1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 10:42:36 +01:00
rpcs3/Utilities/Thread.h
2018-10-02 23:26:54 +03:00

591 lines
12 KiB
C++

#pragma once
#include "types.h"
#include "Atomic.h"
#include <exception>
#include <string>
#include <memory>
#include <string_view>
#include "mutex.h"
#include "cond.h"
#include "lockless.h"
// Report error and call std::abort(), defined in main.cpp
[[noreturn]] void report_fatal_error(const std::string&);
// Will report exception and call std::abort() if put in catch(...)
[[noreturn]] void catch_all_exceptions();
// Hardware core layout
enum class native_core_arrangement : u32
{
undefined,
generic,
intel_ht,
amd_ccx
};
enum class thread_class : u32
{
general,
rsx,
spu,
ppu
};
enum class thread_state
{
created, // Initial state
detached, // Set if the thread has been detached successfully (only possible via shared_ptr)
aborting, // Set if the thread has been joined in destructor (mutually exclusive with detached)
finished // Final state, always set at the end of thread execution
};
template <class Context>
class named_thread;
template <typename T>
struct result_storage
{
alignas(T) std::byte data[sizeof(T)];
static constexpr bool empty = false;
using type = T;
T* get()
{
return reinterpret_cast<T*>(&data);
}
const T* get() const
{
return reinterpret_cast<const T*>(&data);
}
void destroy() noexcept
{
get()->~T();
}
};
template <>
struct result_storage<void>
{
static constexpr bool empty = true;
using type = void;
};
template <class Context, typename... Args>
using result_storage_t = result_storage<std::invoke_result_t<Context, Args...>>;
// Detect on_abort() method (should return void)
template <typename T, typename = void>
struct thread_on_abort : std::bool_constant<false> {};
template <typename T>
struct thread_on_abort<T, decltype(std::declval<named_thread<T>&>().on_abort())> : std::bool_constant<true> {};
// Detect on_cleanup() static function (should return void)
template <typename T, typename = void>
struct thread_on_cleanup : std::bool_constant<false> {};
template <typename T>
struct thread_on_cleanup<T, decltype(named_thread<T>::on_cleanup(std::declval<named_thread<T>*>()))> : std::bool_constant<true> {};
// Simple list of void() functors
class task_stack
{
struct task_base
{
std::unique_ptr<task_base> next;
virtual ~task_base();
virtual void invoke()
{
if (next)
{
next->invoke();
}
}
};
template <typename F>
struct task_type final : task_base
{
std::remove_reference_t<F> func;
task_type(F&& func)
: func(std::forward<F>(func))
{
}
void invoke() final override
{
func();
task_base::invoke();
}
};
std::unique_ptr<task_base> m_stack;
public:
task_stack() = default;
template <typename F>
task_stack(F&& func)
: m_stack(new task_type<F>(std::forward<F>(func)))
{
}
void push(task_stack stack)
{
auto _top = stack.m_stack.release();
auto _next = m_stack.release();
m_stack.reset(_top);
while (UNLIKELY(_top->next)) _top = _top->next.get();
_top->next.reset(_next);
}
void reset()
{
m_stack.reset();
}
void invoke() const
{
if (m_stack)
{
m_stack->invoke();
}
}
};
// Thread base class (TODO: remove shared_ptr, make private base)
class thread_base : public std::enable_shared_from_this<thread_base>
{
// Native thread entry point function type
#ifdef _WIN32
using native_entry = uint(__stdcall*)(void* arg);
#else
using native_entry = void*(*)(void* arg);
#endif
// Self pointer for detached thread
std::shared_ptr<thread_base> m_self;
// Thread handle (platform-specific)
atomic_t<std::uintptr_t> m_thread{0};
// Thread mutex
mutable shared_mutex m_mutex;
// Thread condition variable
cond_variable m_cond;
// Thread flags
atomic_t<u32> m_signal{0};
// Thread joining condition variable
mutable cond_variable m_jcv;
// Thread state
atomic_t<thread_state> m_state = thread_state::created;
// Remotely set or caught exception
std::exception_ptr m_exception;
// Thread initial task
task_stack m_task;
// Thread name
lf_value<std::string> m_name;
// CPU cycles thread has run for
u64 m_cycles{0};
// Start thread
static void start(const std::shared_ptr<thread_base>&, task_stack);
void start(native_entry);
// Called at the thread start
void initialize();
// Called at the thread end, returns moved m_self (may be null)
std::shared_ptr<thread_base> finalize(std::exception_ptr) noexcept;
static void finalize() noexcept;
// Internal throwing function. Mutex must be locked and will be unlocked.
[[noreturn]] void _throw();
// Internal notification function
void _notify(cond_variable thread_base::*);
friend class thread_ctrl;
template <class Context>
friend class named_thread;
public:
thread_base(std::string_view name);
~thread_base();
// Get thread name
const std::string& get_name() const
{
return m_name;
}
// Set thread name (not recommended)
void set_name(std::string_view name)
{
m_name.assign(name);
}
// Get CPU cycles since last time this function was called. First call returns 0.
u64 get_cycles();
// Set exception
void set_exception(std::exception_ptr ptr);
// Wait for the thread (it does NOT change thread state, and can be called from multiple threads)
void join() const;
// Make thread to manage a shared_ptr of itself
void detach();
// Notify the thread
void notify();
};
// Collection of global function for current thread
class thread_ctrl final
{
// Current thread
static thread_local thread_base* g_tls_this_thread;
// Target cpu core layout
static atomic_t<native_core_arrangement> g_native_core_layout;
// Internal waiting function, may throw. Infinite value is -1.
static bool _wait_for(u64 usec);
friend class thread_base;
public:
// Get current thread name
static std::string_view get_name()
{
return g_tls_this_thread->m_name.get();
}
// Get thread name
template <typename T>
static std::string_view get_name(const named_thread<T>& thread)
{
return static_cast<const thread_base&>(thread).m_name.get();
}
// Set current thread name (not recommended)
static void set_name(std::string_view name)
{
g_tls_this_thread->m_name.assign(name);
}
// Set thread name (not recommended)
template <typename T>
static void set_name(named_thread<T>& thread, std::string_view name)
{
static_cast<thread_base&>(thread).m_name.assign(name);
}
// Read current state
static inline thread_state state()
{
return g_tls_this_thread->m_state;
}
// Wait once with timeout. Abortable, may throw. May spuriously return false.
static inline bool wait_for(u64 usec)
{
return _wait_for(usec);
}
// Wait. Abortable, may throw.
static inline void wait()
{
_wait_for(-1);
}
// Wait until pred(). Abortable, may throw.
template <typename F, typename RT = std::invoke_result_t<F>>
static inline RT wait(F&& pred)
{
while (true)
{
if (RT result = pred())
{
return result;
}
_wait_for(-1);
}
}
// Wait eternally until aborted.
[[noreturn]] static inline void eternalize()
{
while (true)
{
_wait_for(-1);
}
}
// Test exception (may throw).
static void test();
// Get current thread (may be nullptr)
static thread_base* get_current()
{
return g_tls_this_thread;
}
// Create detached named thread
template <typename N, typename F>
static inline void spawn(N&& name, F&& func)
{
auto out = std::make_shared<thread_base>(std::forward<N>(name));
thread_base::start(out, std::forward<F>(func));
}
// Named thread factory
template <typename N, typename F>
static inline void spawn(std::shared_ptr<thread_base>& out, N&& name, F&& func)
{
out = std::make_shared<thread_base>(std::forward<N>(name));
thread_base::start(out, std::forward<F>(func));
}
// Detect layout
static void detect_cpu_layout();
// Returns a core affinity mask. Set whether to generate the high priority set or not
static u16 get_affinity_mask(thread_class group);
// Sets the native thread priority
static void set_native_priority(int priority);
// Sets the preferred affinity mask for this thread
static void set_thread_affinity_mask(u16 mask);
template <typename F>
static inline std::shared_ptr<named_thread<F>> make_shared(std::string_view name, F&& lambda)
{
return std::make_shared<named_thread<F>>(name, std::forward<F>(lambda));
}
template <typename T, typename... Args>
static inline std::shared_ptr<named_thread<T>> make_shared(std::string_view name, Args&&... args)
{
return std::make_shared<named_thread<T>>(name, std::forward<Args>(args)...);
}
};
// Derived from the callable object Context, possibly a lambda
template <class Context>
class named_thread final : public Context, result_storage_t<Context>, public thread_base
{
using result = result_storage_t<Context>;
using thread = thread_base;
// Type-erased thread entry point
#ifdef _WIN32
static inline uint __stdcall entry_point(void* arg) try
#else
static inline void* entry_point(void* arg) try
#endif
{
const auto maybe_last_ptr = static_cast<named_thread*>(static_cast<thread*>(arg))->entry_point();
thread::finalize();
return 0;
}
catch (...)
{
catch_all_exceptions();
}
std::shared_ptr<thread> entry_point()
{
thread::initialize();
if constexpr (result::empty)
{
// No result
Context::operator()();
}
else
{
// Construct the result using placement new (copy elision should happen)
new (result::get()) typename result::type(Context::operator()());
}
return thread::finalize(nullptr);
}
friend class thread_ctrl;
public:
// Normal forwarding constructor
template <typename... Args, typename = std::enable_if_t<std::is_constructible_v<Context, Args&&...>>>
named_thread(std::string_view name, Args&&... args)
: Context(std::forward<Args>(args)...)
, thread(name)
{
thread::start(&named_thread::entry_point);
}
// Lambda constructor, also the implicit deduction guide candidate
named_thread(std::string_view name, Context&& f)
: Context(std::forward<Context>(f))
, thread(name)
{
thread::start(&named_thread::entry_point);
}
named_thread(const named_thread&) = delete;
named_thread& operator=(const named_thread&) = delete;
// Wait for the completion and access result (if not void)
[[nodiscard]] decltype(auto) operator()()
{
thread::join();
if constexpr (!result::empty)
{
return *result::get();
}
}
// Wait for the completion and access result (if not void)
[[nodiscard]] decltype(auto) operator()() const
{
thread::join();
if constexpr (!result::empty)
{
return *result::get();
}
}
// Access thread state
operator thread_state() const
{
return thread::m_state.load();
}
// Try to set thread_state::aborting
named_thread& operator=(thread_state s)
{
if (s != thread_state::aborting)
{
ASSUME(0);
}
// Notify thread if not detached or terminated
if (thread::m_state.compare_and_swap_test(thread_state::created, thread_state::aborting))
{
// Call on_abort() method if it's available
if constexpr (thread_on_abort<Context>())
{
Context::on_abort();
}
thread::notify();
}
return *this;
}
// Context type doesn't need virtual destructor
~named_thread()
{
*this = thread_state::aborting;
thread::join();
if constexpr (!result::empty)
{
result::destroy();
}
}
};
// Old named_thread
class old_thread
{
// Pointer to managed resource (shared with actual thread)
std::shared_ptr<thread_base> m_thread;
public:
old_thread();
virtual ~old_thread();
old_thread(const old_thread&) = delete;
old_thread& operator=(const old_thread&) = delete;
// Get thread name
virtual std::string get_name() const;
protected:
// Start thread (cannot be called from the constructor: should throw in such case)
void start_thread(const std::shared_ptr<void>& _this);
// Thread task (called in the thread)
virtual void on_task() = 0;
// Thread finalization (called after on_task)
virtual void on_exit() {}
// Called once upon thread spawn within the thread's own context
virtual void on_spawn() {}
public:
// ID initialization
virtual void on_init(const std::shared_ptr<void>& _this)
{
return start_thread(_this);
}
// ID finalization
virtual void on_stop()
{
m_thread->join();
}
thread_base* get() const
{
return m_thread.get();
}
void join() const
{
return m_thread->join();
}
void notify() const
{
return m_thread->notify();
}
};