1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-25 12:12:50 +01:00
rpcs3/Utilities/Config.cpp
2023-02-25 11:23:07 +01:00

603 lines
12 KiB
C++

#include "stdafx.h"
#include "Config.h"
#include "util/types.hpp"
#include "util/yaml.hpp"
#include <charconv>
LOG_CHANNEL(cfg_log, "CFG");
namespace cfg
{
_base::_base(type _type)
: m_type(_type)
{
if (_type != type::node)
{
cfg_log.fatal("Invalid root node");
}
}
_base::_base(type _type, node* owner, std::string name, bool dynamic)
: m_type(_type), m_dynamic(dynamic), m_name(std::move(name))
{
for (const auto& node : owner->m_nodes)
{
if (node->get_name() == name)
{
cfg_log.fatal("Node already exists: %s", name);
}
}
owner->m_nodes.emplace_back(this);
}
bool _base::from_string(std::string_view, bool)
{
cfg_log.fatal("cfg::_base::from_string() purecall");
return false;
}
bool _base::from_list(std::vector<std::string>&&)
{
cfg_log.fatal("cfg::_base::from_list() purecall");
return false;
}
// Emit YAML
static void encode(YAML::Emitter& out, const class _base& rhs);
// Incrementally load config entries from YAML::Node.
// The config value is preserved if the corresponding YAML node doesn't exist.
static void decode(const YAML::Node& data, class _base& rhs, bool dynamic = false);
}
std::vector<std::string> cfg::make_int_range(s64 min, s64 max)
{
return {std::to_string(min), std::to_string(max)};
}
bool try_to_int64(s64* out, std::string_view value, s64 min, s64 max)
{
if (value.empty())
{
if (out) cfg_log.error("cfg::try_to_uint64(): called with an empty string");
return false;
}
s64 result;
const char* start = value.data();
const char* end = start + value.size();
int base = 10;
int sign = +1;
if (start[0] == '-')
{
sign = -1;
start += 1;
}
if (start[0] == '0' && value.size() >= 2 && (start[1] == 'x' || start[1] == 'X'))
{
// Limited hex support
base = 16;
start += 2;
}
const auto ret = std::from_chars(start, end, result, base);
if (ret.ec != std::errc() || ret.ptr != end || (start[0] == '-' && sign < 0))
{
if (out) cfg_log.error("cfg::try_to_int64('%s'): invalid integer", value);
return false;
}
result *= sign;
if (result < min || result > max)
{
if (out) cfg_log.error("cfg::try_to_int64('%s'): out of bounds (val=%d, min=%d, max=%d)", value, result, min, max);
return false;
}
if (out) *out = result;
return true;
}
std::vector<std::string> cfg::make_uint_range(u64 min, u64 max)
{
return {std::to_string(min), std::to_string(max)};
}
bool try_to_uint64(u64* out, std::string_view value, u64 min, u64 max)
{
if (value.empty())
{
if (out) cfg_log.error("cfg::try_to_uint64(): called with an empty string");
return false;
}
u64 result;
const char* start = value.data();
const char* end = start + value.size();
int base = 10;
if (start[0] == '0' && value.size() >= 2 && (start[1] == 'x' || start[1] == 'X'))
{
// Limited hex support
base = 16;
start += 2;
}
const auto ret = std::from_chars(start, end, result, base);
if (ret.ec != std::errc() || ret.ptr != end)
{
if (out) cfg_log.error("cfg::try_to_uint64('%s'): invalid integer", value);
return false;
}
if (result < min || result > max)
{
if (out) cfg_log.error("cfg::try_to_uint64('%s'): out of bounds (val=%u, min=%u, max=%u)", value, result, min, max);
return false;
}
if (out) *out = result;
return true;
}
std::vector<std::string> cfg::make_float_range(f64 min, f64 max)
{
return {std::to_string(min), std::to_string(max)};
}
bool try_to_float(f64* out, std::string_view value, f64 min, f64 max)
{
if (value.empty())
{
if (out) cfg_log.error("cfg::try_to_float(): called with an empty string");
return false;
}
// std::from_chars float is yet to be implemented on Xcode it seems
// And strtod doesn't support ranged view so we need to ensure it meets a null terminator
const std::string str = std::string{value};
char* end_check{};
const double result = std::strtod(str.data(), &end_check);
if (end_check != str.data() + str.size())
{
if (out) cfg_log.error("cfg::try_to_float('%s'): invalid float", value);
return false;
}
if (result < min || result > max)
{
if (out) cfg_log.error("cfg::try_to_float('%s'): out of bounds (val=%f, min=%f, max=%f)", value, result, min, max);
return false;
}
if (out) *out = result;
return true;
}
bool try_to_string(std::string* out, const f64& value)
{
#ifdef __APPLE__
if (out) *out = std::to_string(value);
return true;
#else
std::array<char, 32> str{};
if (auto [ptr, ec] = std::to_chars(str.data(), str.data() + str.size(), value, std::chars_format::fixed); ec == std::errc())
{
if (out) *out = std::string(str.data(), ptr);
return true;
}
else
{
if (out) cfg_log.error("cfg::try_to_string(): could not convert value '%f' to string. error='%s'", value, std::make_error_code(ec).message());
return false;
}
#endif
}
bool cfg::try_to_enum_value(u64* out, decltype(&fmt_class_string<int>::format) func, std::string_view value)
{
u64 max = umax;
for (u64 i = 0;; i++)
{
std::string var;
func(var, i);
if (var == value)
{
if (out) *out = i;
return true;
}
std::string hex;
fmt_class_string<u64>::format(hex, i);
if (var == hex)
{
break;
}
max = i;
}
u64 result;
const char* start = value.data();
const char* end = start + value.size();
int base = 10;
if (start[0] == '0' && (start[1] == 'x' || start[1] == 'X'))
{
// Limited hex support
base = 16;
start += 2;
}
const auto ret = std::from_chars(start, end, result, base);
if (ret.ec != std::errc() || ret.ptr != end)
{
if (out) cfg_log.error("cfg::try_to_enum_value('%s'): invalid enum or integer", value);
return false;
}
if (result > max)
{
if (out) cfg_log.error("cfg::try_to_enum_value('%s'): out of bounds(val=%u, min=0, max=%u)", value, result, max);
return false;
}
if (out) *out = result;
return true;
}
std::vector<std::string> cfg::try_to_enum_list(decltype(&fmt_class_string<int>::format) func)
{
std::vector<std::string> result;
for (u64 i = 0;; i++)
{
std::string var;
func(var, i);
std::string hex;
fmt_class_string<u64>::format(hex, i);
if (var == hex)
{
break;
}
result.emplace_back(std::move(var));
}
return result;
}
void cfg::encode(YAML::Emitter& out, const cfg::_base& rhs)
{
switch (rhs.get_type())
{
case type::node:
{
out << YAML::BeginMap;
for (const auto& node : static_cast<const node&>(rhs).get_nodes())
{
out << YAML::Key << node->get_name();
out << YAML::Value;
encode(out, *node);
}
out << YAML::EndMap;
return;
}
case type::set:
{
out << YAML::BeginSeq;
for (const auto& str : static_cast<const set_entry&>(rhs).get_set())
{
out << str;
}
out << YAML::EndSeq;
return;
}
case type::map:
{
out << YAML::BeginMap;
for (const auto& np : static_cast<const map_entry&>(rhs).get_map())
{
out << YAML::Key << np.first;
out << YAML::Value << fmt::format("%s", np.second);
}
out << YAML::EndMap;
return;
}
case type::log:
{
out << YAML::BeginMap;
for (const auto& np : static_cast<const log_entry&>(rhs).get_map())
{
if (np.second == logs::level::notice) continue;
out << YAML::Key << np.first;
out << YAML::Value << fmt::format("%s", np.second);
}
out << YAML::EndMap;
return;
}
case type::device:
{
out << YAML::BeginMap;
for (const auto& [key, info] : static_cast<const device_entry&>(rhs).get_map())
{
out << YAML::Key << key;
out << YAML::BeginMap;
out << YAML::Key << "Path" << YAML::Value << info.path;
out << YAML::Key << "Serial" << YAML::Value << info.serial;
out << YAML::Key << "VID" << YAML::Value << info.vid;
out << YAML::Key << "PID" << YAML::Value << info.pid;
out << YAML::EndMap;
}
out << YAML::EndMap;
return;
}
default:
{
out << rhs.to_string();
return;
}
}
}
void cfg::decode(const YAML::Node& data, cfg::_base& rhs, bool dynamic)
{
if (dynamic && !rhs.get_is_dynamic())
{
return;
}
switch (rhs.get_type())
{
case type::node:
{
if (data.IsScalar() || data.IsSequence())
{
return; // ???
}
for (const auto& pair : data)
{
if (!pair.first.IsScalar()) continue;
// Find the key among existing nodes
for (const auto& node : static_cast<node&>(rhs).get_nodes())
{
if (node->get_name() == pair.first.Scalar())
{
decode(pair.second, *node, dynamic);
}
}
}
break;
}
case type::set:
{
std::vector<std::string> values;
if (YAML::convert<decltype(values)>::decode(data, values))
{
rhs.from_list(std::move(values));
}
break;
}
case type::map:
{
if (!data.IsMap())
{
return;
}
map_of_type<std::string> values;
for (const auto& pair : data)
{
if (!pair.first.IsScalar() || !pair.second.IsScalar()) continue;
values.emplace(pair.first.Scalar(), pair.second.Scalar());
}
static_cast<map_entry&>(rhs).set_map(std::move(values));
break;
}
case type::log:
{
if (data.IsScalar() || data.IsSequence())
{
return; // ???
}
map_of_type<logs::level> values;
for (const auto& pair : data)
{
if (!pair.first.IsScalar() || !pair.second.IsScalar()) continue;
u64 value;
if (cfg::try_to_enum_value(&value, &fmt_class_string<logs::level>::format, pair.second.Scalar()))
{
values.emplace(pair.first.Scalar(), static_cast<logs::level>(static_cast<int>(value)));
}
}
static_cast<log_entry&>(rhs).set_map(std::move(values));
break;
}
case type::device:
{
if (!data.IsMap())
{
return; // ???
}
map_of_type<device_info> values;
for (const auto& pair : data)
{
if (!pair.first.IsScalar() || !pair.second.IsMap()) continue;
device_info info{};
for (const auto& key_value : pair.second)
{
if (!key_value.first.IsScalar() || !key_value.second.IsScalar()) continue;
if (key_value.first.Scalar() == "Path")
info.path = key_value.second.Scalar();
if (key_value.first.Scalar() == "Serial")
info.serial = key_value.second.Scalar();
if (key_value.first.Scalar() == "VID")
info.vid = key_value.second.Scalar();
if (key_value.first.Scalar() == "PID")
info.pid = key_value.second.Scalar();
}
values.emplace(pair.first.Scalar(), std::move(info));
}
static_cast<device_entry&>(rhs).set_map(std::move(values));
break;
}
default:
{
std::string value;
if (YAML::convert<std::string>::decode(data, value))
{
rhs.from_string(value, dynamic);
}
break; // ???
}
}
}
std::string cfg::node::to_string() const
{
YAML::Emitter out;
cfg::encode(out, *this);
return {out.c_str(), out.size()};
}
bool cfg::node::from_string(std::string_view value, bool dynamic)
{
auto [result, error] = yaml_load(std::string(value));
if (error.empty())
{
cfg::decode(result, *this, dynamic);
return true;
}
cfg_log.error("Failed to load node: %s", error);
return false;
}
void cfg::node::from_default()
{
for (auto& node : m_nodes)
{
node->from_default();
}
}
void cfg::_bool::from_default()
{
m_value = def;
}
void cfg::string::from_default()
{
m_value = def;
}
void cfg::set_entry::from_default()
{
m_set = {};
}
std::string cfg::map_entry::get_value(std::string_view key)
{
if (auto it = m_map.find(key); it != m_map.end())
{
return it->second;
}
return {};
}
void cfg::map_entry::set_value(std::string key, std::string value)
{
m_map[std::move(key)] = std::move(value);
}
void cfg::map_entry::set_map(map_of_type<std::string>&& map)
{
m_map = std::move(map);
}
void cfg::map_entry::erase(std::string_view key)
{
if (auto it = m_map.find(key); it != m_map.end())
{
m_map.erase(it);
}
}
void cfg::map_entry::from_default()
{
set_map({});
}
void cfg::log_entry::set_map(map_of_type<logs::level>&& map)
{
m_map = std::move(map);
}
void cfg::log_entry::from_default()
{
set_map({});
}
std::pair<u16, u16> cfg::device_info::get_usb_ids() const
{
auto string_to_hex = [](const std::string& str) -> u16
{
u16 value = 0x0000;
if (!str.empty() && std::from_chars(str.data(), str.data() + str.size(), value, 16).ec != std::errc{})
cfg_log.error("Failed to parse hex from string \"%s\"", str);
return value;
};
return {string_to_hex(vid), string_to_hex(pid)};
}
void cfg::device_entry::set_map(map_of_type<device_info>&& map)
{
m_map = std::move(map);
}
void cfg::device_entry::from_default()
{
m_map = m_default;
}