break; } case 0xc7: { if (!lock && get_modRM_reg(code, 0) == X64R_RAX) // MOV r/m, imm16/imm32 (16, 32, 64) { out_op = X64OP_STORE; out_reg = oso ? X64_IMM16 : X64_IMM32; out_size = get_op_size(rex, oso); out_length += get_modRM_size(code) + (oso ? 2 : 4); return; } break; } } LOG_WARNING(MEMORY, "decode_x64_reg_op(%016llxh): unsupported opcode found (%016llX%016llX)", (size_t)code - out_length, *(be_t*)(code - out_length), *(be_t*)(code - out_length + 8)); out_op = X64OP_NONE; out_reg = X64_NOT_SET; out_size = 0; out_length = 0; } #ifdef _WIN32 typedef CONTEXT x64_context; #define X64REG(context, reg) (&(&(context)->Rax)[reg]) #define XMMREG(context, reg) (reinterpret_cast(&(&(context)->Xmm0)[reg])) #define EFLAGS(context) ((context)->EFlags) #else typedef ucontext_t x64_context; #ifdef __APPLE__ #define X64REG(context, reg) (darwin_x64reg(context, reg)) #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg])) #define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags) uint64_t* darwin_x64reg(x64_context *context, int reg) { auto *state = &context->uc_mcontext->__ss; switch(reg) { case 0: // RAX return &state->__rax; case 1: // RCX return &state->__rcx; case 2: // RDX return &state->__rdx; case 3: // RBX return &state->__rbx; case 4: // RSP return &state->__rsp; case 5: // RBP return &state->__rbp; case 6: // RSI return &state->__rsi; case 7: // RDI return &state->__rdi; case 8: // R8 return &state->__r8; case 9: // R9 return &state->__r9; case 10: // R10 return &state->__r10; case 11: // R11 return &state->__r11; case 12: // R12 return &state->__r12; case 13: // R13 return &state->__r13; case 14: // R14 return &state->__r14; case 15: // R15 return &state->__r15; case 16: // RIP return &state->__rip; default: // FAIL assert(0); } } #else typedef decltype(REG_RIP) reg_table_t; static const reg_table_t reg_table[17] = { REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI, REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP }; #define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]]) #define XMMREG(context, reg) (reinterpret_cast(&(context)->uc_mcontext.fpregs->_xmm[reg])) #define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL]) #endif // __APPLE__ #endif #define RAX(c) (*X64REG((c), 0)) #define RCX(c) (*X64REG((c), 1)) #define RDX(c) (*X64REG((c), 2)) #define RSI(c) (*X64REG((c), 6)) #define RDI(c) (*X64REG((c), 7)) #define RIP(c) (*X64REG((c), 16)) bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value) { // get x64 reg value (for store operations) if (reg - X64R_RAX < 16) { // load the value from x64 register const u64 reg_value = *X64REG(context, reg - X64R_RAX); switch (d_size) { case 1: out_value = (u8)reg_value; return true; case 2: out_value = (u16)reg_value; return true; case 4: out_value = (u32)reg_value; return true; case 8: out_value = reg_value; return true; } } else if (reg - X64R_AL < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AL)); return true; } else if (reg - X64R_AH < 4 && d_size == 1) { out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8); return true; } else if (reg == X64_IMM8) { // load the immediate value (assuming it's at the end of the instruction) const s8 imm_value = *(s8*)(RIP(context) + i_size - 1); switch (d_size) { case 1: out_value = (u8)imm_value; return true; } } else if (reg == X64_IMM16) { const s16 imm_value = *(s16*)(RIP(context) + i_size - 2); switch (d_size) { case 2: out_value = (u16)imm_value; return true; } } else if (reg == X64_IMM32) { const s32 imm_value = *(s32*)(RIP(context) + i_size - 4); switch (d_size) { case 4: out_value = (u32)imm_value; return true; case 8: out_value = (u64)imm_value; return true; // sign-extended } } else if (reg == X64R_ECX) { out_value = (u32)RCX(context); return true; } LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", reg, d_size, i_size); return false; } bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value) { // save x64 reg value (for load operations) if (reg - X64R_RAX < 16) { // save the value into x64 register switch (d_size) { case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true; case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true; case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true; case 8: *X64REG(context, reg - X64R_RAX) = value; return true; } } LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", reg, d_size, value); return false; } bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y) { switch (d_size) { case 1: break; case 2: break; case 4: break; case 8: break; default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false; } const u64 sign = 1ull << (d_size * 8 - 1); // sign mask const u64 diff = x - y; const u64 summ = x + y; if (((x & y) | ((x ^ y) & ~summ)) & sign) { EFLAGS(context) |= 0x1; // set CF } else { EFLAGS(context) &= ~0x1; // clear CF } if (x == y) { EFLAGS(context) |= 0x40; // set ZF } else { EFLAGS(context) &= ~0x40; // clear ZF } if (diff & sign) { EFLAGS(context) |= 0x80; // set SF } else { EFLAGS(context) &= ~0x80; // clear SF } if ((x ^ summ) & (y ^ summ) & sign) { EFLAGS(context) |= 0x800; // set OF } else { EFLAGS(context) &= ~0x800; // clear OF } const u8 p1 = (u8)diff ^ ((u8)diff >> 4); const u8 p2 = p1 ^ (p1 >> 2); const u8 p3 = p2 ^ (p2 >> 1); if ((p3 & 1) == 0) { EFLAGS(context) |= 0x4; // set PF } else { EFLAGS(context) &= ~0x4; // clear PF } if (((x & y) | ((x ^ y) & ~summ)) & 0x8) { EFLAGS(context) |= 0x10; // set AF } else { EFLAGS(context) &= ~0x10; // clear AF } return true; } size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size) { if (op == X64OP_MOVS || op == X64OP_STOS) { if (EFLAGS(context) & 0x400 /* direction flag */) { // skip reservation bound check (TODO) return 0; } if (reg != X64_NOT_SET) // get "full" access size from RCX register { u64 counter; if (!get_x64_reg_value(context, reg, 8, i_size, counter)) { return -1; } return d_size * counter; } } if (op == X64OP_CMPXCHG) { // detect whether this instruction can't actually modify memory to avoid breaking reservation; // this may theoretically cause endless loop, but it shouldn't be a problem if only load_sync() generates such instruction u64 cmp, exch; if (!get_x64_reg_value(context, reg, d_size, i_size, cmp) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, exch)) { return -1; } if (cmp == exch) { // skip reservation bound check return 0; } } return d_size; } /** * Callback that can be customised by GSRender backends to track memory access. * Backends can protect memory pages and get this callback called when an access * violation is met. * Should return true if the backend handles the access violation. */ std::function gfxHandler = [](u32) { return false; }; bool handle_access_violation(u32 addr, bool is_writing, x64_context* context) { auto code = (const u8*)RIP(context); x64_op_t op; x64_reg_t reg; size_t d_size; size_t i_size; if (gfxHandler(addr)) return true; // decode single x64 instruction that causes memory access decode_x64_reg_op(code, op, reg, d_size, i_size); if ((d_size | d_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size); return false; } // get length of data being accessed size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size); if ((a_size | a_size + addr) >= 0x100000000ull) { LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size); return false; } // check if address is RawSPU MMIO register if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET) { auto t = Emu.GetCPU().GetRawSPUThread((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET); if (!t) { return false; } if (a_size != 4 || !d_size || !i_size) { LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size); return false; } auto& spu = static_cast(*t); switch (op) { case X64OP_LOAD: { u32 value; if (is_writing || !spu.ReadReg(addr, value) || !put_x64_reg_value(context, reg, d_size, _byteswap_ulong(value))) { return false; } break; } case X64OP_STORE: { u64 reg_value; if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !spu.WriteReg(addr, _byteswap_ulong((u32)reg_value))) { return false; } break; } case X64OP_MOVS: // possibly, TODO case X64OP_STOS: default: { LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", op, reg, d_size, i_size); return false; } } // skip processed instruction RIP(context) += i_size; return true; } // check if fault is caused by the reservation return vm::reservation_query(addr, (u32)a_size, is_writing, [&]() -> bool { // write memory using "privileged" access to avoid breaking reservation if (!d_size || !i_size) { LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size); return false; } switch (op) { case X64OP_STORE: { if (d_size == 16) { if (reg - X64R_XMM0 >= 16) { LOG_ERROR(MEMORY, "X64OP_STORE: d_size=16, reg=%d", reg); return false; } memcpy(vm::priv_ptr(addr), XMMREG(context, reg - X64R_XMM0), 16); break; } u64 reg_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } memcpy(vm::priv_ptr(addr), ®_value, d_size); break; } case X64OP_MOVS: { if (d_size > 8) { LOG_ERROR(MEMORY, "X64OP_MOVS: d_size=%lld", d_size); return false; } if (vm::get_ptr(addr) != (void*)RDI(context)) { LOG_ERROR(MEMORY, "X64OP_MOVS: rdi=0x%llx, rsi=0x%llx, addr=0x%x", (u64)RDI(context), (u64)RSI(context), addr); return false; } u32 a_addr = addr; while (a_addr >> 12 == addr >> 12) { u64 value; // copy data memcpy(&value, (void*)RSI(context), d_size); memcpy(vm::priv_ptr(a_addr), &value, d_size); // shift pointers if (EFLAGS(context) & 0x400 /* direction flag */) { LOG_ERROR(MEMORY, "X64OP_MOVS TODO: reversed direction"); return false; //RSI(context) -= d_size; //RDI(context) -= d_size; //a_addr -= (u32)d_size; } else { RSI(context) += d_size; RDI(context) += d_size; a_addr += (u32)d_size; } // decrement counter if (reg == X64_NOT_SET || !--RCX(context)) { break; } } if (reg == X64_NOT_SET || !RCX(context)) { break; } // don't skip partially processed instruction return true; } case X64OP_STOS: { if (d_size > 8) { LOG_ERROR(MEMORY, "X64OP_STOS: d_size=%lld", d_size); return false; } if (vm::get_ptr(addr) != (void*)RDI(context)) { LOG_ERROR(MEMORY, "X64OP_STOS: rdi=0x%llx, addr=0x%x", (u64)RDI(context), addr); return false; } u64 value; if (!get_x64_reg_value(context, X64R_RAX, d_size, i_size, value)) { return false; } u32 a_addr = addr; while (a_addr >> 12 == addr >> 12) { // fill data with value memcpy(vm::priv_ptr(a_addr), &value, d_size); // shift pointers if (EFLAGS(context) & 0x400 /* direction flag */) { LOG_ERROR(MEMORY, "X64OP_STOS TODO: reversed direction"); return false; //RDI(context) -= d_size; //a_addr -= (u32)d_size; } else { RDI(context) += d_size; a_addr += (u32)d_size; } // decrement counter if (reg == X64_NOT_SET || !--RCX(context)) { break; } } if (reg == X64_NOT_SET || !RCX(context)) { break; } // don't skip partially processed instruction return true; } case X64OP_XCHG: { u64 reg_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value)) { return false; } switch (d_size) { case 1: reg_value = vm::priv_ref>(addr).exchange((u8)reg_value); break; case 2: reg_value = vm::priv_ref>(addr).exchange((u16)reg_value); break; case 4: reg_value = vm::priv_ref>(addr).exchange((u32)reg_value); break; case 8: reg_value = vm::priv_ref>(addr).exchange((u64)reg_value); break; default: return false; } if (!put_x64_reg_value(context, reg, d_size, reg_value)) { return false; } break; } case X64OP_CMPXCHG: { u64 reg_value, old_value, cmp_value; if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, cmp_value)) { return false; } switch (d_size) { case 1: old_value = vm::priv_ref>(addr).compare_and_swap((u8)cmp_value, (u8)reg_value); break; case 2: old_value = vm::priv_ref>(addr).compare_and_swap((u16)cmp_value, (u16)reg_value); break; case 4: old_value = vm::priv_ref>(addr).compare_and_swap((u32)cmp_value, (u32)reg_value); break; case 8: old_value = vm::priv_ref>(addr).compare_and_swap((u64)cmp_value, (u64)reg_value); break; default: return false; } if (!put_x64_reg_value(context, X64R_RAX, d_size, old_value) || !set_x64_cmp_flags(context, d_size, cmp_value, old_value)) { return false; } break; } case X64OP_LOAD_AND_STORE: { u64 value; if (!get_x64_reg_value(context, reg, d_size, i_size, value)) { return false; } switch (d_size) { case 1: value = vm::priv_ref>(addr) &= static_cast(value); break; case 2: value = vm::priv_ref>(addr) &= static_cast(value); break; case 4: value = vm::priv_ref>(addr) &= static_cast(value); break; case 8: value = vm::priv_ref>(addr) &= value; break; default: return false; } if (!set_x64_cmp_flags(context, d_size, value, 0)) { return false; } break; } default: { LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size); return false; } } // skip processed instruction RIP(context) += i_size; return true; }); // TODO: allow recovering from a page fault as a feature of PS3 virtual memory } #ifdef _WIN32 void _se_translator(unsigned int u, EXCEPTION_POINTERS* pExp) { const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr; const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0; if (u == EXCEPTION_ACCESS_VIOLATION && (u32)addr64 == addr64) { throw fmt::format("Access violation %s location 0x%llx", is_writing ? "writing" : "reading", addr64); } } const PVOID exception_handler = (atexit([]{ RemoveVectoredExceptionHandler(exception_handler); }), AddVectoredExceptionHandler(1, [](PEXCEPTION_POINTERS pExp) -> LONG { const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr; const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0; if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && (u32)addr64 == addr64 && GetCurrentNamedThread() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord)) { return EXCEPTION_CONTINUE_EXECUTION; } else { return EXCEPTION_CONTINUE_SEARCH; } })); #else void signal_handler(int sig, siginfo_t* info, void* uct) { const u64 addr64 = (u64)info->si_addr - (u64)vm::g_base_addr; #ifdef __APPLE__ const bool is_writing = ((ucontext_t*)uct)->uc_mcontext->__es.__err & 0x2; #else const bool is_writing = ((ucontext_t*)uct)->uc_mcontext.gregs[REG_ERR] & 0x2; #endif if ((u32)addr64 == addr64 && GetCurrentNamedThread()) { if (handle_access_violation((u32)addr64, is_writing, (ucontext_t*)uct)) { return; // proceed execution } // TODO: this may be wrong throw fmt::format("Access violation %s location 0x%llx", is_writing ? "writing" : "reading", addr64); } // else some fatal error exit(EXIT_FAILURE); } const int sigaction_result = []() -> int { struct sigaction sa; sa.sa_flags = SA_SIGINFO; sigemptyset(&sa.sa_mask); sa.sa_sigaction = signal_handler; return sigaction(SIGSEGV, &sa, NULL); }(); #endif thread_local NamedThreadBase* g_tls_this_thread = nullptr; std::atomic g_thread_count(0); NamedThreadBase* GetCurrentNamedThread() { return g_tls_this_thread; } void SetCurrentNamedThread(NamedThreadBase* value) { const auto old_value = g_tls_this_thread; if (old_value == value) { return; } if (old_value) { vm::reservation_free(); } if (value && value->m_tls_assigned.exchange(true)) { LOG_ERROR(GENERAL, "Thread '%s' was already assigned to g_tls_this_thread of another thread", value->GetThreadName()); g_tls_this_thread = nullptr; } else { g_tls_this_thread = value; } if (old_value) { old_value->m_tls_assigned = false; } } std::string NamedThreadBase::GetThreadName() const { return m_name; } void NamedThreadBase::SetThreadName(const std::string& name) { m_name = name; } void NamedThreadBase::WaitForAnySignal(u64 time) // wait for Notify() signal or sleep { std::unique_lock lock(m_signal_mtx); m_signal_cv.wait_for(lock, std::chrono::milliseconds(time)); } void NamedThreadBase::Notify() // wake up waiting thread or nothing { m_signal_cv.notify_one(); } ThreadBase::ThreadBase(const std::string& name) : NamedThreadBase(name) , m_executor(nullptr) , m_destroy(false) , m_alive(false) { } ThreadBase::~ThreadBase() { if(IsAlive()) Stop(false); delete m_executor; m_executor = nullptr; } void ThreadBase::Start() { if(m_executor) Stop(); std::lock_guard lock(m_main_mutex); m_destroy = false; m_alive = true; m_executor = new std::thread([this]() { SetCurrentThreadDebugName(GetThreadName().c_str()); #ifdef _WIN32 auto old_se_translator = _set_se_translator(_se_translator); if (!exception_handler) { LOG_ERROR(GENERAL, "exception_handler not set"); return; } #else if (sigaction_result == -1) { printf("sigaction() failed"); exit(EXIT_FAILURE); } #endif SetCurrentNamedThread(this); g_thread_count++; try { Task(); } catch (const char* e) { LOG_ERROR(GENERAL, "Exception: %s", e); DumpInformation(); Emu.Pause(); } catch (const std::string& e) { LOG_ERROR(GENERAL, "Exception: %s", e); DumpInformation(); Emu.Pause(); } m_alive = false; SetCurrentNamedThread(nullptr); g_thread_count--; #ifdef _WIN32 _set_se_translator(old_se_translator); #endif }); } void ThreadBase::Stop(bool wait, bool send_destroy) { std::lock_guard lock(m_main_mutex); if (send_destroy) m_destroy = true; if(!m_executor) return; if(wait && m_executor->joinable() && m_alive) { m_executor->join(); } else { m_executor->detach(); } delete m_executor; m_executor = nullptr; } bool ThreadBase::Join() const { std::lock_guard lock(m_main_mutex); if(m_executor->joinable() && m_alive && m_executor != nullptr) { m_executor->join(); return true; } return false; } bool ThreadBase::IsAlive() const { std::lock_guard lock(m_main_mutex); return m_alive; } bool ThreadBase::TestDestroy() const { return m_destroy; } thread_t::thread_t(const std::string& name, bool autojoin, std::function func) : m_name(name) , m_state(TS_NON_EXISTENT) , m_autojoin(autojoin) { start(func); } thread_t::thread_t(const std::string& name, std::function func) : m_name(name) , m_state(TS_NON_EXISTENT) , m_autojoin(false) { start(func); } thread_t::thread_t(const std::string& name) : m_name(name) , m_state(TS_NON_EXISTENT) , m_autojoin(false) { } thread_t::thread_t() : m_state(TS_NON_EXISTENT) , m_autojoin(false) { } void thread_t::set_name(const std::string& name) { m_name = name; } thread_t::~thread_t() { if (m_state == TS_JOINABLE) { if (m_autojoin) { m_thr.join(); } else { m_thr.detach(); } } } void thread_t::start(std::function func) { if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE) { m_thr.join(); // forcefully join previously created thread } std::string name = m_name; m_thr = std::thread([func, name]() { SetCurrentThreadDebugName(name.c_str()); #ifdef _WIN32 auto old_se_translator = _set_se_translator(_se_translator); #endif NamedThreadBase info(name); SetCurrentNamedThread(&info); g_thread_count++; if (Ini.HLELogging.GetValue()) { LOG_NOTICE(HLE, name + " started"); } try { func(); } catch (const char* e) { LOG_ERROR(GENERAL, "Exception: %s", e); Emu.Pause(); } catch (const std::string& e) { LOG_ERROR(GENERAL, "Exception: %s", e.c_str()); Emu.Pause(); } if (Emu.IsStopped()) { LOG_NOTICE(HLE, name + " aborted"); } else if (Ini.HLELogging.GetValue()) { LOG_NOTICE(HLE, name + " ended"); } SetCurrentNamedThread(nullptr); g_thread_count--; #ifdef _WIN32 _set_se_translator(old_se_translator); #endif }); if (m_state.exchange(TS_JOINABLE) == TS_JOINABLE) { assert(!"thread_t::start() failed"); // probably started from another thread } } void thread_t::detach() { if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE) { m_thr.detach(); } else { assert(!"thread_t::detach() failed"); // probably joined or detached } } void thread_t::join() { if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE) { m_thr.join(); } else { assert(!"thread_t::join() failed"); // probably joined or detached } } bool thread_t::joinable() const { //return m_thr.joinable(); return m_state == TS_JOINABLE; } bool waiter_map_t::is_stopped(u32 addr) { if (Emu.IsStopped()) { LOG_WARNING(Log::HLE, "%s: waiter_op() aborted (addr=0x%x)", name.c_str(), addr); return true; } return false; } void waiter_map_t::notify(u32 addr) { // signal appropriate condition variable cv[get_hash(addr)].notify_all(); } const std::function SQUEUE_ALWAYS_EXIT = [](){ return true; }; const std::function SQUEUE_NEVER_EXIT = [](){ return false; }; bool squeue_test_exit() { return Emu.IsStopped(); }