mirror of
https://github.com/RPCS3/rpcs3.git
synced 2024-11-25 04:02:42 +01:00
2333 lines
54 KiB
C++
2333 lines
54 KiB
C++
#include "stdafx.h"
|
|
#include "Emu/Cell/SPUThread.h"
|
|
#include "Emu/Cell/PPUThread.h"
|
|
#include "Emu/Cell/RawSPUThread.h"
|
|
#include "Emu/Cell/lv2/sys_mmapper.h"
|
|
#include "Emu/Cell/lv2/sys_event.h"
|
|
#include "Thread.h"
|
|
#include "sysinfo.h"
|
|
#include <typeinfo>
|
|
#include <thread>
|
|
#include <sstream>
|
|
|
|
#ifdef _WIN32
|
|
#include <Windows.h>
|
|
#include <Psapi.h>
|
|
#include <process.h>
|
|
#include <sysinfoapi.h>
|
|
#else
|
|
#ifdef __APPLE__
|
|
#define _XOPEN_SOURCE
|
|
#define __USE_GNU
|
|
#include <mach/thread_act.h>
|
|
#include <mach/thread_policy.h>
|
|
#endif
|
|
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
|
|
#include <pthread_np.h>
|
|
#define cpu_set_t cpuset_t
|
|
#endif
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#ifndef __OpenBSD__
|
|
#include <ucontext.h>
|
|
#endif
|
|
#include <pthread.h>
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <time.h>
|
|
#endif
|
|
#ifdef __linux__
|
|
#include <sys/timerfd.h>
|
|
#endif
|
|
|
|
#include "sync.h"
|
|
#include "Log.h"
|
|
|
|
LOG_CHANNEL(sig_log);
|
|
LOG_CHANNEL(sys_log, "SYS");
|
|
LOG_CHANNEL(vm_log, "VM");
|
|
|
|
thread_local u64 g_tls_fault_all = 0;
|
|
thread_local u64 g_tls_fault_rsx = 0;
|
|
thread_local u64 g_tls_fault_spu = 0;
|
|
extern thread_local std::string(*g_tls_log_prefix)();
|
|
|
|
template <>
|
|
void fmt_class_string<std::thread::id>::format(std::string& out, u64 arg)
|
|
{
|
|
std::ostringstream ss;
|
|
ss << get_object(arg);
|
|
out += ss.str();
|
|
}
|
|
|
|
[[noreturn]] void catch_all_exceptions()
|
|
{
|
|
try
|
|
{
|
|
throw;
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
report_fatal_error("{" + g_tls_log_prefix() + "} Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what());
|
|
}
|
|
catch (...)
|
|
{
|
|
report_fatal_error("{" + g_tls_log_prefix() + "} Unhandled exception (unknown)");
|
|
}
|
|
}
|
|
|
|
enum x64_reg_t : u32
|
|
{
|
|
X64R_RAX = 0,
|
|
X64R_RCX,
|
|
X64R_RDX,
|
|
X64R_RBX,
|
|
X64R_RSP,
|
|
X64R_RBP,
|
|
X64R_RSI,
|
|
X64R_RDI,
|
|
X64R_R8,
|
|
X64R_R9,
|
|
X64R_R10,
|
|
X64R_R11,
|
|
X64R_R12,
|
|
X64R_R13,
|
|
X64R_R14,
|
|
X64R_R15,
|
|
|
|
X64R_XMM0 = 0,
|
|
X64R_XMM1,
|
|
X64R_XMM2,
|
|
X64R_XMM3,
|
|
X64R_XMM4,
|
|
X64R_XMM5,
|
|
X64R_XMM6,
|
|
X64R_XMM7,
|
|
X64R_XMM8,
|
|
X64R_XMM9,
|
|
X64R_XMM10,
|
|
X64R_XMM11,
|
|
X64R_XMM12,
|
|
X64R_XMM13,
|
|
X64R_XMM14,
|
|
X64R_XMM15,
|
|
|
|
X64R_AL,
|
|
X64R_CL,
|
|
X64R_DL,
|
|
X64R_BL,
|
|
X64R_AH,
|
|
X64R_CH,
|
|
X64R_DH,
|
|
X64R_BH,
|
|
|
|
X64_NOT_SET,
|
|
X64_IMM8,
|
|
X64_IMM16,
|
|
X64_IMM32,
|
|
|
|
X64_BIT_O = 0x90,
|
|
X64_BIT_NO,
|
|
X64_BIT_C,
|
|
X64_BIT_NC,
|
|
X64_BIT_Z,
|
|
X64_BIT_NZ,
|
|
X64_BIT_BE,
|
|
X64_BIT_NBE,
|
|
X64_BIT_S,
|
|
X64_BIT_NS,
|
|
X64_BIT_P,
|
|
X64_BIT_NP,
|
|
X64_BIT_L,
|
|
X64_BIT_NL,
|
|
X64_BIT_LE,
|
|
X64_BIT_NLE,
|
|
|
|
X64R_ECX = X64R_CL,
|
|
};
|
|
|
|
enum x64_op_t : u32
|
|
{
|
|
X64OP_NONE,
|
|
X64OP_LOAD, // obtain and put the value into x64 register
|
|
X64OP_LOAD_BE,
|
|
X64OP_LOAD_CMP,
|
|
X64OP_LOAD_TEST,
|
|
X64OP_STORE, // take the value from x64 register or an immediate and use it
|
|
X64OP_STORE_BE,
|
|
X64OP_MOVS,
|
|
X64OP_STOS,
|
|
X64OP_XCHG,
|
|
X64OP_CMPXCHG,
|
|
X64OP_AND, // lock and [mem], ...
|
|
X64OP_OR, // lock or [mem], ...
|
|
X64OP_XOR, // lock xor [mem], ...
|
|
X64OP_INC, // lock inc [mem]
|
|
X64OP_DEC, // lock dec [mem]
|
|
X64OP_ADD, // lock add [mem], ...
|
|
X64OP_ADC, // lock adc [mem], ...
|
|
X64OP_SUB, // lock sub [mem], ...
|
|
X64OP_SBB, // lock sbb [mem], ...
|
|
};
|
|
|
|
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length)
|
|
{
|
|
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
|
|
out_length = 0;
|
|
|
|
u8 rex = 0, pg2 = 0;
|
|
|
|
bool oso = false, lock = false, repne = false, repe = false;
|
|
|
|
enum : u8
|
|
{
|
|
LOCK = 0xf0,
|
|
REPNE = 0xf2,
|
|
REPE = 0xf3,
|
|
};
|
|
|
|
// check prefixes:
|
|
for (;; code++, out_length++)
|
|
{
|
|
switch (const u8 prefix = *code)
|
|
{
|
|
case LOCK: // group 1
|
|
{
|
|
if (lock)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): LOCK prefix found twice", code - out_length);
|
|
}
|
|
|
|
lock = true;
|
|
continue;
|
|
}
|
|
case REPNE: // group 1
|
|
{
|
|
if (repne)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", code - out_length);
|
|
}
|
|
|
|
repne = true;
|
|
continue;
|
|
}
|
|
case REPE: // group 1
|
|
{
|
|
if (repe)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", code - out_length);
|
|
}
|
|
|
|
repe = true;
|
|
continue;
|
|
}
|
|
|
|
case 0x2e: // group 2
|
|
case 0x36:
|
|
case 0x3e:
|
|
case 0x26:
|
|
case 0x64:
|
|
case 0x65:
|
|
{
|
|
if (pg2)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", code - out_length, prefix, pg2);
|
|
}
|
|
else
|
|
{
|
|
pg2 = prefix; // probably, segment register
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case 0x66: // group 3
|
|
{
|
|
if (oso)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): operand-size override prefix found twice", code - out_length);
|
|
}
|
|
|
|
oso = true;
|
|
continue;
|
|
}
|
|
|
|
case 0x67: // group 4
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): address-size override prefix found", code - out_length, prefix);
|
|
out_op = X64OP_NONE;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 0;
|
|
out_length = 0;
|
|
return;
|
|
}
|
|
|
|
default:
|
|
{
|
|
if ((prefix & 0xf0) == 0x40) // check REX prefix
|
|
{
|
|
if (rex)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", code - out_length, prefix, rex);
|
|
}
|
|
else
|
|
{
|
|
rex = prefix;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX};
|
|
};
|
|
|
|
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0};
|
|
};
|
|
|
|
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
|
|
{
|
|
return x64_reg_t{((*code & 0x38) >> 3) + X64R_AL};
|
|
};
|
|
|
|
auto get_op_size = [](const u8 rex, const bool oso) -> size_t
|
|
{
|
|
return rex & 8 ? 8 : (oso ? 2 : 4);
|
|
};
|
|
|
|
auto get_modRM_size = [](const u8* code) -> size_t
|
|
{
|
|
switch (*code >> 6) // check Mod
|
|
{
|
|
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
|
|
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
|
|
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
|
|
default: return 1;
|
|
}
|
|
};
|
|
|
|
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
|
|
|
|
switch (op1)
|
|
{
|
|
case 0x0f:
|
|
{
|
|
out_length++, code++;
|
|
|
|
switch (op2)
|
|
{
|
|
case 0x11:
|
|
case 0x29:
|
|
{
|
|
if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = 16;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x7f:
|
|
{
|
|
if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = 16;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xb0:
|
|
{
|
|
if (!oso) // CMPXCHG r8/m8, r8
|
|
{
|
|
out_op = X64OP_CMPXCHG;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xb1:
|
|
{
|
|
if (true) // CMPXCHG r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_CMPXCHG;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x90:
|
|
case 0x91:
|
|
case 0x92:
|
|
case 0x93:
|
|
case 0x94:
|
|
case 0x95:
|
|
case 0x96:
|
|
case 0x97:
|
|
case 0x98:
|
|
case 0x9a:
|
|
case 0x9b:
|
|
case 0x9c:
|
|
case 0x9d:
|
|
case 0x9e:
|
|
case 0x9f:
|
|
{
|
|
if (!lock) // SETcc
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x38:
|
|
{
|
|
out_length++, code++;
|
|
|
|
switch (op3)
|
|
{
|
|
case 0xf0:
|
|
case 0xf1:
|
|
{
|
|
if (!repne) // MOVBE
|
|
{
|
|
out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 0x20:
|
|
{
|
|
if (!oso)
|
|
{
|
|
out_op = X64OP_AND;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x21:
|
|
{
|
|
if (true)
|
|
{
|
|
out_op = X64OP_AND;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x80:
|
|
{
|
|
switch (auto mod_code = get_modRM_reg(code, 0))
|
|
{
|
|
//case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0x81:
|
|
{
|
|
switch (auto mod_code = get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_ADD; break;
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
case 0x83:
|
|
{
|
|
switch (auto mod_code = get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_ADD; break;
|
|
case 1: out_op = X64OP_OR; break;
|
|
case 2: out_op = X64OP_ADC; break;
|
|
case 3: out_op = X64OP_SBB; break;
|
|
case 4: out_op = X64OP_AND; break;
|
|
case 5: out_op = X64OP_SUB; break;
|
|
case 6: out_op = X64OP_XOR; break;
|
|
default: out_op = X64OP_LOAD_CMP; break;
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0x86:
|
|
{
|
|
if (!oso) // XCHG r8/m8, r8
|
|
{
|
|
out_op = X64OP_XCHG;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x87:
|
|
{
|
|
if (true) // XCHG r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_XCHG;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x88:
|
|
{
|
|
if (!lock && !oso) // MOV r8/m8, r8
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x89:
|
|
{
|
|
if (!lock) // MOV r/m, r (16, 32, 64)
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x8a:
|
|
{
|
|
if (!lock && !oso) // MOV r8, r8/m8
|
|
{
|
|
out_op = X64OP_LOAD;
|
|
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x8b:
|
|
{
|
|
if (!lock) // MOV r, r/m (16, 32, 64)
|
|
{
|
|
out_op = X64OP_LOAD;
|
|
out_reg = get_modRM_reg(code, rex);
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xa4:
|
|
{
|
|
if (!oso && !lock && !repe && !rex) // MOVS
|
|
{
|
|
out_op = X64OP_MOVS;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
if (!oso && !lock && repe) // REP MOVS
|
|
{
|
|
out_op = X64OP_MOVS;
|
|
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xaa:
|
|
{
|
|
if (!oso && !lock && !repe && !rex) // STOS
|
|
{
|
|
out_op = X64OP_STOS;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
if (!oso && !lock && repe) // REP STOS
|
|
{
|
|
out_op = X64OP_STOS;
|
|
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
|
|
out_size = 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc4: // 3-byte VEX prefix
|
|
case 0xc5: // 2-byte VEX prefix
|
|
{
|
|
// Last prefix byte: op2 or op3
|
|
const u8 opx = op1 == 0xc5 ? op2 : op3;
|
|
|
|
// Implied prefixes
|
|
rex |= op2 & 0x80 ? 0 : 0x4; // REX.R
|
|
rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ???
|
|
oso = (opx & 0x3) == 0x1;
|
|
repe = (opx & 0x3) == 0x2;
|
|
repne = (opx & 0x3) == 0x3;
|
|
|
|
const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f;
|
|
const u8 vop1 = op1 == 0xc5 ? op3 : code[2];
|
|
const u8 vlen = (opx & 0x4) ? 32 : 16;
|
|
const u8 vreg = (~opx >> 3) & 0xf;
|
|
out_length += op1 == 0xc5 ? 2 : 3;
|
|
code += op1 == 0xc5 ? 2 : 3;
|
|
|
|
if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F
|
|
{
|
|
case 0x11:
|
|
case 0x29:
|
|
{
|
|
if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = vlen;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0x7f:
|
|
{
|
|
if (repe || oso) // VMOVDQU/VMOVDQA mem,reg
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = get_modRM_reg_xmm(code, rex);
|
|
out_size = vlen;
|
|
out_length += get_modRM_size(code);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 0xc6:
|
|
{
|
|
if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xc7:
|
|
{
|
|
if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64)
|
|
{
|
|
out_op = X64OP_STORE;
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case 0xf6:
|
|
{
|
|
switch (auto mod_code = get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_LOAD_TEST; break;
|
|
default: out_op = X64OP_NONE; break; // TODO...
|
|
}
|
|
|
|
out_reg = X64_IMM8;
|
|
out_size = 1;
|
|
out_length += get_modRM_size(code) + 1;
|
|
return;
|
|
}
|
|
case 0xf7:
|
|
{
|
|
switch (auto mod_code = get_modRM_reg(code, 0))
|
|
{
|
|
case 0: out_op = X64OP_LOAD_TEST; break;
|
|
default: out_op = X64OP_NONE; break; // TODO...
|
|
}
|
|
|
|
out_reg = oso ? X64_IMM16 : X64_IMM32;
|
|
out_size = get_op_size(rex, oso);
|
|
out_length += get_modRM_size(code) + (oso ? 2 : 4);
|
|
return;
|
|
}
|
|
}
|
|
|
|
out_op = X64OP_NONE;
|
|
out_reg = X64_NOT_SET;
|
|
out_size = 0;
|
|
out_length = 0;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
typedef CONTEXT x64_context;
|
|
|
|
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
|
|
#define EFLAGS(context) ((context)->EFlags)
|
|
|
|
#define ARG1(context) RCX(context)
|
|
#define ARG2(context) RDX(context)
|
|
|
|
#else
|
|
|
|
typedef ucontext_t x64_context;
|
|
|
|
#ifdef __APPLE__
|
|
|
|
#define X64REG(context, reg) (darwin_x64reg(context, reg))
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
|
|
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
|
|
|
|
uint64_t* darwin_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context->uc_mcontext->__ss;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->__rax;
|
|
case 1: return &state->__rcx;
|
|
case 2: return &state->__rdx;
|
|
case 3: return &state->__rbx;
|
|
case 4: return &state->__rsp;
|
|
case 5: return &state->__rbp;
|
|
case 6: return &state->__rsi;
|
|
case 7: return &state->__rdi;
|
|
case 8: return &state->__r8;
|
|
case 9: return &state->__r9;
|
|
case 10: return &state->__r10;
|
|
case 11: return &state->__r11;
|
|
case 12: return &state->__r12;
|
|
case 13: return &state->__r13;
|
|
case 14: return &state->__r14;
|
|
case 15: return &state->__r15;
|
|
case 16: return &state->__rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__)
|
|
|
|
#define X64REG(context, reg) (freebsd_x64reg(context, reg))
|
|
#ifdef __DragonFly__
|
|
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<union savefpu*>(context)->uc_mcontext.mc_fpregs)->sv_xmm.sv_xmm[reg]))
|
|
#else
|
|
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<struct savefpu*>(context)->uc_mcontext.mc_fpstate)->sv_xmm[reg]))
|
|
#endif
|
|
#define EFLAGS(context) ((context)->uc_mcontext.mc_rflags)
|
|
|
|
register_t* freebsd_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context->uc_mcontext;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->mc_rax;
|
|
case 1: return &state->mc_rcx;
|
|
case 2: return &state->mc_rdx;
|
|
case 3: return &state->mc_rbx;
|
|
case 4: return &state->mc_rsp;
|
|
case 5: return &state->mc_rbp;
|
|
case 6: return &state->mc_rsi;
|
|
case 7: return &state->mc_rdi;
|
|
case 8: return &state->mc_r8;
|
|
case 9: return &state->mc_r9;
|
|
case 10: return &state->mc_r10;
|
|
case 11: return &state->mc_r11;
|
|
case 12: return &state->mc_r12;
|
|
case 13: return &state->mc_r13;
|
|
case 14: return &state->mc_r14;
|
|
case 15: return &state->mc_r15;
|
|
case 16: return &state->mc_rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__OpenBSD__)
|
|
|
|
#define X64REG(context, reg) (openbsd_x64reg(context, reg))
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>((context)->sc_fpstate->fx_xmm[reg]))
|
|
#define EFLAGS(context) ((context)->sc_rflags)
|
|
|
|
long* openbsd_x64reg(x64_context *context, int reg)
|
|
{
|
|
auto *state = &context;
|
|
switch(reg)
|
|
{
|
|
case 0: return &state->sc_rax;
|
|
case 1: return &state->sc_rcx;
|
|
case 2: return &state->sc_rdx;
|
|
case 3: return &state->sc_rbx;
|
|
case 4: return &state->sc_rsp;
|
|
case 5: return &state->sc_rbp;
|
|
case 6: return &state->sc_rsi;
|
|
case 7: return &state->sc_rdi;
|
|
case 8: return &state->sc_r8;
|
|
case 9: return &state->sc_r9;
|
|
case 10: return &state->sc_r10;
|
|
case 11: return &state->sc_r11;
|
|
case 12: return &state->sc_r12;
|
|
case 13: return &state->sc_r13;
|
|
case 14: return &state->sc_r14;
|
|
case 15: return &state->sc_r15;
|
|
case 16: return &state->sc_rip;
|
|
default:
|
|
sig_log.error("Invalid register index: %d", reg);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
#elif defined(__NetBSD__)
|
|
|
|
static const decltype(_REG_RAX) reg_table[] =
|
|
{
|
|
_REG_RAX, _REG_RCX, _REG_RDX, _REG_RBX, _REG_RSP, _REG_RBP, _REG_RSI, _REG_RDI,
|
|
_REG_R8, _REG_R9, _REG_R10, _REG_R11, _REG_R12, _REG_R13, _REG_R14, _REG_R15, _REG_RIP
|
|
};
|
|
|
|
#define X64REG(context, reg) (&(context)->uc_mcontext.__gregs[reg_table[reg]])
|
|
#define XMM_sig(context, reg) (reinterpret_cast<v128*>(((struct fxsave64*)(context)->uc_mcontext.__fpregs)->fx_xmm[reg]))
|
|
#define EFLAGS(context) ((context)->uc_mcontext.__gregs[_REG_RFL])
|
|
|
|
#else
|
|
|
|
static const int reg_table[] =
|
|
{
|
|
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
|
|
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
|
|
};
|
|
|
|
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
|
|
#ifdef __sun
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs.fp_reg_set.fpchip_state.xmm[reg_table[reg]]))
|
|
#else
|
|
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
|
|
#endif // __sun
|
|
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
|
|
|
|
#endif // __APPLE__
|
|
|
|
#define ARG1(context) RDI(context)
|
|
#define ARG2(context) RSI(context)
|
|
|
|
#endif
|
|
|
|
#define RAX(c) (*X64REG((c), 0))
|
|
#define RCX(c) (*X64REG((c), 1))
|
|
#define RDX(c) (*X64REG((c), 2))
|
|
#define RSP(c) (*X64REG((c), 4))
|
|
#define RSI(c) (*X64REG((c), 6))
|
|
#define RDI(c) (*X64REG((c), 7))
|
|
#define RIP(c) (*X64REG((c), 16))
|
|
|
|
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value)
|
|
{
|
|
// get x64 reg value (for store operations)
|
|
if (reg - X64R_RAX < 16)
|
|
{
|
|
// load the value from x64 register
|
|
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 1: out_value = static_cast<u8>(reg_value); return true;
|
|
case 2: out_value = static_cast<u16>(reg_value); return true;
|
|
case 4: out_value = static_cast<u32>(reg_value); return true;
|
|
case 8: out_value = reg_value; return true;
|
|
}
|
|
}
|
|
else if (reg - X64R_AL < 4 && d_size == 1)
|
|
{
|
|
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AL));
|
|
return true;
|
|
}
|
|
else if (reg - X64R_AH < 4 && d_size == 1)
|
|
{
|
|
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AH) >> 8);
|
|
return true;
|
|
}
|
|
else if (reg == X64_IMM8)
|
|
{
|
|
// load the immediate value (assuming it's at the end of the instruction)
|
|
const s8 imm_value = *reinterpret_cast<s8*>(RIP(context) + i_size - 1);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 1: out_value = static_cast<u8>(imm_value); return true;
|
|
case 2: out_value = static_cast<u16>(imm_value); return true; // sign-extended
|
|
case 4: out_value = static_cast<u32>(imm_value); return true; // sign-extended
|
|
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
|
|
}
|
|
}
|
|
else if (reg == X64_IMM16)
|
|
{
|
|
const s16 imm_value = *reinterpret_cast<s16*>(RIP(context) + i_size - 2);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 2: out_value = static_cast<u16>(imm_value); return true;
|
|
}
|
|
}
|
|
else if (reg == X64_IMM32)
|
|
{
|
|
const s32 imm_value = *reinterpret_cast<s32*>(RIP(context) + i_size - 4);
|
|
|
|
switch (d_size)
|
|
{
|
|
case 4: out_value = static_cast<u32>(imm_value); return true;
|
|
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
|
|
}
|
|
}
|
|
else if (reg == X64R_ECX)
|
|
{
|
|
out_value = static_cast<u32>(RCX(context));
|
|
return true;
|
|
}
|
|
else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE)
|
|
{
|
|
const u32 _cf = EFLAGS(context) & 0x1;
|
|
const u32 _zf = EFLAGS(context) & 0x40;
|
|
const u32 _sf = EFLAGS(context) & 0x80;
|
|
const u32 _of = EFLAGS(context) & 0x800;
|
|
const u32 _pf = EFLAGS(context) & 0x4;
|
|
const u32 _l = (_sf << 4) ^ _of; // SF != OF
|
|
|
|
switch (reg & ~1)
|
|
{
|
|
case X64_BIT_O: out_value = !!_of ^ (reg & 1); break;
|
|
case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break;
|
|
case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break;
|
|
case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break;
|
|
case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break;
|
|
case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break;
|
|
case X64_BIT_L: out_value = !!_l ^ (reg & 1); break;
|
|
case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
sig_log.error("get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", +reg, d_size, i_size);
|
|
return false;
|
|
}
|
|
|
|
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value)
|
|
{
|
|
// save x64 reg value (for load operations)
|
|
if (reg - X64R_RAX < 16)
|
|
{
|
|
// save the value into x64 register
|
|
switch (d_size)
|
|
{
|
|
case 1: *X64REG(context, reg - X64R_RAX) = (value & 0xff) | (*X64REG(context, reg - X64R_RAX) & 0xffffff00); return true;
|
|
case 2: *X64REG(context, reg - X64R_RAX) = (value & 0xffff) | (*X64REG(context, reg - X64R_RAX) & 0xffff0000); return true;
|
|
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
|
|
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
|
|
}
|
|
}
|
|
|
|
sig_log.error("put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", +reg, d_size, value);
|
|
return false;
|
|
}
|
|
|
|
bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y, bool carry = true)
|
|
{
|
|
switch (d_size)
|
|
{
|
|
case 1: break;
|
|
case 2: break;
|
|
case 4: break;
|
|
case 8: break;
|
|
default: sig_log.error("set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
|
|
}
|
|
|
|
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
|
|
const u64 diff = x - y;
|
|
const u64 summ = x + y;
|
|
|
|
if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign)
|
|
{
|
|
EFLAGS(context) |= 0x1; // set CF
|
|
}
|
|
else if (carry)
|
|
{
|
|
EFLAGS(context) &= ~0x1; // clear CF
|
|
}
|
|
|
|
if (x == y)
|
|
{
|
|
EFLAGS(context) |= 0x40; // set ZF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x40; // clear ZF
|
|
}
|
|
|
|
if (diff & sign)
|
|
{
|
|
EFLAGS(context) |= 0x80; // set SF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x80; // clear SF
|
|
}
|
|
|
|
if ((x ^ summ) & (y ^ summ) & sign)
|
|
{
|
|
EFLAGS(context) |= 0x800; // set OF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x800; // clear OF
|
|
}
|
|
|
|
const u8 p1 = static_cast<u8>(diff) ^ (static_cast<u8>(diff) >> 4);
|
|
const u8 p2 = p1 ^ (p1 >> 2);
|
|
const u8 p3 = p2 ^ (p2 >> 1);
|
|
|
|
if ((p3 & 1) == 0)
|
|
{
|
|
EFLAGS(context) |= 0x4; // set PF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x4; // clear PF
|
|
}
|
|
|
|
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
|
|
{
|
|
EFLAGS(context) |= 0x10; // set AF
|
|
}
|
|
else
|
|
{
|
|
EFLAGS(context) &= ~0x10; // clear AF
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size)
|
|
{
|
|
if (op == X64OP_MOVS || op == X64OP_STOS)
|
|
{
|
|
if (EFLAGS(context) & 0x400 /* direction flag */)
|
|
{
|
|
// TODO
|
|
return 0;
|
|
}
|
|
|
|
if (reg != X64_NOT_SET) // get "full" access size from RCX register
|
|
{
|
|
u64 counter;
|
|
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
return d_size * counter;
|
|
}
|
|
}
|
|
|
|
return d_size;
|
|
}
|
|
|
|
namespace rsx
|
|
{
|
|
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
|
|
}
|
|
|
|
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context) noexcept
|
|
{
|
|
g_tls_fault_all++;
|
|
|
|
const auto cpu = get_current_cpu_thread();
|
|
|
|
if (rsx::g_access_violation_handler)
|
|
{
|
|
bool handled = false;
|
|
|
|
try
|
|
{
|
|
if (cpu)
|
|
{
|
|
vm::temporary_unlock(*cpu);
|
|
}
|
|
|
|
handled = rsx::g_access_violation_handler(addr, is_writing);
|
|
}
|
|
catch (const std::exception& e)
|
|
{
|
|
rsx_log.fatal("g_access_violation_handler(0x%x, %d): %s", addr, is_writing, e.what());
|
|
|
|
if (cpu)
|
|
{
|
|
cpu->state += cpu_flag::dbg_pause;
|
|
|
|
if (cpu->test_stopped())
|
|
{
|
|
std::terminate();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (handled)
|
|
{
|
|
g_tls_fault_rsx++;
|
|
if (cpu && cpu->test_stopped())
|
|
{
|
|
//
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (cpu && cpu->test_stopped())
|
|
{
|
|
}
|
|
}
|
|
|
|
const u8* const code = reinterpret_cast<u8*>(RIP(context));
|
|
|
|
x64_op_t op;
|
|
x64_reg_t reg;
|
|
size_t d_size;
|
|
size_t i_size;
|
|
|
|
// decode single x64 instruction that causes memory access
|
|
decode_x64_reg_op(code, op, reg, d_size, i_size);
|
|
|
|
auto report_opcode = [=]()
|
|
{
|
|
if (op == X64OP_NONE)
|
|
{
|
|
sig_log.error("decode_x64_reg_op(%p): unsupported opcode: %s", code, *reinterpret_cast<const be_t<v128, 1>*>(code));
|
|
}
|
|
};
|
|
|
|
if ((d_size | (d_size + addr)) >= 0x100000000ull)
|
|
{
|
|
sig_log.error("Invalid d_size (0x%llx)", d_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
// get length of data being accessed
|
|
size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size);
|
|
|
|
if ((a_size | (a_size + addr)) >= 0x100000000ull)
|
|
{
|
|
sig_log.error("Invalid a_size (0x%llx)", a_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
// check if address is RawSPU MMIO register
|
|
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
|
|
{
|
|
auto thread = idm::get<named_thread<spu_thread>>(spu_thread::find_raw_spu((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET));
|
|
|
|
if (!thread)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (a_size != 4 || !d_size || !i_size)
|
|
{
|
|
sig_log.error("Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", +op, +reg, d_size, a_size, i_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
|
|
switch (op)
|
|
{
|
|
case X64OP_LOAD:
|
|
case X64OP_LOAD_BE:
|
|
case X64OP_LOAD_CMP:
|
|
case X64OP_LOAD_TEST:
|
|
{
|
|
u32 value;
|
|
if (is_writing || !thread->read_reg(addr, value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (op != X64OP_LOAD_BE)
|
|
{
|
|
value = se_storage<u32>::swap(value);
|
|
}
|
|
|
|
if (op == X64OP_LOAD_CMP)
|
|
{
|
|
u64 rvalue;
|
|
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (op == X64OP_LOAD_TEST)
|
|
{
|
|
u64 rvalue;
|
|
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!put_x64_reg_value(context, reg, d_size, value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case X64OP_STORE:
|
|
case X64OP_STORE_BE:
|
|
{
|
|
u64 reg_value;
|
|
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
u32 val32 = static_cast<u32>(reg_value);
|
|
if (!thread->write_reg(addr, op == X64OP_STORE ? se_storage<u32>::swap(val32) : val32))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case X64OP_MOVS: // possibly, TODO
|
|
case X64OP_STOS:
|
|
default:
|
|
{
|
|
sig_log.error("Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", +op, +reg, d_size, i_size);
|
|
report_opcode();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// skip processed instruction
|
|
RIP(context) += i_size;
|
|
g_tls_fault_spu++;
|
|
return true;
|
|
}
|
|
|
|
if (vm::check_addr(addr, std::max(1u, ::narrow<u32>(d_size)), is_writing ? vm::page_writable : vm::page_readable))
|
|
{
|
|
if (cpu && cpu->test_stopped())
|
|
{
|
|
//
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
thread_local bool access_violation_recovered = false;
|
|
|
|
// Hack: allocate memory in case the emulator is stopping
|
|
const auto hack_alloc = [&]()
|
|
{
|
|
// If failed the value remains true and std::terminate should be called
|
|
access_violation_recovered = true;
|
|
|
|
const auto area = vm::reserve_map(vm::any, addr & -0x10000, 0x10000);
|
|
|
|
if (!area)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
if (area->flags & 0x100 || (is_writing && vm::check_addr(addr, std::max(1u, ::narrow<u32>(d_size)))))
|
|
{
|
|
// For 4kb pages or read only memory
|
|
utils::memory_protect(vm::base(addr & -0x1000), 0x1000, utils::protection::rw);
|
|
return true;
|
|
}
|
|
|
|
area->falloc(addr & -0x10000, 0x10000);
|
|
return vm::check_addr(addr, std::max(1u, ::narrow<u32>(d_size)), is_writing ? vm::page_writable : vm::page_readable);
|
|
};
|
|
|
|
if (cpu)
|
|
{
|
|
u32 pf_port_id = 0;
|
|
|
|
if (auto pf_entries = g_fxo->get<page_fault_notification_entries>(); true)
|
|
{
|
|
if (auto mem = vm::get(vm::any, addr))
|
|
{
|
|
std::shared_lock lock(pf_entries->mutex);
|
|
|
|
for (const auto& entry : pf_entries->entries)
|
|
{
|
|
if (entry.start_addr == mem->addr)
|
|
{
|
|
pf_port_id = entry.port_id;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (pf_port_id)
|
|
{
|
|
// We notify the game that a page fault occurred so it can rectify it.
|
|
// Note, for data3, were the memory readable AND we got a page fault, it must be due to a write violation since reads are allowed.
|
|
u64 data1 = addr;
|
|
u64 data2;
|
|
|
|
if (cpu->id_type() == 1)
|
|
{
|
|
data2 = (SYS_MEMORY_PAGE_FAULT_TYPE_PPU_THREAD << 32) | cpu->id;
|
|
}
|
|
else
|
|
{
|
|
const auto& spu = static_cast<spu_thread&>(*cpu);
|
|
|
|
const u64 type = spu.offset < RAW_SPU_BASE_ADDR ?
|
|
SYS_MEMORY_PAGE_FAULT_TYPE_SPU_THREAD :
|
|
SYS_MEMORY_PAGE_FAULT_TYPE_RAW_SPU;
|
|
|
|
data2 = (type << 32) | spu.lv2_id;
|
|
}
|
|
|
|
u64 data3;
|
|
{
|
|
vm::reader_lock rlock;
|
|
if (vm::check_addr(addr, std::max(1u, ::narrow<u32>(d_size)), is_writing ? vm::page_writable : vm::page_readable))
|
|
{
|
|
// Memory was allocated inbetween, retry
|
|
return true;
|
|
}
|
|
else if (vm::check_addr(addr, std::max(1u, ::narrow<u32>(d_size))))
|
|
{
|
|
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY; // TODO
|
|
}
|
|
else
|
|
{
|
|
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_NON_MAPPED;
|
|
}
|
|
}
|
|
|
|
// Now, place the page fault event onto table so that other functions [sys_mmapper_free_address and pagefault recovery funcs etc]
|
|
// know that this thread is page faulted and where.
|
|
|
|
auto pf_events = g_fxo->get<page_fault_event_entries>();
|
|
{
|
|
std::lock_guard pf_lock(pf_events->pf_mutex);
|
|
pf_events->events.emplace(static_cast<u32>(data2), addr);
|
|
}
|
|
|
|
sig_log.error("Page_fault %s location 0x%x because of %s memory", is_writing ? "writing" : "reading",
|
|
addr, data3 == SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY ? "writing read-only" : "using unmapped");
|
|
|
|
error_code sending_error = sys_event_port_send(pf_port_id, data1, data2, data3);
|
|
|
|
// If we fail due to being busy, wait a bit and try again.
|
|
while (static_cast<u32>(sending_error) == CELL_EBUSY)
|
|
{
|
|
if (cpu->id_type() == 1)
|
|
{
|
|
lv2_obj::sleep(*cpu, 1000);
|
|
}
|
|
|
|
thread_ctrl::wait_for(1000);
|
|
sending_error = sys_event_port_send(pf_port_id, data1, data2, data3);
|
|
}
|
|
|
|
if (cpu->id_type() == 1)
|
|
{
|
|
// Deschedule
|
|
lv2_obj::sleep(*cpu);
|
|
}
|
|
|
|
if (sending_error)
|
|
{
|
|
vm_log.fatal("Unknown error %x while trying to pass page fault.", +sending_error);
|
|
cpu->state += cpu_flag::dbg_pause;
|
|
}
|
|
|
|
// Wait until the thread is recovered
|
|
for (std::shared_lock pf_lock(pf_events->pf_mutex);
|
|
pf_events->events.count(static_cast<u32>(data2)) && !sending_error;)
|
|
{
|
|
if (cpu->is_stopped())
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Timeout in case the emulator is stopping
|
|
pf_events->cond.wait(pf_lock, 10000);
|
|
}
|
|
|
|
// Reschedule, test cpu state and try recovery if stopped
|
|
if (cpu->test_stopped() && !hack_alloc())
|
|
{
|
|
std::terminate();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (cpu->id_type() != 1)
|
|
{
|
|
if (!access_violation_recovered)
|
|
{
|
|
vm_log.notice("\n%s", cpu->dump());
|
|
vm_log.fatal("Access violation %s location 0x%x (%s)", is_writing ? "writing" : "reading", addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory");
|
|
}
|
|
|
|
// TODO:
|
|
// RawSPU: Send appropriate interrupt
|
|
// SPUThread: Send sys_spu exception event
|
|
cpu->state += cpu_flag::dbg_pause;
|
|
|
|
if (cpu->check_state() && !hack_alloc())
|
|
{
|
|
std::terminate();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
if (auto last_func = static_cast<ppu_thread*>(cpu)->current_function)
|
|
{
|
|
ppu_log.fatal("Function aborted: %s", last_func);
|
|
}
|
|
|
|
lv2_obj::sleep(*cpu);
|
|
}
|
|
}
|
|
|
|
Emu.Pause();
|
|
|
|
if (cpu && !access_violation_recovered)
|
|
{
|
|
vm_log.notice("\n%s", cpu->dump());
|
|
}
|
|
|
|
// Note: a thread may access violate more than once after hack_alloc recovery
|
|
// Do not log any further access violations in this case.
|
|
if (!access_violation_recovered)
|
|
{
|
|
vm_log.fatal("Access violation %s location 0x%x (%s)", is_writing ? "writing" : "reading", addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory");
|
|
}
|
|
|
|
while (Emu.IsPaused())
|
|
{
|
|
thread_ctrl::wait();
|
|
}
|
|
|
|
if (Emu.IsStopped() && !hack_alloc())
|
|
{
|
|
std::terminate();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
|
|
static LONG exception_handler(PEXCEPTION_POINTERS pExp) noexcept
|
|
{
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_BREAKPOINT && IsDebuggerPresent())
|
|
{
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - reinterpret_cast<u64>(vm::g_base_addr);
|
|
const u64 exec64 = (pExp->ExceptionRecord->ExceptionInformation[1] - reinterpret_cast<u64>(vm::g_exec_addr)) / 2;
|
|
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
|
|
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
|
|
{
|
|
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(addr64), is_writing, pExp->ContextRecord))
|
|
{
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && exec64 < 0x100000000ull)
|
|
{
|
|
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(exec64), is_writing, pExp->ContextRecord))
|
|
{
|
|
return EXCEPTION_CONTINUE_EXECUTION;
|
|
}
|
|
}
|
|
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
static LONG exception_filter(PEXCEPTION_POINTERS pExp) noexcept
|
|
{
|
|
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
|
|
|
|
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
|
|
{
|
|
const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading";
|
|
|
|
fmt::append(msg, "Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
|
|
}
|
|
else
|
|
{
|
|
fmt::append(msg, "Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
|
|
|
|
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
|
|
{
|
|
fmt::append(msg, "ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
|
|
}
|
|
}
|
|
|
|
if (thread_ctrl::get_current())
|
|
{
|
|
fmt::append(msg, "Emu Thread Name: '%s'.\n", thread_ctrl::get_name());
|
|
|
|
if (const auto cpu = get_current_cpu_thread())
|
|
{
|
|
sys_log.notice("\n%s", cpu->dump());
|
|
}
|
|
}
|
|
|
|
// TODO: Report full thread name if not an emu thread
|
|
|
|
fmt::append(msg, "Thread id = %s.\n", std::this_thread::get_id());
|
|
|
|
sys_log.notice("Memory bases:\nvm::g_base_addr = %p\nvm::g_sudo_addr = %p\nvm::g_exec_addr = %p\nvm::g_stat_addr = %p\nvm::g_reservations = %p\n",
|
|
vm::g_base_addr, vm::g_sudo_addr, vm::g_exec_addr, vm::g_stat_addr, vm::g_reservations);
|
|
|
|
std::vector<HMODULE> modules;
|
|
for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE))
|
|
{
|
|
modules.resize(size);
|
|
if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size))
|
|
{
|
|
modules.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "Instruction address: %p.\n", pExp->ContextRecord->Rip);
|
|
|
|
DWORD64 unwind_base;
|
|
if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr))
|
|
{
|
|
// Get function address
|
|
const DWORD64 func_addr = rtf->BeginAddress + unwind_base;
|
|
fmt::append(msg, "Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress);
|
|
|
|
// Access UNWIND_INFO structure
|
|
//const auto uw = (u8*)(unwind_base + rtf->UnwindData);
|
|
}
|
|
|
|
for (HMODULE module : modules)
|
|
{
|
|
MODULEINFO info;
|
|
if (GetModuleInformation(GetCurrentProcess(), module, &info, sizeof(info)))
|
|
{
|
|
const DWORD64 base = reinterpret_cast<DWORD64>(info.lpBaseOfDll);
|
|
|
|
if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage)
|
|
{
|
|
std::string module_name;
|
|
for (DWORD size = 15; module_name.size() != size;)
|
|
{
|
|
module_name.resize(size);
|
|
size = GetModuleBaseNameA(GetCurrentProcess(), module, &module_name.front(), size + 1);
|
|
if (!size)
|
|
{
|
|
module_name.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "Module name: '%s'.\n", module_name);
|
|
fmt::append(msg, "Module base: %p.\n", info.lpBaseOfDll);
|
|
}
|
|
}
|
|
}
|
|
|
|
fmt::append(msg, "RPCS3 image base: %p.\n", GetModuleHandle(NULL));
|
|
|
|
// TODO: print registers and the callstack
|
|
|
|
sys_log.fatal("\n%s", msg);
|
|
|
|
if (!IsDebuggerPresent())
|
|
{
|
|
report_fatal_error(msg);
|
|
}
|
|
|
|
return EXCEPTION_CONTINUE_SEARCH;
|
|
}
|
|
|
|
const bool s_exception_handler_set = []() -> bool
|
|
{
|
|
if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
|
|
{
|
|
report_fatal_error("AddVectoredExceptionHandler() failed.");
|
|
}
|
|
|
|
if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter))
|
|
{
|
|
report_fatal_error("SetUnhandledExceptionFilter() failed.");
|
|
}
|
|
|
|
return true;
|
|
}();
|
|
|
|
#else
|
|
|
|
static void signal_handler(int sig, siginfo_t* info, void* uct) noexcept
|
|
{
|
|
x64_context* context = static_cast<ucontext_t*>(uct);
|
|
|
|
#ifdef __APPLE__
|
|
const bool is_writing = context->uc_mcontext->__es.__err & 0x2;
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__)
|
|
const bool is_writing = context->uc_mcontext.mc_err & 0x2;
|
|
#elif defined(__OpenBSD__)
|
|
const bool is_writing = context->sc_err & 0x2;
|
|
#elif defined(__NetBSD__)
|
|
const bool is_writing = context->uc_mcontext.__gregs[_REG_ERR] & 0x2;
|
|
#else
|
|
const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2;
|
|
#endif
|
|
|
|
const u64 addr64 = reinterpret_cast<u64>(info->si_addr) - reinterpret_cast<u64>(vm::g_base_addr);
|
|
const u64 exec64 = (reinterpret_cast<u64>(info->si_addr) - reinterpret_cast<u64>(vm::g_exec_addr)) / 2;
|
|
const auto cause = is_writing ? "writing" : "reading";
|
|
|
|
if (addr64 < 0x100000000ull)
|
|
{
|
|
// Try to process access violation
|
|
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(addr64), is_writing, context))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (exec64 < 0x100000000ull)
|
|
{
|
|
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(exec64), is_writing, context))
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (const auto cpu = get_current_cpu_thread())
|
|
{
|
|
sys_log.notice("\n%s", cpu->dump());
|
|
}
|
|
|
|
sys_log.notice("Memory bases:\nvm::g_base_addr = %p\nvm::g_sudo_addr = %p\nvm::g_exec_addr = %p\nvm::g_stat_addr = %p\nvm::g_reservations = %p\n",
|
|
vm::g_base_addr, vm::g_sudo_addr, vm::g_exec_addr, vm::g_stat_addr, vm::g_reservations);
|
|
|
|
std::string msg = fmt::format("Segfault %s location %p at %p.\n", cause, info->si_addr, RIP(context));
|
|
|
|
if (thread_ctrl::get_current())
|
|
{
|
|
fmt::append(msg, "Emu Thread Name: '%s'.\n", thread_ctrl::get_name());
|
|
}
|
|
|
|
// TODO: Report full thread name if not an emu thread
|
|
|
|
fmt::append(msg, "Thread id = %s.\n", std::this_thread::get_id());
|
|
|
|
// TODO (debugger interaction)
|
|
sys_log.fatal("\n%s", msg);
|
|
report_fatal_error(msg);
|
|
}
|
|
|
|
const bool s_exception_handler_set = []() -> bool
|
|
{
|
|
struct ::sigaction sa;
|
|
sa.sa_flags = SA_SIGINFO;
|
|
sigemptyset(&sa.sa_mask);
|
|
sa.sa_sigaction = signal_handler;
|
|
|
|
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
|
|
{
|
|
std::printf("sigaction(SIGSEGV) failed (0x%x).", errno);
|
|
std::abort();
|
|
}
|
|
|
|
return true;
|
|
}();
|
|
|
|
#endif
|
|
|
|
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
|
|
|
|
DECLARE(thread_ctrl::g_native_core_layout) { native_core_arrangement::undefined };
|
|
|
|
void thread_base::start(native_entry entry)
|
|
{
|
|
#ifdef _WIN32
|
|
m_thread = ::_beginthreadex(nullptr, 0, entry, this, CREATE_SUSPENDED, nullptr);
|
|
verify("thread_ctrl::start" HERE), m_thread, ::ResumeThread(reinterpret_cast<HANDLE>(+m_thread)) != -1;
|
|
#else
|
|
verify("thread_ctrl::start" HERE), pthread_create(reinterpret_cast<pthread_t*>(&m_thread.raw()), nullptr, entry, this) == 0;
|
|
#endif
|
|
}
|
|
|
|
void thread_base::initialize(bool(*wait_cb)(const void*))
|
|
{
|
|
// Initialize TLS variable
|
|
thread_ctrl::g_tls_this_thread = this;
|
|
|
|
// Initialize atomic wait callback
|
|
atomic_storage_futex::set_wait_callback(wait_cb);
|
|
|
|
g_tls_log_prefix = []
|
|
{
|
|
return thread_ctrl::get_name_cached();
|
|
};
|
|
|
|
std::string name = thread_ctrl::get_name_cached();
|
|
|
|
#ifdef _MSC_VER
|
|
struct THREADNAME_INFO
|
|
{
|
|
DWORD dwType;
|
|
LPCSTR szName;
|
|
DWORD dwThreadID;
|
|
DWORD dwFlags;
|
|
};
|
|
|
|
// Set thread name for VS debugger
|
|
if (IsDebuggerPresent()) [&]() NEVER_INLINE
|
|
{
|
|
THREADNAME_INFO info;
|
|
info.dwType = 0x1000;
|
|
info.szName = name.c_str();
|
|
info.dwThreadID = -1;
|
|
info.dwFlags = 0;
|
|
|
|
__try
|
|
{
|
|
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
|
|
}
|
|
__except (EXCEPTION_EXECUTE_HANDLER)
|
|
{
|
|
}
|
|
}();
|
|
#endif
|
|
|
|
#if defined(__APPLE__)
|
|
name.resize(std::min<std::size_t>(15, name.size()));
|
|
pthread_setname_np(name.c_str());
|
|
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
|
|
pthread_set_name_np(pthread_self(), name.c_str());
|
|
#elif defined(__NetBSD__)
|
|
pthread_setname_np(pthread_self(), "%s", name.data());
|
|
#elif !defined(_WIN32)
|
|
name.resize(std::min<std::size_t>(15, name.size()));
|
|
pthread_setname_np(pthread_self(), name.c_str());
|
|
#endif
|
|
|
|
#ifdef __linux__
|
|
m_timer = timerfd_create(CLOCK_MONOTONIC, 0);
|
|
if (m_timer == -1)
|
|
{
|
|
sig_log.error("Linux timer allocation failed, use wait_unlock() only");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void thread_base::notify_abort() noexcept
|
|
{
|
|
// For now
|
|
notify();
|
|
|
|
atomic_storage_futex::raw_notify(+m_state_notifier);
|
|
}
|
|
|
|
bool thread_base::finalize(int) noexcept
|
|
{
|
|
// Report pending errors
|
|
error_code::error_report(0, 0, 0, 0);
|
|
|
|
#ifdef __linux__
|
|
if (m_timer != -1)
|
|
{
|
|
close(m_timer);
|
|
}
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
ULONG64 cycles{};
|
|
QueryThreadCycleTime(GetCurrentThread(), &cycles);
|
|
FILETIME ctime, etime, ktime, utime;
|
|
GetThreadTimes(GetCurrentThread(), &ctime, &etime, &ktime, &utime);
|
|
const u64 time = ((ktime.dwLowDateTime | (u64)ktime.dwHighDateTime << 32) + (utime.dwLowDateTime | (u64)utime.dwHighDateTime << 32)) * 100ull;
|
|
const u64 fsoft = 0;
|
|
const u64 fhard = 0;
|
|
const u64 ctxvol = 0;
|
|
const u64 ctxinv = 0;
|
|
#elif defined(RUSAGE_THREAD)
|
|
const u64 cycles = 0; // Not supported
|
|
struct ::rusage stats{};
|
|
::getrusage(RUSAGE_THREAD, &stats);
|
|
const u64 time = (stats.ru_utime.tv_sec + stats.ru_stime.tv_sec) * 1000000000ull + (stats.ru_utime.tv_usec + stats.ru_stime.tv_usec) * 1000ull;
|
|
const u64 fsoft = stats.ru_minflt;
|
|
const u64 fhard = stats.ru_majflt;
|
|
const u64 ctxvol = stats.ru_nvcsw;
|
|
const u64 ctxinv = stats.ru_nivcsw;
|
|
#else
|
|
const u64 cycles = 0;
|
|
const u64 time = 0;
|
|
const u64 fsoft = 0;
|
|
const u64 fhard = 0;
|
|
const u64 ctxvol = 0;
|
|
const u64 ctxinv = 0;
|
|
#endif
|
|
|
|
g_tls_log_prefix = []
|
|
{
|
|
return thread_ctrl::get_name_cached();
|
|
};
|
|
|
|
sig_log.notice("Thread time: %fs (%fGc); Faults: %u [rsx:%u, spu:%u]; [soft:%u hard:%u]; Switches:[vol:%u unvol:%u]",
|
|
time / 1000000000.,
|
|
cycles / 1000000000.,
|
|
g_tls_fault_all,
|
|
g_tls_fault_rsx,
|
|
g_tls_fault_spu,
|
|
fsoft, fhard, ctxvol, ctxinv);
|
|
|
|
// Return true if need to delete thread object
|
|
const bool ok = m_state.exchange(thread_state::finished) <= thread_state::aborting;
|
|
|
|
// Signal waiting threads
|
|
m_state.notify_all();
|
|
|
|
// No detached thread supported atm
|
|
return !ok;
|
|
}
|
|
|
|
void thread_base::finalize() noexcept
|
|
{
|
|
g_tls_log_prefix = []() -> std::string { return {}; };
|
|
thread_ctrl::g_tls_this_thread = nullptr;
|
|
}
|
|
|
|
void thread_ctrl::_wait_for(u64 usec, bool alert /* true */)
|
|
{
|
|
auto _this = g_tls_this_thread;
|
|
|
|
#ifdef __linux__
|
|
if (!alert && _this->m_timer != -1 && usec > 0 && usec <= 1000)
|
|
{
|
|
struct itimerspec timeout;
|
|
u64 missed;
|
|
u64 nsec = usec * 1000ull;
|
|
|
|
timeout.it_value.tv_nsec = (nsec % 1000000000ull);
|
|
timeout.it_value.tv_sec = nsec / 1000000000ull;
|
|
timeout.it_interval.tv_sec = 0;
|
|
timeout.it_interval.tv_nsec = 0;
|
|
timerfd_settime(_this->m_timer, 0, &timeout, NULL);
|
|
if (read(_this->m_timer, &missed, sizeof(missed)) != sizeof(missed))
|
|
sig_log.error("timerfd: read() failed");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
std::unique_lock lock(_this->m_mutex, std::defer_lock);
|
|
|
|
while (true)
|
|
{
|
|
// Mutex is unlocked at the start and after the waiting
|
|
if (u32 sig = _this->m_signal.load())
|
|
{
|
|
if (sig & 1)
|
|
{
|
|
_this->m_signal &= ~1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (usec == 0)
|
|
{
|
|
// No timeout: return immediately
|
|
return;
|
|
}
|
|
|
|
if (!lock)
|
|
{
|
|
lock.lock();
|
|
}
|
|
|
|
// Double-check the value
|
|
if (u32 sig = _this->m_signal.load())
|
|
{
|
|
if (sig & 1)
|
|
{
|
|
_this->m_signal &= ~1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
_this->m_cond.wait_unlock(usec, lock);
|
|
|
|
if (usec < cond_variable::max_timeout)
|
|
{
|
|
usec = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string thread_ctrl::get_name_cached()
|
|
{
|
|
auto _this = thread_ctrl::g_tls_this_thread;
|
|
|
|
if (!_this)
|
|
{
|
|
return {};
|
|
}
|
|
|
|
static thread_local stx::shared_cptr<std::string> name_cache;
|
|
|
|
if (!_this->m_tname.is_equal(name_cache)) [[unlikely]]
|
|
{
|
|
name_cache = _this->m_tname.load();
|
|
}
|
|
|
|
return *name_cache;
|
|
}
|
|
|
|
thread_base::thread_base(std::string_view name)
|
|
: m_tname(stx::shared_cptr<std::string>::make(name))
|
|
{
|
|
}
|
|
|
|
thread_base::~thread_base()
|
|
{
|
|
if (m_thread)
|
|
{
|
|
#ifdef _WIN32
|
|
CloseHandle(reinterpret_cast<HANDLE>(m_thread.raw()));
|
|
#else
|
|
pthread_detach(reinterpret_cast<pthread_t>(m_thread.raw()));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void thread_base::join() const
|
|
{
|
|
for (auto state = m_state.load(); state != thread_state::finished;)
|
|
{
|
|
m_state.wait(state);
|
|
state = m_state;
|
|
}
|
|
}
|
|
|
|
void thread_base::notify()
|
|
{
|
|
if (!(m_signal & 1))
|
|
{
|
|
m_signal |= 1;
|
|
m_mutex.lock_unlock();
|
|
m_cond.notify_one();
|
|
}
|
|
}
|
|
|
|
u64 thread_base::get_cycles()
|
|
{
|
|
u64 cycles;
|
|
|
|
#ifdef _WIN32
|
|
if (QueryThreadCycleTime(reinterpret_cast<HANDLE>(m_thread.load()), &cycles))
|
|
{
|
|
#elif __APPLE__
|
|
mach_port_name_t port = pthread_mach_thread_np(reinterpret_cast<pthread_t>(m_thread.load()));
|
|
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
|
|
thread_basic_info_data_t info;
|
|
kern_return_t ret = thread_info(port, THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&info), &count);
|
|
if (ret == KERN_SUCCESS)
|
|
{
|
|
cycles = static_cast<u64>(info.user_time.seconds + info.system_time.seconds) * 1'000'000'000 +
|
|
static_cast<u64>(info.user_time.microseconds + info.system_time.microseconds) * 1'000;
|
|
#else
|
|
clockid_t _clock;
|
|
struct timespec thread_time;
|
|
if (!pthread_getcpuclockid(reinterpret_cast<pthread_t>(m_thread.load()), &_clock) && !clock_gettime(_clock, &thread_time))
|
|
{
|
|
cycles = static_cast<u64>(thread_time.tv_sec) * 1'000'000'000 + thread_time.tv_nsec;
|
|
#endif
|
|
if (const u64 old_cycles = m_cycles.exchange(cycles))
|
|
{
|
|
return cycles - old_cycles;
|
|
}
|
|
|
|
// Report 0 the first time this function is called
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return m_cycles;
|
|
}
|
|
}
|
|
|
|
void thread_ctrl::detect_cpu_layout()
|
|
{
|
|
if (!g_native_core_layout.compare_and_swap_test(native_core_arrangement::undefined, native_core_arrangement::generic))
|
|
return;
|
|
|
|
const auto system_id = utils::get_system_info();
|
|
if (system_id.find("Ryzen") != std::string::npos)
|
|
{
|
|
g_native_core_layout.store(native_core_arrangement::amd_ccx);
|
|
}
|
|
else if (system_id.find("Intel") != std::string::npos)
|
|
{
|
|
#ifdef _WIN32
|
|
const LOGICAL_PROCESSOR_RELATIONSHIP relationship = LOGICAL_PROCESSOR_RELATIONSHIP::RelationProcessorCore;
|
|
DWORD buffer_size = 0;
|
|
|
|
// If buffer size is set to 0 bytes, it will be overwritten with the required size
|
|
if (GetLogicalProcessorInformationEx(relationship, nullptr, &buffer_size))
|
|
{
|
|
sig_log.error("GetLogicalProcessorInformationEx returned 0 bytes");
|
|
return;
|
|
}
|
|
DWORD error_code = GetLastError();
|
|
if (error_code != ERROR_INSUFFICIENT_BUFFER)
|
|
{
|
|
sig_log.error("Unexpected windows error code when detecting CPU layout: %u", error_code);
|
|
return;
|
|
}
|
|
|
|
std::vector<u8> buffer(buffer_size);
|
|
|
|
if (!GetLogicalProcessorInformationEx(relationship,
|
|
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(buffer.data()), &buffer_size))
|
|
{
|
|
sig_log.error("GetLogicalProcessorInformationEx failed (size=%u, error=%u)", buffer_size, GetLastError());
|
|
}
|
|
else
|
|
{
|
|
// Iterate through the buffer until a core with hyperthreading is found
|
|
auto ptr = reinterpret_cast<std::uintptr_t>(buffer.data());
|
|
const std::uintptr_t end = ptr + buffer_size;
|
|
|
|
while (ptr < end)
|
|
{
|
|
auto info = reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(ptr);
|
|
if (info->Relationship == relationship && info->Processor.Flags == LTP_PC_SMT)
|
|
{
|
|
g_native_core_layout.store(native_core_arrangement::intel_ht);
|
|
break;
|
|
}
|
|
ptr += info->Size;
|
|
}
|
|
}
|
|
#else
|
|
sig_log.todo("Thread scheduler is not implemented for Intel and this OS");
|
|
#endif
|
|
}
|
|
}
|
|
|
|
u64 thread_ctrl::get_affinity_mask(thread_class group)
|
|
{
|
|
detect_cpu_layout();
|
|
|
|
if (const auto thread_count = std::thread::hardware_concurrency())
|
|
{
|
|
const u64 all_cores_mask = thread_count < 64 ? UINT64_MAX >> (64 - thread_count): UINT64_MAX;
|
|
|
|
switch (g_native_core_layout)
|
|
{
|
|
default:
|
|
case native_core_arrangement::generic:
|
|
{
|
|
return all_cores_mask;
|
|
}
|
|
case native_core_arrangement::amd_ccx:
|
|
{
|
|
u64 spu_mask, ppu_mask, rsx_mask;
|
|
const auto system_id = utils::get_system_info();
|
|
if (thread_count >= 32)
|
|
{
|
|
if (system_id.find("3950X") != std::string::npos)
|
|
{
|
|
// zen2
|
|
// Ryzen 9 3950X
|
|
// Assign threads 9-32
|
|
ppu_mask = 0b11111111000000000000000000000000;
|
|
spu_mask = 0b00000000111111110000000000000000;
|
|
rsx_mask = 0b00000000000000001111111100000000;
|
|
}
|
|
else if (system_id.find("2970WX") != std::string::npos)
|
|
{
|
|
// zen+
|
|
// Threadripper 2970WX
|
|
// Assign threads 9-24
|
|
ppu_mask = 0b000000111111000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b111111000000000000000000;
|
|
}
|
|
else
|
|
{
|
|
// zen(+)
|
|
// Threadripper 1950X/2950X/2990WX
|
|
// Assign threads 17-32
|
|
ppu_mask = 0b00000000111111110000000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b11111111000000000000000000000000;
|
|
}
|
|
|
|
}
|
|
else if (thread_count == 24)
|
|
{
|
|
if (system_id.find("3900X") != std::string::npos)
|
|
{
|
|
// zen2
|
|
// Ryzen 9 3900X
|
|
// Assign threads 7-22
|
|
ppu_mask = 0b111111000000000000000000;
|
|
spu_mask = 0b000000111111000000000000;
|
|
rsx_mask = 0b000000000000111111000000;
|
|
}
|
|
else
|
|
{
|
|
// zen(+)
|
|
// Threadripper 1920X/2920X
|
|
// Assign threads 13-24
|
|
ppu_mask = 0b000000111111000000000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b111111000000000000000000;
|
|
}
|
|
}
|
|
else if (thread_count == 16)
|
|
{
|
|
if (system_id.find("3700X") != std::string::npos || system_id.find("3800X") != std::string::npos)
|
|
{
|
|
// Ryzen 7 3700/3800 (x)
|
|
// Assign threads 1-16
|
|
ppu_mask = 0b0000000011110000;
|
|
spu_mask = 0b1111111100000000;
|
|
rsx_mask = 0b0000000000001111;
|
|
}
|
|
else
|
|
{
|
|
// zen(+)
|
|
// Ryzen 7, Threadripper
|
|
// Assign threads 3-16
|
|
ppu_mask = 0b1111111100000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b0000000000111100;
|
|
}
|
|
}
|
|
else if (thread_count == 12)
|
|
{
|
|
if (system_id.find("3600") != std::string::npos)
|
|
{
|
|
// zen2
|
|
// R5 3600 (x)
|
|
// Assign threads 1-12
|
|
ppu_mask = 0b000000111000;
|
|
spu_mask = 0b111111000000;
|
|
rsx_mask = 0b000000000111;
|
|
}
|
|
else
|
|
{
|
|
// zen(+)
|
|
// R5 1600/2600 (x)
|
|
// Assign threads 3-12
|
|
ppu_mask = 0b111111000000;
|
|
spu_mask = ppu_mask;
|
|
rsx_mask = 0b000000111100;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// R5 & R3 don't seem to improve performance no matter how these are shuffled
|
|
ppu_mask = spu_mask = rsx_mask = 0b11111111 & all_cores_mask;
|
|
}
|
|
|
|
switch (group)
|
|
{
|
|
default:
|
|
case thread_class::general:
|
|
return all_cores_mask;
|
|
case thread_class::rsx:
|
|
return rsx_mask;
|
|
case thread_class::ppu:
|
|
return ppu_mask;
|
|
case thread_class::spu:
|
|
return spu_mask;
|
|
}
|
|
}
|
|
case native_core_arrangement::intel_ht:
|
|
{
|
|
/* This has been disabled as it seems to degrade performance instead of improving it.
|
|
if (thread_count <= 4)
|
|
{
|
|
//i3 or worse
|
|
switch (group)
|
|
{
|
|
case thread_class::rsx:
|
|
case thread_class::ppu:
|
|
return (0b0101 & all_cores_mask);
|
|
case thread_class::spu:
|
|
return (0b1010 & all_cores_mask);
|
|
case thread_class::general:
|
|
return all_cores_mask;
|
|
}
|
|
}
|
|
*/
|
|
|
|
return all_cores_mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
return UINT64_MAX;
|
|
}
|
|
|
|
void thread_ctrl::set_native_priority(int priority)
|
|
{
|
|
#ifdef _WIN32
|
|
HANDLE _this_thread = GetCurrentThread();
|
|
INT native_priority = THREAD_PRIORITY_NORMAL;
|
|
|
|
if (priority > 0)
|
|
native_priority = THREAD_PRIORITY_ABOVE_NORMAL;
|
|
if (priority < 0)
|
|
native_priority = THREAD_PRIORITY_BELOW_NORMAL;
|
|
|
|
if (!SetThreadPriority(_this_thread, native_priority))
|
|
{
|
|
sig_log.error("SetThreadPriority() failed: 0x%x", GetLastError());
|
|
}
|
|
#else
|
|
int policy;
|
|
struct sched_param param;
|
|
|
|
pthread_getschedparam(pthread_self(), &policy, ¶m);
|
|
|
|
if (priority > 0)
|
|
param.sched_priority = sched_get_priority_max(policy);
|
|
if (priority < 0)
|
|
param.sched_priority = sched_get_priority_min(policy);
|
|
|
|
if (int err = pthread_setschedparam(pthread_self(), policy, ¶m))
|
|
{
|
|
sig_log.error("pthraed_setschedparam() failed: %d", err);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void thread_ctrl::set_thread_affinity_mask(u64 mask)
|
|
{
|
|
#ifdef _WIN32
|
|
HANDLE _this_thread = GetCurrentThread();
|
|
SetThreadAffinityMask(_this_thread, mask);
|
|
#elif __APPLE__
|
|
// Supports only one core
|
|
thread_affinity_policy_data_t policy = { static_cast<integer_t>(utils::cnttz64(mask)) };
|
|
thread_port_t mach_thread = pthread_mach_thread_np(pthread_self());
|
|
thread_policy_set(mach_thread, THREAD_AFFINITY_POLICY, reinterpret_cast<thread_policy_t>(&policy), 1);
|
|
#elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__)
|
|
cpu_set_t cs;
|
|
CPU_ZERO(&cs);
|
|
|
|
for (u32 core = 0; core < 64u; ++core)
|
|
{
|
|
const u64 shifted = mask >> core;
|
|
|
|
if (shifted & 1)
|
|
{
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wold-style-cast"
|
|
CPU_SET(core, &cs);
|
|
#pragma GCC diagnostic pop
|
|
}
|
|
|
|
if (shifted <= 1)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs);
|
|
#endif
|
|
}
|