1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 18:53:28 +01:00
rpcs3/Utilities/sysinfo.cpp
Malcolm Jestadt f188589685 Utils: Add detection for Icelake-client tier AVX-512
- Implies support for everything that Skylake-X supports as well as AVX512IFMA, AVX512VBMI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, AVX512VPCLMULQDQ, AVX512GFNI, AVX512VAES
2020-08-08 00:33:22 +02:00

376 lines
8.8 KiB
C++
Executable File

#include "sysinfo.h"
#include "StrFmt.h"
#include "File.h"
#include "Emu/system_config.h"
#include "Thread.h"
#ifdef _WIN32
#include "windows.h"
#include "sysinfoapi.h"
#include "subauth.h"
#include "stringapiset.h"
#else
#include <unistd.h>
#include <sys/utsname.h>
#include <errno.h>
#endif
bool utils::has_ssse3()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x1 && get_cpuid(1, 0)[2] & 0x200;
return g_value;
}
bool utils::has_sse41()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x1 && get_cpuid(1, 0)[2] & 0x80000;
return g_value;
}
bool utils::has_avx()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x1 && get_cpuid(1, 0)[2] & 0x10000000 && (get_cpuid(1, 0)[2] & 0x0C000000) == 0x0C000000 && (get_xgetbv(0) & 0x6) == 0x6;
return g_value;
}
bool utils::has_avx2()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && get_cpuid(7, 0)[1] & 0x20 && (get_cpuid(1, 0)[2] & 0x0C000000) == 0x0C000000 && (get_xgetbv(0) & 0x6) == 0x6;
return g_value;
}
bool utils::has_rtm()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(7, 0)[1] & 0x800) == 0x800;
return g_value;
}
bool utils::has_tsx_force_abort()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(7, 0)[3] & 0x2000) == 0x2000;
return g_value;
}
bool utils::has_mpx()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(7, 0)[1] & 0x4000) == 0x4000;
return g_value;
}
bool utils::has_avx512()
{
// Check AVX512F, AVX512CD, AVX512DQ, AVX512BW, AVX512VL extensions (Skylake-X level support)
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(7, 0)[1] & 0xd0030000) == 0xd0030000 && (get_cpuid(1, 0)[2] & 0x0C000000) == 0x0C000000 && (get_xgetbv(0) & 0xe6) == 0xe6;
return g_value;
}
bool utils::has_avx512_icl()
{
// Check AVX512IFMA, AVX512VBMI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, AVX512VPCLMULQDQ, AVX512GFNI, AVX512VAES (Icelake-client level support)
static const bool g_value = has_avx512() && (get_cpuid(7, 0)[1] & 0x00200000) == 0x00200000 && (get_cpuid(7, 0)[2] & 0x00005f42) == 0x00005f42;
return g_value;
}
bool utils::has_xop()
{
static const bool g_value = has_avx() && get_cpuid(0x80000001, 0)[2] & 0x800;
return g_value;
}
bool utils::has_clwb()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(7, 0)[1] & 0x1000000) == 0x1000000;
return g_value;
}
bool utils::has_invariant_tsc()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(0x80000007, 0)[3] & 0x100) == 0x100;
return g_value;
}
bool utils::has_fma3()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x1 && get_cpuid(1, 0)[2] & 0x1000;
return g_value;
}
bool utils::has_fma4()
{
static const bool g_value = get_cpuid(0, 0)[0] >= 0x7 && (get_cpuid(0x80000001, 0)[2] & 0x10000) == 0x10000;
return g_value;
}
std::string utils::get_cpu_brand()
{
std::string brand;
if (get_cpuid(0x80000000, 0)[0] >= 0x80000004)
{
for (u32 i = 0; i < 3; i++)
{
brand.append(reinterpret_cast<const char*>(get_cpuid(0x80000002 + i, 0).data()), 16);
}
}
else
{
brand = "Unknown CPU";
}
brand.erase(brand.find_last_not_of('\0') + 1);
brand.erase(brand.find_last_not_of(' ') + 1);
brand.erase(0, brand.find_first_not_of(' '));
while (auto found = brand.find(" ") + 1)
{
brand.erase(brand.begin() + found);
}
return brand;
}
std::string utils::get_system_info()
{
std::string result;
const std::string brand = get_cpu_brand();
const u64 mem_total = get_total_memory();
const u32 num_proc = get_thread_count();
fmt::append(result, "%s | %d Threads | %.2f GiB RAM", brand, num_proc, mem_total / (1024.0f * 1024 * 1024));
if (const ullong tsc_freq = get_tsc_freq())
{
fmt::append(result, " | TSC: %.03fGHz", tsc_freq / 1000000000.);
}
else
{
fmt::append(result, " | TSC: Bad");
}
if (has_avx())
{
result += " | AVX";
if (has_avx512())
{
result += "-512";
if (has_avx512_icl())
{
result += '+';
}
}
else if (has_avx2())
{
result += '+';
}
if (has_xop())
{
result += 'x';
}
}
if (has_fma3() || has_fma4())
{
result += " | FMA";
if (has_fma3() && has_fma4())
{
result += "3+4";
}
else if (has_fma3())
{
result += "3";
}
else if (has_fma4())
{
result += "4";
}
}
if (has_rtm())
{
result += " | TSX";
if (has_tsx_force_abort())
{
result += "-FA";
}
if (!has_mpx())
{
result += " disabled by default";
}
}
return result;
}
std::string utils::get_firmware_version()
{
const std::string file_path = g_cfg.vfs.get_dev_flash() + "vsh/etc/version.txt";
if (fs::is_file(file_path))
{
const fs::file version_file = fs::file(file_path);
std::string version = version_file.to_string();
// Extract version
const size_t start = version.find_first_of(':') + 1;
const size_t end = version.find_first_of(':', start);
version = version.substr(start, end - start);
// Trim version
const size_t trim_start = version.find_first_not_of('0');
const size_t trim_end = version.find_last_not_of('0');
version = version.substr(trim_start, trim_end);
return version;
}
return "";
}
std::string utils::get_OS_version()
{
std::string output;
#ifdef _WIN32
// GetVersionEx is deprecated, RtlGetVersion is kernel-mode only and AnalyticsInfo is UWP only.
// So we're forced to read PEB instead to get Windows version info. It's ugly but works.
const DWORD peb_offset = 0x60;
const INT_PTR peb = __readgsqword(peb_offset);
const DWORD version_major = *reinterpret_cast<const DWORD*>(peb + 0x118);
const DWORD version_minor = *reinterpret_cast<const DWORD*>(peb + 0x11c);
const WORD build = *reinterpret_cast<const WORD*>(peb + 0x120);
const UNICODE_STRING service_pack = *reinterpret_cast<const UNICODE_STRING*>(peb + 0x02E8);
const u64 compatibility_mode = *reinterpret_cast<const u64*>(peb + 0x02C8); // Two DWORDs, major & minor version
const bool has_sp = service_pack.Length > 0;
std::vector<char> holder(service_pack.Length + 1, '\0');
if (has_sp)
{
WideCharToMultiByte(CP_UTF8, NULL, service_pack.Buffer, service_pack.Length,
(LPSTR) holder.data(), static_cast<int>(holder.size()), NULL, NULL);
}
fmt::append(output,
"Operating system: Windows, Major: %lu, Minor: %lu, Build: %u, Service Pack: %s, Compatibility mode: %llu",
version_major, version_minor, build, has_sp ? holder.data() : "none", compatibility_mode);
#else
struct utsname details = {};
if (!uname(&details))
{
fmt::append(output, "Operating system: POSIX, Name: %s, Release: %s, Version: %s",
details.sysname, details.release, details.version);
}
else
{
fmt::append(output, "Operating system: POSIX, Unknown version! (Error: %d)", errno);
}
#endif
return output;
}
static constexpr ullong round_tsc(ullong val)
{
return ::rounded_div(val, 1'000'000) * 1'000'000;
}
ullong utils::get_tsc_freq()
{
static const ullong cal_tsc = []() -> ullong
{
if (!has_invariant_tsc())
return 0;
#ifdef _WIN32
LARGE_INTEGER freq;
if (!QueryPerformanceFrequency(&freq))
return 0;
if (freq.QuadPart <= 9'999'999)
return round_tsc(freq.QuadPart * 1024);
const ullong timer_freq = freq.QuadPart;
#else
const ullong timer_freq = 1'000'000'000;
#endif
// Calibrate TSC
constexpr int samples = 40;
ullong rdtsc_data[samples];
ullong timer_data[samples];
ullong error_data[samples];
// Narrow thread affinity to a single core
const u64 old_aff = thread_ctrl::get_thread_affinity_mask();
thread_ctrl::set_thread_affinity_mask(old_aff & (0 - old_aff));
#ifndef _WIN32
struct timespec ts0;
clock_gettime(CLOCK_MONOTONIC, &ts0);
ullong sec_base = ts0.tv_sec;
#endif
for (int i = 0; i < samples; i++)
{
#ifdef _WIN32
Sleep(1);
error_data[i] = (_mm_lfence(), __rdtsc());
LARGE_INTEGER ctr;
QueryPerformanceCounter(&ctr);
rdtsc_data[i] = (_mm_lfence(), __rdtsc());
timer_data[i] = ctr.QuadPart;
#else
usleep(200);
error_data[i] = (_mm_lfence(), __rdtsc());
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
rdtsc_data[i] = (_mm_lfence(), __rdtsc());
timer_data[i] = ts.tv_nsec + (ts.tv_sec - sec_base) * 1'000'000'000;
#endif
}
// Restore main thread affinity
thread_ctrl::set_thread_affinity_mask(old_aff);
// Compute average TSC
ullong acc = 0;
for (int i = 0; i < samples - 1; i++)
{
acc += (rdtsc_data[i + 1] - rdtsc_data[i]) * timer_freq / (timer_data[i + 1] - timer_data[i]);
}
// Rounding
return round_tsc(acc / (samples - 1));
}();
return cal_tsc;
}
u64 utils::get_total_memory()
{
#ifdef _WIN32
::MEMORYSTATUSEX memInfo;
memInfo.dwLength = sizeof(memInfo);
::GlobalMemoryStatusEx(&memInfo);
return memInfo.ullTotalPhys;
#else
return ::sysconf(_SC_PHYS_PAGES) * ::sysconf(_SC_PAGE_SIZE);
#endif
}
u32 utils::get_thread_count()
{
#ifdef _WIN32
::SYSTEM_INFO sysInfo;
::GetNativeSystemInfo(&sysInfo);
return sysInfo.dwNumberOfProcessors;
#else
return ::sysconf(_SC_NPROCESSORS_ONLN);
#endif
}