1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-23 03:02:53 +01:00
rpcs3/Utilities/lockless.h
2017-02-22 12:57:08 +03:00

331 lines
6.4 KiB
C++

#pragma once
#include "types.h"
#include "Atomic.h"
//! Simple sizeless array base for concurrent access. Cannot shrink, only growths automatically.
//! There is no way to know the current size. The smaller index is, the faster it's accessed.
//!
//! T is the type of elements. Currently, default constructor of T shall be constexpr.
//! N is initial element count, available without any memory allocation and only stored contiguously.
template<typename T, std::size_t N>
class lf_array
{
// Data (default-initialized)
T m_data[N]{};
// Next array block
atomic_t<lf_array*> m_next{};
public:
constexpr lf_array() = default;
~lf_array()
{
for (auto ptr = m_next.raw(); UNLIKELY(ptr);)
{
delete std::exchange(ptr, std::exchange(ptr->m_next.raw(), nullptr));
}
}
T& operator [](std::size_t index)
{
if (LIKELY(index < N))
{
return m_data[index];
}
else if (UNLIKELY(!m_next))
{
// Create new array block. It's not a full-fledged once-synchronization, unlikely needed.
for (auto _new = new lf_array, ptr = this; UNLIKELY(ptr);)
{
// Install the pointer. If failed, go deeper.
ptr = ptr->m_next.compare_and_swap(nullptr, _new);
}
}
// Access recursively
return (*m_next)[index - N];
}
};
//! Simple lock-free FIFO queue base. Based on lf_array<T, N> itself. Currently uses 32-bit counters.
//! There is no "push_end" or "pop_begin" provided, the queue element must signal its state on its own.
template<typename T, std::size_t N>
class lf_fifo : public lf_array<T, N>
{
struct alignas(8) ctrl_t
{
u32 push;
u32 pop;
};
atomic_t<ctrl_t> m_ctrl{};
public:
constexpr lf_fifo() = default;
// Get current "push" position
u32 size() const
{
return reinterpret_cast<const atomic_t<u32>&>(m_ctrl).load(); // Hack
}
// Acquire the place for one or more elements.
u32 push_begin(u32 count = 1)
{
return reinterpret_cast<atomic_t<u32>&>(m_ctrl).fetch_add(count); // Hack
}
// Get current "pop" position
u32 peek() const
{
return m_ctrl.load().pop;
}
// Acknowledge processed element, return number of the next one.
// Perform clear if possible, zero is returned in this case.
u32 pop_end(u32 count = 1)
{
return m_ctrl.atomic_op([&](ctrl_t& ctrl)
{
ctrl.pop += count;
if (ctrl.pop == ctrl.push)
{
// Clean if possible
ctrl.push = 0;
ctrl.pop = 0;
}
return ctrl.pop;
});
}
};
//! Simple lock-free map. Based on lf_array<>. All elements are accessible, implicitly initialized.
template<typename K, typename T, typename Hash = value_hash<K>, std::size_t Size = 256>
class lf_hashmap
{
struct pair_t
{
// Default-constructed key means "no key"
atomic_t<K> key{};
T value{};
};
//
lf_array<pair_t, Size> m_data{};
// Value for default-constructed key
T m_default_key_data{};
public:
constexpr lf_hashmap() = default;
// Access element (added implicitly)
T& operator [](const K& key)
{
if (UNLIKELY(key == K{}))
{
return m_default_key_data;
}
// Calculate hash and array position
for (std::size_t pos = Hash{}(key) % Size;; pos += Size)
{
// Access the array
auto& pair = m_data[pos];
// Check the key value (optimistic)
if (LIKELY(pair.key == key) || pair.key.compare_and_swap_test(K{}, key))
{
return pair.value;
}
}
}
};
// Fixed-size single-producer single-consumer queue
template <typename T, std::uint32_t N>
class lf_spsc
{
// If N is a power of 2, m_push/m_pop can safely overflow and the algorithm is simplified
static_assert(N && (1u << 31) % N == 0, "lf_spsc<> error: size must be power of 2");
protected:
volatile std::uint32_t m_push{0};
volatile std::uint32_t m_pop{0};
T m_data[N]{};
public:
constexpr lf_spsc() = default;
// Try to push (producer only)
template <typename T2>
bool try_push(T2&& data)
{
const std::uint32_t pos = m_push;
if (pos - m_pop >= N)
{
return false;
}
_mm_lfence();
m_data[pos % N] = std::forward<T2>(data);
_mm_sfence();
m_push = pos + 1;
return true;
}
// Try to get push pointer (producer only)
operator T*()
{
const std::uint32_t pos = m_push;
if (pos - m_pop >= N)
{
return nullptr;
}
_mm_lfence();
return m_data + (pos % N);
}
// Increment push counter (producer only)
void end_push()
{
const std::uint32_t pos = m_push;
if (pos - m_pop < N)
{
_mm_sfence();
m_push = pos + 1;
}
}
// Unsafe access
T& get_push(std::size_t i)
{
_mm_lfence();
return m_data[(m_push + i) % N];
}
// Try to pop (consumer only)
template <typename T2>
bool try_pop(T2& out)
{
const std::uint32_t pos = m_pop;
if (m_push - pos <= 0)
{
return false;
}
_mm_lfence();
out = std::move(m_data[pos % N]);
_mm_sfence();
m_pop = pos + 1;
return true;
}
// Increment pop counter (consumer only)
void end_pop()
{
const std::uint32_t pos = m_pop;
if (m_push - pos > 0)
{
_mm_sfence();
m_pop = pos + 1;
}
}
// Get size (consumer only)
std::uint32_t size() const
{
return m_push - m_pop;
}
// Direct access (consumer only)
T& operator [](std::size_t i)
{
_mm_lfence();
return m_data[(m_pop + i) % N];
}
};
// Fixed-size multi-producer single-consumer queue
template <typename T, std::uint32_t N>
class lf_mpsc : lf_spsc<T, N>
{
protected:
using lf_spsc<T, N>::m_push;
using lf_spsc<T, N>::m_pop;
using lf_spsc<T, N>::m_data;
enum : std::uint64_t
{
c_ack = 1ull << 0,
c_rel = 1ull << 32,
};
atomic_t<std::uint64_t> m_lock{0};
void release(std::uint64_t value)
{
// Push all pending elements at once when possible
if (value && value % c_rel == value / c_rel)
{
_mm_sfence();
m_push += value % c_rel;
m_lock.compare_and_swap_test(value, 0);
}
}
public:
constexpr lf_mpsc() = default;
// Try to get push pointer
operator T*()
{
const std::uint64_t old = m_lock.fetch_add(c_ack);
const std::uint32_t pos = m_push;
if (old % N >= N || pos - m_pop >= N - (old % N))
{
release(m_lock.sub_fetch(c_ack));
return nullptr;
}
return m_data + ((pos + old) % N);
}
// Increment push counter (producer only)
void end_push()
{
release(m_lock.add_fetch(c_rel));
}
// Try to push
template <typename T2>
bool try_push(T2&& data)
{
if (T* ptr = *this)
{
*ptr = std::forward<T2>(data);
end_push();
return true;
}
return false;
}
// Enable consumer methods
using lf_spsc<T, N>::try_pop;
using lf_spsc<T, N>::end_pop;
using lf_spsc<T, N>::size;
using lf_spsc<T, N>::operator [];
};