1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-21 18:22:33 +01:00
rpcs3/Utilities/lockless.h
2024-11-18 18:45:34 +02:00

594 lines
11 KiB
C++

#pragma once
#include "util/types.hpp"
#include "util/atomic.hpp"
#include "util/bless.hpp"
// Simple unshrinkable array base for concurrent access. Only growths automatically.
// There is no way to know the current size. The smaller index is, the faster it's accessed.
//
// T is the type of elements. Currently, default constructor of T shall be constexpr.
// N is initial element count, available without any memory allocation and only stored contiguously.
// Let's have around 256 bytes or less worth of preallocated elements
template <typename T, usz N = std::max<usz>(256 / sizeof(T), 1)>
class lf_array
{
// Data (default-initialized)
T m_data[N]{};
// Next array block
atomic_t<lf_array*> m_next{};
public:
constexpr lf_array() = default;
~lf_array()
{
for (auto ptr = m_next.raw(); ptr;)
{
delete std::exchange(ptr, std::exchange(ptr->m_next.raw(), nullptr));
}
}
T& operator [](usz index)
{
lf_array* _this = this;
T* result{};
bool installed = false;
for (usz i = 0;; i += N)
{
if (index - i < N)
{
result = std::addressof(_this->m_data[index - i]);
break;
}
lf_array* next = _this->m_next;
if (!next)
{
// Do not allow access beyond many element more at a time
ensure(!installed && index - i < N * 2);
installed = true;
for (auto _new = new lf_array, ptr = _this; ptr;)
{
// Install the pointer. If failed, go deeper.
ptr = ptr->m_next.compare_and_swap(nullptr, _new);
if (!next)
{
// Determine the next pointer (if null then the new memory has been installed)
next = ptr ? ptr : _new;
}
}
}
_this = next;
}
return *result;
}
template <typename F> requires (std::is_invocable_v<F, T&>)
auto for_each(F&& func, bool is_finite = true)
{
lf_array* _this = this;
using return_t = std::invoke_result_t<F, T&>;
while (_this)
{
for (usz j = 0; j < N; j++)
{
if constexpr (std::is_void_v<return_t>)
{
std::invoke(func, _this->m_data[j]);
}
else
{
auto ret = std::invoke(func, _this->m_data[j]);
if (ret)
{
return std::make_pair(std::addressof(_this->m_data[j]), std::move(ret));
}
}
}
lf_array* next = _this->m_next;
if constexpr (!std::is_void_v<return_t>)
{
if (!next && !is_finite)
{
for (auto _new = new lf_array, ptr = _this; ptr;)
{
// Install the pointer. If failed, go deeper.
ptr = ptr->m_next.compare_and_swap(nullptr, _new);
if (!next)
{
// Determine the next pointer (if null then the new memory has been installed)
next = ptr ? ptr : _new;
}
}
}
}
_this = next;
}
if constexpr (!std::is_void_v<return_t>)
{
return std::make_pair(std::add_pointer_t<T>{}, return_t());
}
}
u64 size() const
{
u64 size_n = 0;
for (auto ptr = this; ptr; ptr = ptr->m_next)
{
size_n += N;
}
return size_n;
}
};
// Simple lock-free FIFO queue base. Based on lf_array<T, N> itself. Currently uses 32-bit counters.
// There is no "push_end" or "pop_begin" provided, the queue element must signal its state on its own.
template<typename T, usz N = std::max<usz>(256 / sizeof(T), 1)>
class lf_fifo : public lf_array<T, N>
{
// LSB 32-bit: push, MSB 32-bit: pop
atomic_t<u64> m_ctrl{};
public:
constexpr lf_fifo() = default;
// Get number of elements in the queue
u32 size() const
{
const u64 ctrl = m_ctrl.load();
return static_cast<u32>(ctrl - (ctrl >> 32));
}
// Acquire the place for one or more elements.
u32 push_begin(u32 count = 1)
{
return static_cast<u32>(m_ctrl.fetch_add(count));
}
// Get current "pop" position
u32 peek() const
{
return static_cast<u32>(m_ctrl >> 32);
}
// Acknowledge processed element, return number of the next one.
// Perform clear if possible, zero is returned in this case.
u32 pop_end(u32 count = 1)
{
return m_ctrl.atomic_op([&](u64& ctrl)
{
ctrl += u64{count} << 32;
if (ctrl >> 32 == static_cast<u32>(ctrl))
{
// Clean if possible
ctrl = 0;
}
return static_cast<u32>(ctrl >> 32);
});
}
};
// Helper type, linked list element
template <typename T>
class lf_queue_item final
{
lf_queue_item* m_link = nullptr;
T m_data;
template <typename U>
friend class lf_queue_iterator;
template <typename U>
friend class lf_queue_slice;
template <typename U>
friend class lf_queue;
template <typename U>
friend class lf_bunch;
constexpr lf_queue_item() = default;
template <typename... Args>
constexpr lf_queue_item(lf_queue_item* link, Args&&... args)
: m_link(link)
, m_data(std::forward<Args>(args)...)
{
}
public:
lf_queue_item(const lf_queue_item&) = delete;
lf_queue_item& operator=(const lf_queue_item&) = delete;
~lf_queue_item()
{
for (lf_queue_item* ptr = m_link; ptr;)
{
delete std::exchange(ptr, std::exchange(ptr->m_link, nullptr));
}
}
};
// Forward iterator: non-owning pointer to the list element in lf_queue_slice<>
template <typename T>
class lf_queue_iterator
{
lf_queue_item<T>* m_ptr = nullptr;
template <typename U>
friend class lf_queue_slice;
template <typename U>
friend class lf_bunch;
public:
constexpr lf_queue_iterator() = default;
bool operator ==(const lf_queue_iterator& rhs) const
{
return m_ptr == rhs.m_ptr;
}
T& operator *() const
{
return m_ptr->m_data;
}
T* operator ->() const
{
return &m_ptr->m_data;
}
lf_queue_iterator& operator ++()
{
m_ptr = m_ptr->m_link;
return *this;
}
lf_queue_iterator operator ++(int)
{
lf_queue_iterator result;
result.m_ptr = m_ptr;
m_ptr = m_ptr->m_link;
return result;
}
};
// Owning pointer to the linked list taken from the lf_queue<>
template <typename T>
class lf_queue_slice
{
lf_queue_item<T>* m_head = nullptr;
template <typename U>
friend class lf_queue;
public:
constexpr lf_queue_slice() = default;
lf_queue_slice(const lf_queue_slice&) = delete;
lf_queue_slice(lf_queue_slice&& r) noexcept
: m_head(r.m_head)
{
r.m_head = nullptr;
}
lf_queue_slice& operator =(const lf_queue_slice&) = delete;
lf_queue_slice& operator =(lf_queue_slice&& r) noexcept
{
if (this != &r)
{
delete m_head;
m_head = r.m_head;
r.m_head = nullptr;
}
return *this;
}
~lf_queue_slice()
{
delete m_head;
}
T& operator *() const
{
return m_head->m_data;
}
T* operator ->() const
{
return &m_head->m_data;
}
explicit operator bool() const
{
return m_head != nullptr;
}
T* get() const
{
return m_head ? &m_head->m_data : nullptr;
}
lf_queue_iterator<T> begin() const
{
lf_queue_iterator<T> result;
result.m_ptr = m_head;
return result;
}
lf_queue_iterator<T> end() const
{
return {};
}
const T& operator[](usz index) const noexcept
{
lf_queue_iterator<T> result = begin();
while (--index != umax)
{
result++;
}
return *result;
}
T& operator[](usz index) noexcept
{
lf_queue_iterator<T> result = begin();
while (--index != umax)
{
result++;
}
return *result;
}
lf_queue_slice& pop_front()
{
delete std::exchange(m_head, std::exchange(m_head->m_link, nullptr));
return *this;
}
};
// Linked list-based multi-producer queue (the consumer drains the whole queue at once)
template <typename T>
class lf_queue final
{
atomic_t<u64> m_head{0};
lf_queue_item<T>* load(u64 value) const noexcept
{
return reinterpret_cast<lf_queue_item<T>*>(value >> 16);
}
// Extract all elements and reverse element order (FILO to FIFO)
lf_queue_item<T>* reverse() noexcept
{
if (auto* head = load(m_head) ? load(m_head.exchange(0)) : nullptr)
{
if (auto* prev = head->m_link)
{
head->m_link = nullptr;
do
{
auto* pprev = prev->m_link;
prev->m_link = head;
head = std::exchange(prev, pprev);
}
while (prev);
}
return head;
}
return nullptr;
}
public:
constexpr lf_queue() = default;
lf_queue(lf_queue&& other) noexcept
{
m_head.release(other.m_head.exchange(0));
}
lf_queue& operator=(lf_queue&& other) noexcept
{
if (this == std::addressof(other))
{
return *this;
}
delete load(m_head);
m_head.release(other.m_head.exchange(0));
return *this;
}
~lf_queue()
{
delete load(m_head);
}
void wait(std::nullptr_t /*null*/ = nullptr) noexcept
{
if (m_head == 0)
{
utils::bless<atomic_t<u32>>(&m_head)[1].wait(0);
}
}
const volatile void* observe() const noexcept
{
return load(m_head);
}
explicit operator bool() const noexcept
{
return m_head != 0;
}
template <bool Notify = true, typename... Args>
bool push(Args&&... args)
{
auto oldv = m_head.load();
auto item = new lf_queue_item<T>(load(oldv), std::forward<Args>(args)...);
while (!m_head.compare_exchange(oldv, reinterpret_cast<u64>(item) << 16))
{
item->m_link = load(oldv);
}
if (!oldv && Notify)
{
// Notify only if queue was empty
notify(true);
}
return !oldv;
}
void notify(bool force = false)
{
if (force || operator bool())
{
utils::bless<atomic_t<u32>>(&m_head)[1].notify_one();
}
}
// Withdraw the list, supports range-for loop: for (auto&& x : y.pop_all()) ...
lf_queue_slice<T> pop_all()
{
lf_queue_slice<T> result;
result.m_head = reverse();
return result;
}
// Withdraw the list in reverse order (LIFO/FILO)
lf_queue_slice<T> pop_all_reversed()
{
lf_queue_slice<T> result;
result.m_head = load(m_head.exchange(0));
return result;
}
// Apply func(data) to each element, return the total length
template <typename F>
usz apply(F func)
{
usz count = 0;
for (auto slice = pop_all(); slice; slice.pop_front())
{
std::invoke(func, *slice);
}
return count;
}
};
// Concurrent linked list, elements remain until destroyed.
template <typename T>
class lf_bunch final
{
atomic_t<lf_queue_item<T>*> m_head{nullptr};
public:
constexpr lf_bunch() noexcept = default;
~lf_bunch()
{
delete m_head.load();
}
// Add unconditionally
template <typename... Args>
T* push(Args&&... args) noexcept
{
auto _old = m_head.load();
auto item = new lf_queue_item<T>(_old, std::forward<Args>(args)...);
while (!m_head.compare_exchange(_old, item))
{
item->m_link = _old;
}
return &item->m_data;
}
// Add if pred(item, all_items) is true for all existing items
template <typename F, typename... Args>
T* push_if(F pred, Args&&... args) noexcept
{
auto _old = m_head.load();
auto _chk = _old;
auto item = new lf_queue_item<T>(_old, std::forward<Args>(args)...);
_chk = nullptr;
do
{
item->m_link = _old;
// Check all items in the queue
for (auto ptr = _old; ptr != _chk; ptr = ptr->m_link)
{
if (!pred(item->m_data, ptr->m_data))
{
item->m_link = nullptr;
delete item;
return nullptr;
}
}
// Set to not check already checked items
_chk = _old;
}
while (!m_head.compare_exchange(_old, item));
return &item->m_data;
}
lf_queue_iterator<T> begin() const
{
lf_queue_iterator<T> result;
result.m_ptr = m_head.load();
return result;
}
lf_queue_iterator<T> end() const
{
return {};
}
};