1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00
rpcs3/Utilities/Thread.cpp
2016-05-23 16:22:25 +03:00

1583 lines
34 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/RawSPUThread.h"
#include "Thread.h"
#ifdef _WIN32
#include <windows.h>
#else
#ifdef __APPLE__
#define _XOPEN_SOURCE
#define __USE_GNU
#endif
#include <signal.h>
#include <ucontext.h>
#endif
static void report_fatal_error(const std::string& msg)
{
std::string _msg = msg + "\n"
"HOW TO REPORT ERRORS:\n"
"1) Check the FAQ, readme, other sources. Please ensure that your hardware and software configuration is compliant.\n"
"2) You must provide FULL information: how to reproduce the error (your actions), RPCS3.log file, other *.log files whenever requested.\n"
"3) Please ensure that your software (game) is 'Playable' or close. Please note that 'Non-playable' games will be ignored.\n"
"4) If the software (game) is not 'Playable', please ensure that this error is unexpected, i.e. it didn't happen before or similar.\n"
"Please, don't send incorrect reports. Thanks for understanding.\n";
#ifdef _WIN32
_msg += "Press (Ctrl+C) to copy this message.";
MessageBoxA(0, _msg.c_str(), "Fatal error", MB_ICONERROR); // TODO: unicode message
#else
std::printf("Fatal error: \n%s", _msg.c_str());
#endif
}
[[noreturn]] void catch_all_exceptions()
{
try
{
throw;
}
catch (const std::exception& e)
{
report_fatal_error("Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what());
}
catch (...)
{
report_fatal_error("Unhandled exception (unknown)");
}
std::abort();
}
enum x64_reg_t : u32
{
X64R_RAX = 0,
X64R_RCX,
X64R_RDX,
X64R_RBX,
X64R_RSP,
X64R_RBP,
X64R_RSI,
X64R_RDI,
X64R_R8,
X64R_R9,
X64R_R10,
X64R_R11,
X64R_R12,
X64R_R13,
X64R_R14,
X64R_R15,
X64R_XMM0 = 0,
X64R_XMM1,
X64R_XMM2,
X64R_XMM3,
X64R_XMM4,
X64R_XMM5,
X64R_XMM6,
X64R_XMM7,
X64R_XMM8,
X64R_XMM9,
X64R_XMM10,
X64R_XMM11,
X64R_XMM12,
X64R_XMM13,
X64R_XMM14,
X64R_XMM15,
X64R_AL,
X64R_CL,
X64R_DL,
X64R_BL,
X64R_AH,
X64R_CH,
X64R_DH,
X64R_BH,
X64_NOT_SET,
X64_IMM8,
X64_IMM16,
X64_IMM32,
X64R_ECX = X64R_CL,
};
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register
X64OP_STORE, // take the value from x64 register or an immediate and use it
X64OP_MOVS,
X64OP_STOS,
X64OP_XCHG,
X64OP_CMPXCHG,
X64OP_LOAD_AND_STORE, // lock and [mem], reg
X64OP_LOAD_OR_STORE, // lock or [mem], reg (TODO)
X64OP_LOAD_XOR_STORE, // lock xor [mem], reg (TODO)
X64OP_INC, // lock inc [mem] (TODO)
X64OP_DEC, // lock dec [mem] (TODO)
};
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
out_length = 0;
u8 rex = 0, pg2 = 0;
bool oso = false, lock = false, repne = false, repe = false;
enum : u8
{
LOCK = 0xf0,
REPNE = 0xf2,
REPE = 0xf3,
};
// check prefixes:
for (;; code++, out_length++)
{
switch (const u8 prefix = *code)
{
case LOCK: // group 1
{
if (lock)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length);
}
lock = true;
continue;
}
case REPNE: // group 1
{
if (repne)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length);
}
repne = true;
continue;
}
case REPE: // group 1
{
if (repe)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length);
}
repe = true;
continue;
}
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (pg2)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2);
}
else
{
pg2 = prefix; // probably, segment register
}
continue;
}
case 0x66: // group 3
{
if (oso)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length);
}
oso = true;
continue;
}
case 0x67: // group 4
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix);
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
return;
}
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex);
}
else
{
rex = prefix;
}
continue;
}
}
}
break;
}
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX);
};
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0);
};
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL);
};
auto get_op_size = [](const u8 rex, const bool oso) -> size_t
{
return rex & 8 ? 8 : (oso ? 2 : 4);
};
auto get_modRM_size = [](const u8* code) -> size_t
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
switch (op1)
{
case 0x0f:
{
out_length++, code++;
switch (op2)
{
case 0x11:
{
if (!repe && !repne && !oso) // MOVUPS xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb0:
{
if (!oso) // CMPXCHG r8/m8, r8
{
out_op = X64OP_CMPXCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb1:
{
if (true) // CMPXCHG r/m, r (16, 32, 64)
{
out_op = X64OP_CMPXCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
case 0x20:
{
if (!oso)
{
out_op = X64OP_LOAD_AND_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x21:
{
if (true)
{
out_op = X64OP_LOAD_AND_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x86:
{
if (!oso) // XCHG r8/m8, r8
{
out_op = X64OP_XCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x87:
{
if (true) // XCHG r/m, r (16, 32, 64)
{
out_op = X64OP_XCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x88:
{
if (!lock && !oso) // MOV r8/m8, r8
{
out_op = X64OP_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x89:
{
if (!lock) // MOV r/m, r (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8a:
{
if (!lock && !oso) // MOV r8, r8/m8
{
out_op = X64OP_LOAD;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8b:
{
if (!lock) // MOV r, r/m (16, 32, 64)
{
out_op = X64OP_LOAD;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xa4:
{
if (!oso && !lock && !repe && !rex) // MOVS
{
out_op = X64OP_MOVS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP MOVS
{
out_op = X64OP_MOVS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xaa:
{
if (!oso && !lock && !repe && !rex) // STOS
{
out_op = X64OP_STOS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP STOS
{
out_op = X64OP_STOS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xc6:
{
if (!lock && !oso && get_modRM_reg(code, 0) == X64R_RAX) // MOV r8/m8, imm8
{
out_op = X64OP_STORE;
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
break;
}
case 0xc7:
{
if (!lock && get_modRM_reg(code, 0) == X64R_RAX) // MOV r/m, imm16/imm32 (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
break;
}
}
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
}
#ifdef _WIN32
typedef CONTEXT x64_context;
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
#define EFLAGS(context) ((context)->EFlags)
#define ARG1(context) RCX(context)
#define ARG2(context) RDX(context)
#else
typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
uint64_t* darwin_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext->__ss;
switch(reg)
{
case 0: return &state->__rax;
case 1: return &state->__rcx;
case 2: return &state->__rdx;
case 3: return &state->__rbx;
case 4: return &state->__rsp;
case 5: return &state->__rbp;
case 6: return &state->__rsi;
case 7: return &state->__rdi;
case 8: return &state->__r8;
case 9: return &state->__r9;
case 10: return &state->__r10;
case 11: return &state->__r11;
case 12: return &state->__r12;
case 13: return &state->__r13;
case 14: return &state->__r14;
case 15: return &state->__r15;
case 16: return &state->__rip;
default:
LOG_ERROR(GENERAL, "Invalid register index: %d", reg);
return nullptr;
}
}
#else
static const decltype(REG_RAX) reg_table[] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
#endif // __APPLE__
#define ARG1(context) RDI(context)
#define ARG2(context) RSI(context)
#endif
#define RAX(c) (*X64REG((c), 0))
#define RCX(c) (*X64REG((c), 1))
#define RDX(c) (*X64REG((c), 2))
#define RSP(c) (*X64REG((c), 4))
#define RSI(c) (*X64REG((c), 6))
#define RDI(c) (*X64REG((c), 7))
#define RIP(c) (*X64REG((c), 16))
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value)
{
// get x64 reg value (for store operations)
if (reg - X64R_RAX < 16)
{
// load the value from x64 register
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
switch (d_size)
{
case 1: out_value = (u8)reg_value; return true;
case 2: out_value = (u16)reg_value; return true;
case 4: out_value = (u32)reg_value; return true;
case 8: out_value = reg_value; return true;
}
}
else if (reg - X64R_AL < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AL));
return true;
}
else if (reg - X64R_AH < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8);
return true;
}
else if (reg == X64_IMM8)
{
// load the immediate value (assuming it's at the end of the instruction)
const s8 imm_value = *(s8*)(RIP(context) + i_size - 1);
switch (d_size)
{
case 1: out_value = (u8)imm_value; return true;
}
}
else if (reg == X64_IMM16)
{
const s16 imm_value = *(s16*)(RIP(context) + i_size - 2);
switch (d_size)
{
case 2: out_value = (u16)imm_value; return true;
}
}
else if (reg == X64_IMM32)
{
const s32 imm_value = *(s32*)(RIP(context) + i_size - 4);
switch (d_size)
{
case 4: out_value = (u32)imm_value; return true;
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64R_ECX)
{
out_value = (u32)RCX(context);
return true;
}
LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", reg, d_size, i_size);
return false;
}
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value)
{
// save x64 reg value (for load operations)
if (reg - X64R_RAX < 16)
{
// save the value into x64 register
switch (d_size)
{
case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true;
case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true;
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
}
}
LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", reg, d_size, value);
return false;
}
bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y)
{
switch (d_size)
{
case 1: break;
case 2: break;
case 4: break;
case 8: break;
default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
}
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
const u64 diff = x - y;
const u64 summ = x + y;
if (((x & y) | ((x ^ y) & ~summ)) & sign)
{
EFLAGS(context) |= 0x1; // set CF
}
else
{
EFLAGS(context) &= ~0x1; // clear CF
}
if (x == y)
{
EFLAGS(context) |= 0x40; // set ZF
}
else
{
EFLAGS(context) &= ~0x40; // clear ZF
}
if (diff & sign)
{
EFLAGS(context) |= 0x80; // set SF
}
else
{
EFLAGS(context) &= ~0x80; // clear SF
}
if ((x ^ summ) & (y ^ summ) & sign)
{
EFLAGS(context) |= 0x800; // set OF
}
else
{
EFLAGS(context) &= ~0x800; // clear OF
}
const u8 p1 = (u8)diff ^ ((u8)diff >> 4);
const u8 p2 = p1 ^ (p1 >> 2);
const u8 p3 = p2 ^ (p2 >> 1);
if ((p3 & 1) == 0)
{
EFLAGS(context) |= 0x4; // set PF
}
else
{
EFLAGS(context) &= ~0x4; // clear PF
}
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
{
EFLAGS(context) |= 0x10; // set AF
}
else
{
EFLAGS(context) &= ~0x10; // clear AF
}
return true;
}
size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size)
{
if (op == X64OP_MOVS || op == X64OP_STOS)
{
if (EFLAGS(context) & 0x400 /* direction flag */)
{
// skip reservation bound check (TODO)
return 0;
}
if (reg != X64_NOT_SET) // get "full" access size from RCX register
{
u64 counter;
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
{
return -1;
}
return d_size * counter;
}
}
if (op == X64OP_CMPXCHG)
{
// Detect whether the instruction can't actually modify memory to avoid breaking reservation
u64 cmp, exch;
if (!get_x64_reg_value(context, reg, d_size, i_size, cmp) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, exch))
{
return -1;
}
if (cmp == exch)
{
// skip reservation bound check
return 0;
}
}
return d_size;
}
namespace rsx
{
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
}
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
{
if (rsx::g_access_violation_handler && rsx::g_access_violation_handler(addr, is_writing))
{
return true;
}
auto code = (const u8*)RIP(context);
x64_op_t op;
x64_reg_t reg;
size_t d_size;
size_t i_size;
// decode single x64 instruction that causes memory access
decode_x64_reg_op(code, op, reg, d_size, i_size);
auto report_opcode = [=]()
{
if (op == X64OP_NONE)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): unsupported opcode found (%016llX%016llX)", code, *(be_t<u64>*)(code), *(be_t<u64>*)(code + 8));
}
};
if ((d_size | d_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size);
report_opcode();
return false;
}
// get length of data being accessed
size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size);
if ((a_size | a_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size);
report_opcode();
return false;
}
// check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
auto thread = idm::get<RawSPUThread>((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET);
if (!thread)
{
return false;
}
if (a_size != 4 || !d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
report_opcode();
return false;
}
switch (op)
{
case X64OP_LOAD:
{
u32 value;
if (is_writing || !thread->read_reg(addr, value) || !put_x64_reg_value(context, reg, d_size, se_storage<u32>::swap(value)))
{
return false;
}
break;
}
case X64OP_STORE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !thread->write_reg(addr, se_storage<u32>::swap((u32)reg_value)))
{
return false;
}
break;
}
case X64OP_MOVS: // possibly, TODO
case X64OP_STOS:
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", op, reg, d_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
}
// check if fault is caused by the reservation
return vm::reservation_query(addr, (u32)a_size, is_writing, [&]() -> bool
{
// write memory using "privileged" access to avoid breaking reservation
if (!d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
report_opcode();
return false;
}
switch (op)
{
case X64OP_STORE:
{
if (d_size == 16)
{
if (reg - X64R_XMM0 >= 16)
{
LOG_ERROR(MEMORY, "X64OP_STORE: d_size=16, reg=%d", reg);
return false;
}
std::memcpy(vm::base_priv(addr), XMMREG(context, reg - X64R_XMM0), 16);
break;
}
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
std::memcpy(vm::base_priv(addr), &reg_value, d_size);
break;
}
case X64OP_MOVS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_MOVS: d_size=%lld", d_size);
return false;
}
if (vm::base(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_MOVS: rdi=0x%llx, rsi=0x%llx, addr=0x%x", (u64)RDI(context), (u64)RSI(context), addr);
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
u64 value;
// copy data
std::memcpy(&value, (void*)RSI(context), d_size);
std::memcpy(vm::base_priv(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_MOVS TODO: reversed direction");
return false;
//RSI(context) -= d_size;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RSI(context) += d_size;
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_STOS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_STOS: d_size=%lld", d_size);
return false;
}
if (vm::base(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_STOS: rdi=0x%llx, addr=0x%x", (u64)RDI(context), addr);
return false;
}
u64 value;
if (!get_x64_reg_value(context, X64R_RAX, d_size, i_size, value))
{
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
// fill data with value
std::memcpy(vm::base_priv(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_STOS TODO: reversed direction");
return false;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_XCHG:
{
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
switch (d_size)
{
case 1: reg_value = ((atomic_t<u8>*)vm::base_priv(addr))->exchange((u8)reg_value); break;
case 2: reg_value = ((atomic_t<u16>*)vm::base_priv(addr))->exchange((u16)reg_value); break;
case 4: reg_value = ((atomic_t<u32>*)vm::base_priv(addr))->exchange((u32)reg_value); break;
case 8: reg_value = ((atomic_t<u64>*)vm::base_priv(addr))->exchange((u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, reg, d_size, reg_value))
{
return false;
}
break;
}
case X64OP_CMPXCHG:
{
u64 reg_value, old_value, cmp_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, cmp_value))
{
return false;
}
switch (d_size)
{
case 1: old_value = ((atomic_t<u8>*)vm::base_priv(addr))->compare_and_swap((u8)cmp_value, (u8)reg_value); break;
case 2: old_value = ((atomic_t<u16>*)vm::base_priv(addr))->compare_and_swap((u16)cmp_value, (u16)reg_value); break;
case 4: old_value = ((atomic_t<u32>*)vm::base_priv(addr))->compare_and_swap((u32)cmp_value, (u32)reg_value); break;
case 8: old_value = ((atomic_t<u64>*)vm::base_priv(addr))->compare_and_swap((u64)cmp_value, (u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, X64R_RAX, d_size, old_value) || !set_x64_cmp_flags(context, d_size, cmp_value, old_value))
{
return false;
}
break;
}
case X64OP_LOAD_AND_STORE:
{
u64 value;
if (!get_x64_reg_value(context, reg, d_size, i_size, value))
{
return false;
}
switch (d_size)
{
case 1: value = *(atomic_t<u8>*)vm::base_priv(addr) &= (u8)value; break;
case 2: value = *(atomic_t<u16>*)vm::base_priv(addr) &= (u16)value; break;
case 4: value = *(atomic_t<u32>*)vm::base_priv(addr) &= (u32)value; break;
case 8: value = *(atomic_t<u64>*)vm::base_priv(addr) &= (u64)value; break;
default: return false;
}
if (!set_x64_cmp_flags(context, d_size, value, 0))
{
return false;
}
break;
}
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
});
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
}
[[noreturn]] static void throw_access_violation(const char* cause, u64 addr)
{
vm::throw_access_violation(addr, cause);
std::abort();
}
// Modify context in order to convert hardware exception to C++ exception
static void prepare_throw_access_violation(x64_context* context, const char* cause, u32 address)
{
// Set throw_access_violation() call args (old register values are lost)
ARG1(context) = (u64)cause;
ARG2(context) = address;
// Push the exception address as a "return" address (throw_access_violation() shall not return)
*--(u64*&)(RSP(context)) = RIP(context);
RIP(context) = (u64)std::addressof(throw_access_violation);
}
#ifdef _WIN32
static LONG exception_handler(PEXCEPTION_POINTERS pExp)
{
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0);
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
{
vm::g_tls_fault_count++;
if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
static LONG exception_filter(PEXCEPTION_POINTERS pExp)
{
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
{
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::base(0);
const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading";
if (!(vm::g_tls_fault_count & (1ull << 63)) && addr64 < 0x100000000ull)
{
vm::g_tls_fault_count |= (1ull << 63);
// Setup throw_access_violation() call on the context
prepare_throw_access_violation(pExp->ContextRecord, cause, (u32)addr64);
return EXCEPTION_CONTINUE_EXECUTION;
}
msg += fmt::format("Access violation %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
}
else
{
msg += fmt::format("Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
{
msg += fmt::format("ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
}
}
msg += fmt::format("Instruction address: %p.\n", pExp->ContextRecord->Rip);
msg += fmt::format("Image base: %p.\n", GetModuleHandle(NULL));
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ILLEGAL_INSTRUCTION)
{
msg += "\n"
"Illegal instruction exception occured.\n"
"Note that your CPU must support SSSE3 extension.\n";
}
// TODO: print registers and the callstack
// Report fatal error
report_fatal_error(msg);
return EXCEPTION_CONTINUE_SEARCH;
}
const bool s_exception_handler_set = []() -> bool
{
if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
{
report_fatal_error("AddVectoredExceptionHandler() failed.");
std::abort();
}
if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter))
{
report_fatal_error("SetUnhandledExceptionFilter() failed.");
std::abort();
}
return true;
}();
#else
static void signal_handler(int sig, siginfo_t* info, void* uct)
{
x64_context* context = (ucontext_t*)uct;
#ifdef __APPLE__
const bool is_writing = context->uc_mcontext->__es.__err & 0x2;
#else
const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2;
#endif
const u64 addr64 = (u64)info->si_addr - (u64)vm::base(0);
const auto cause = is_writing ? "writing" : "reading";
if (addr64 < 0x100000000ull)
{
vm::g_tls_fault_count++;
// Try to process access violation
if (!thread_ctrl::get_current() || !handle_access_violation((u32)addr64, is_writing, context))
{
// Setup throw_access_violation() call on the context
prepare_throw_access_violation(context, cause, (u32)addr64);
}
}
else
{
// TODO (debugger interaction)
report_fatal_error(fmt::format("Access violation %s location %p at %p.", cause, info->si_addr, RIP(context)));
std::abort();
}
}
const bool s_exception_handler_set = []() -> bool
{
struct ::sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
{
std::printf("sigaction() failed (0x%x).", errno);
std::abort();
}
return true;
}();
#endif
const bool s_self_test = []() -> bool
{
// Find ret instruction
if ((*(u8*)throw_access_violation & 0xF6) == 0xC2)
{
std::abort();
}
return true;
}();
#include <thread>
#include <mutex>
#include <condition_variable>
#include <exception>
#include <chrono>
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
struct thread_ctrl::internal
{
std::mutex mutex;
std::condition_variable cond;
std::condition_variable join; // Allows simultaneous joining
task_stack atexit;
std::exception_ptr exception; // Caught exception
std::chrono::high_resolution_clock::time_point time_limit;
};
thread_local thread_ctrl::internal* g_tls_internal = nullptr;
extern std::mutex& get_current_thread_mutex()
{
return g_tls_internal->mutex;
}
extern std::condition_variable& get_current_thread_cv()
{
return g_tls_internal->cond;
}
// TODO
extern atomic_t<u32> g_thread_count(0);
extern thread_local std::string(*g_tls_log_prefix)();
void thread_ctrl::start(const std::shared_ptr<thread_ctrl>& ctrl, task_stack task)
{
reinterpret_cast<std::thread&>(ctrl->m_thread) = std::thread([ctrl, task = std::move(task)]
{
try
{
ctrl->initialize();
task.exec();
}
catch (...)
{
ctrl->initialize_once();
ctrl->m_data->exception = std::current_exception();
}
ctrl->finalize();
});
}
void thread_ctrl::wait_start(u64 timeout)
{
initialize_once();
m_data->time_limit = std::chrono::high_resolution_clock::now() + std::chrono::microseconds(timeout);
}
bool thread_ctrl::wait_wait(u64 timeout)
{
initialize_once();
std::unique_lock<std::mutex> lock(m_data->mutex, std::adopt_lock);
if (timeout && m_data->cond.wait_until(lock, m_data->time_limit) == std::cv_status::timeout)
{
lock.release();
return false;
}
m_data->cond.wait(lock);
lock.release();
return true;
}
void thread_ctrl::test()
{
if (m_data && m_data->exception)
{
std::rethrow_exception(m_data->exception);
}
}
void thread_ctrl::initialize()
{
initialize_once(); // TODO (temporarily)
// Initialize TLS variable
g_tls_this_thread = this;
g_tls_internal = this->m_data;
g_tls_log_prefix = []
{
return g_tls_this_thread->m_name;
};
++g_thread_count;
#if defined(_MSC_VER)
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
};
// Set thread name for VS debugger
if (IsDebuggerPresent())
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = m_name.c_str();
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
}
#endif
}
void thread_ctrl::finalize() noexcept
{
// TODO
vm::reservation_free();
// Call atexit functions
if (m_data) m_data->atexit.exec();
--g_thread_count;
#ifdef _WIN32
ULONG64 time;
QueryThreadCycleTime(GetCurrentThread(), &time);
LOG_NOTICE(GENERAL, "Thread time: %f Gc", time / 1000000000.);
#endif
}
void thread_ctrl::push_atexit(task_stack task)
{
initialize_once();
m_data->atexit.push(std::move(task));
}
thread_ctrl::thread_ctrl(std::string&& name)
: m_name(std::move(name))
{
CHECK_STORAGE(std::thread, m_thread);
#pragma push_macro("new")
#undef new
new (&m_thread) std::thread;
#pragma pop_macro("new")
}
thread_ctrl::~thread_ctrl()
{
if (reinterpret_cast<std::thread&>(m_thread).joinable())
{
reinterpret_cast<std::thread&>(m_thread).detach();
}
delete m_data;
reinterpret_cast<std::thread&>(m_thread).~thread();
}
void thread_ctrl::initialize_once()
{
if (UNLIKELY(!m_data))
{
auto ptr = new thread_ctrl::internal;
if (!m_data.compare_and_swap_test(nullptr, ptr))
{
delete ptr;
}
}
}
void thread_ctrl::join()
{
// Increase contention counter
const u32 _j = m_joining++;
if (LIKELY(_j >= 0x80000000))
{
// Already joined (signal condition)
m_joining = 0x80000000;
}
else if (LIKELY(_j == 0))
{
// Winner joins the thread
reinterpret_cast<std::thread&>(m_thread).join();
// Notify others if necessary
if (UNLIKELY(m_joining.exchange(0x80000000) != 1))
{
initialize_once();
// Serialize for reliable notification
m_data->mutex.lock();
m_data->mutex.unlock();
m_data->join.notify_all();
}
}
else
{
// Hard way
initialize_once();
std::unique_lock<std::mutex> lock(m_data->mutex);
m_data->join.wait(lock, WRAP_EXPR(m_joining >= 0x80000000));
}
if (UNLIKELY(m_data && m_data->exception))
{
std::rethrow_exception(m_data->exception);
}
}
void thread_ctrl::lock()
{
initialize_once();
m_data->mutex.lock();
}
void thread_ctrl::unlock()
{
m_data->mutex.unlock();
}
void thread_ctrl::lock_notify()
{
if (UNLIKELY(g_tls_this_thread == this))
{
return;
}
initialize_once();
// Serialize for reliable notification, condition is assumed to be changed externally
m_data->mutex.lock();
m_data->mutex.unlock();
m_data->cond.notify_one();
}
void thread_ctrl::notify()
{
m_data->cond.notify_one();
}
void thread_ctrl::set_exception(std::exception_ptr e)
{
m_data->exception = e;
}
void thread_ctrl::sleep(u64 useconds)
{
std::this_thread::sleep_for(std::chrono::microseconds(useconds));
}
named_thread::named_thread()
{
}
named_thread::~named_thread()
{
}
std::string named_thread::get_name() const
{
return fmt::format("('%s') Unnamed Thread", typeid(*this).name());
}
void named_thread::start()
{
// Get shared_ptr instance (will throw if called from the constructor or the object has been created incorrectly)
auto&& ptr = shared_from_this();
// Run thread
m_thread = thread_ctrl::spawn(get_name(), [thread = std::move(ptr)]()
{
try
{
LOG_TRACE(GENERAL, "Thread started");
thread->on_task();
LOG_TRACE(GENERAL, "Thread ended");
}
catch (const std::exception& e)
{
LOG_FATAL(GENERAL, "%s thrown: %s", typeid(e).name(), e.what());
Emu.Pause();
}
catch (EmulationStopped)
{
LOG_NOTICE(GENERAL, "Thread aborted");
}
thread->on_exit();
});
}