mirror of
https://github.com/RPCS3/rpcs3.git
synced 2024-11-25 12:12:50 +01:00
511 lines
10 KiB
C++
511 lines
10 KiB
C++
#pragma once
|
|
|
|
// Will report exception and call std::abort() if put in catch(...)
|
|
[[noreturn]] void catch_all_exceptions();
|
|
|
|
// Thread control class
|
|
class thread_ctrl final
|
|
{
|
|
static thread_local thread_ctrl* g_tls_this_thread;
|
|
|
|
// Name getter
|
|
std::function<std::string()> m_name;
|
|
|
|
// Thread handle (be careful)
|
|
std::thread m_thread;
|
|
|
|
// Thread result
|
|
std::future<void> m_future;
|
|
|
|
// Functions scheduled at thread exit
|
|
std::deque<std::function<void()>> m_atexit;
|
|
|
|
// Called at the thread start
|
|
static void initialize();
|
|
|
|
// Called at the thread end
|
|
static void finalize() noexcept;
|
|
|
|
public:
|
|
template<typename T>
|
|
thread_ctrl(T&& name)
|
|
: m_name(std::forward<T>(name))
|
|
{
|
|
}
|
|
|
|
// Disable copy/move constructors and operators
|
|
thread_ctrl(const thread_ctrl&) = delete;
|
|
|
|
~thread_ctrl();
|
|
|
|
// Get thread name
|
|
std::string get_name() const;
|
|
|
|
// Get future result (may throw)
|
|
void join()
|
|
{
|
|
return m_future.get();
|
|
}
|
|
|
|
// Get current thread (may be nullptr)
|
|
static const thread_ctrl* get_current()
|
|
{
|
|
return g_tls_this_thread;
|
|
}
|
|
|
|
// Register function at thread exit (for the current thread)
|
|
template<typename T>
|
|
static inline void at_exit(T&& func)
|
|
{
|
|
CHECK_ASSERTION(g_tls_this_thread);
|
|
|
|
g_tls_this_thread->m_atexit.emplace_front(std::forward<T>(func));
|
|
}
|
|
|
|
// Named thread factory
|
|
template<typename N, typename F>
|
|
static inline std::shared_ptr<thread_ctrl> spawn(N&& name, F&& func)
|
|
{
|
|
auto ctrl = std::make_shared<thread_ctrl>(std::forward<N>(name));
|
|
|
|
std::promise<void> promise;
|
|
|
|
ctrl->m_future = promise.get_future();
|
|
|
|
ctrl->m_thread = std::thread([ctrl, task = std::forward<F>(func)](std::promise<void> promise)
|
|
{
|
|
g_tls_this_thread = ctrl.get();
|
|
|
|
try
|
|
{
|
|
initialize();
|
|
task();
|
|
finalize();
|
|
promise.set_value();
|
|
}
|
|
catch (...)
|
|
{
|
|
finalize();
|
|
promise.set_exception(std::current_exception());
|
|
}
|
|
|
|
}, std::move(promise));
|
|
|
|
return ctrl;
|
|
}
|
|
};
|
|
|
|
class named_thread_t : public std::enable_shared_from_this<named_thread_t>
|
|
{
|
|
// Pointer to managed resource (shared with actual thread)
|
|
std::shared_ptr<thread_ctrl> m_thread;
|
|
|
|
public:
|
|
// Thread condition variable for external use (this thread waits on it, other threads may notify)
|
|
std::condition_variable cv;
|
|
|
|
// Thread mutex for external use (can be used with `cv`)
|
|
std::mutex mutex;
|
|
|
|
protected:
|
|
// Thread task (called in the thread)
|
|
virtual void on_task() = 0;
|
|
|
|
// Thread finalization (called after on_task)
|
|
virtual void on_exit() {}
|
|
|
|
// ID initialization (called through id_aux_initialize)
|
|
virtual void on_id_aux_initialize() { start(); }
|
|
|
|
// ID finalization (called through id_aux_finalize)
|
|
virtual void on_id_aux_finalize() { join(); }
|
|
|
|
public:
|
|
named_thread_t() = default;
|
|
|
|
virtual ~named_thread_t() = default;
|
|
|
|
// Deleted copy/move constructors + copy/move operators
|
|
named_thread_t(const named_thread_t&) = delete;
|
|
|
|
// Get thread name
|
|
virtual std::string get_name() const;
|
|
|
|
// Start thread (cannot be called from the constructor: should throw bad_weak_ptr in such case)
|
|
void start();
|
|
|
|
// Join thread (get future result)
|
|
void join();
|
|
|
|
// Check whether the thread is not in "empty state"
|
|
bool is_started() const { return m_thread.operator bool(); }
|
|
|
|
// Compare with the current thread
|
|
bool is_current() const { CHECK_ASSERTION(m_thread); return thread_ctrl::get_current() == m_thread.get(); }
|
|
|
|
// Get thread_ctrl
|
|
const thread_ctrl* get_thread_ctrl() const { return m_thread.get(); }
|
|
|
|
friend void id_aux_initialize(named_thread_t* ptr) { ptr->on_id_aux_initialize(); }
|
|
friend void id_aux_finalize(named_thread_t* ptr) { ptr->on_id_aux_finalize(); }
|
|
};
|
|
|
|
// Wrapper for named thread, joins automatically in the destructor, can only be used in function scope
|
|
class scope_thread_t final
|
|
{
|
|
std::shared_ptr<thread_ctrl> m_thread;
|
|
|
|
public:
|
|
template<typename N, typename F>
|
|
scope_thread_t(N&& name, F&& func)
|
|
: m_thread(thread_ctrl::spawn(std::forward<N>(name), std::forward<F>(func)))
|
|
{
|
|
}
|
|
|
|
// Deleted copy/move constructors + copy/move operators
|
|
scope_thread_t(const scope_thread_t&) = delete;
|
|
|
|
// Destructor with exceptions allowed
|
|
~scope_thread_t() noexcept(false)
|
|
{
|
|
m_thread->join();
|
|
}
|
|
};
|
|
|
|
extern const std::function<bool()> SQUEUE_ALWAYS_EXIT;
|
|
extern const std::function<bool()> SQUEUE_NEVER_EXIT;
|
|
|
|
bool squeue_test_exit();
|
|
|
|
template<typename T, u32 sq_size = 256>
|
|
class squeue_t
|
|
{
|
|
struct squeue_sync_var_t
|
|
{
|
|
struct
|
|
{
|
|
u32 position : 31;
|
|
u32 pop_lock : 1;
|
|
};
|
|
struct
|
|
{
|
|
u32 count : 31;
|
|
u32 push_lock : 1;
|
|
};
|
|
};
|
|
|
|
atomic_t<squeue_sync_var_t> m_sync;
|
|
|
|
mutable std::mutex m_rcv_mutex;
|
|
mutable std::mutex m_wcv_mutex;
|
|
mutable std::condition_variable m_rcv;
|
|
mutable std::condition_variable m_wcv;
|
|
|
|
T m_data[sq_size];
|
|
|
|
enum squeue_sync_var_result : u32
|
|
{
|
|
SQSVR_OK = 0,
|
|
SQSVR_LOCKED = 1,
|
|
SQSVR_FAILED = 2,
|
|
};
|
|
|
|
public:
|
|
squeue_t()
|
|
: m_sync(squeue_sync_var_t{})
|
|
{
|
|
}
|
|
|
|
u32 get_max_size() const
|
|
{
|
|
return sq_size;
|
|
}
|
|
|
|
bool is_full() const
|
|
{
|
|
return m_sync.load().count == sq_size;
|
|
}
|
|
|
|
bool push(const T& data, const std::function<bool()>& test_exit)
|
|
{
|
|
u32 pos = 0;
|
|
|
|
while (u32 res = m_sync.atomic_op([&pos](squeue_sync_var_t& sync) -> u32
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
|
|
if (sync.push_lock)
|
|
{
|
|
return SQSVR_LOCKED;
|
|
}
|
|
if (sync.count == sq_size)
|
|
{
|
|
return SQSVR_FAILED;
|
|
}
|
|
|
|
sync.push_lock = 1;
|
|
pos = sync.position + sync.count;
|
|
return SQSVR_OK;
|
|
}))
|
|
{
|
|
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::unique_lock<std::mutex> wcv_lock(m_wcv_mutex);
|
|
m_wcv.wait_for(wcv_lock, std::chrono::milliseconds(1));
|
|
}
|
|
|
|
m_data[pos >= sq_size ? pos - sq_size : pos] = data;
|
|
|
|
m_sync.atomic_op([](squeue_sync_var_t& sync)
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
assert(sync.push_lock);
|
|
sync.push_lock = 0;
|
|
sync.count++;
|
|
});
|
|
|
|
m_rcv.notify_one();
|
|
m_wcv.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool push(const T& data, const volatile bool* do_exit)
|
|
{
|
|
return push(data, [do_exit](){ return do_exit && *do_exit; });
|
|
}
|
|
|
|
force_inline bool push(const T& data)
|
|
{
|
|
return push(data, SQUEUE_NEVER_EXIT);
|
|
}
|
|
|
|
force_inline bool try_push(const T& data)
|
|
{
|
|
return push(data, SQUEUE_ALWAYS_EXIT);
|
|
}
|
|
|
|
bool pop(T& data, const std::function<bool()>& test_exit)
|
|
{
|
|
u32 pos = 0;
|
|
|
|
while (u32 res = m_sync.atomic_op([&pos](squeue_sync_var_t& sync) -> u32
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
|
|
if (!sync.count)
|
|
{
|
|
return SQSVR_FAILED;
|
|
}
|
|
if (sync.pop_lock)
|
|
{
|
|
return SQSVR_LOCKED;
|
|
}
|
|
|
|
sync.pop_lock = 1;
|
|
pos = sync.position;
|
|
return SQSVR_OK;
|
|
}))
|
|
{
|
|
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
|
|
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
|
|
}
|
|
|
|
data = m_data[pos];
|
|
|
|
m_sync.atomic_op([](squeue_sync_var_t& sync)
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
assert(sync.pop_lock);
|
|
sync.pop_lock = 0;
|
|
sync.position++;
|
|
sync.count--;
|
|
if (sync.position == sq_size)
|
|
{
|
|
sync.position = 0;
|
|
}
|
|
});
|
|
|
|
m_rcv.notify_one();
|
|
m_wcv.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool pop(T& data, const volatile bool* do_exit)
|
|
{
|
|
return pop(data, [do_exit](){ return do_exit && *do_exit; });
|
|
}
|
|
|
|
force_inline bool pop(T& data)
|
|
{
|
|
return pop(data, SQUEUE_NEVER_EXIT);
|
|
}
|
|
|
|
force_inline bool try_pop(T& data)
|
|
{
|
|
return pop(data, SQUEUE_ALWAYS_EXIT);
|
|
}
|
|
|
|
bool peek(T& data, u32 start_pos, const std::function<bool()>& test_exit)
|
|
{
|
|
assert(start_pos < sq_size);
|
|
u32 pos = 0;
|
|
|
|
while (u32 res = m_sync.atomic_op([&pos, start_pos](squeue_sync_var_t& sync) -> u32
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
|
|
if (sync.count <= start_pos)
|
|
{
|
|
return SQSVR_FAILED;
|
|
}
|
|
if (sync.pop_lock)
|
|
{
|
|
return SQSVR_LOCKED;
|
|
}
|
|
|
|
sync.pop_lock = 1;
|
|
pos = sync.position + start_pos;
|
|
return SQSVR_OK;
|
|
}))
|
|
{
|
|
if (res == SQSVR_FAILED && (test_exit() || squeue_test_exit()))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
|
|
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
|
|
}
|
|
|
|
data = m_data[pos >= sq_size ? pos - sq_size : pos];
|
|
|
|
m_sync.atomic_op([](squeue_sync_var_t& sync)
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
assert(sync.pop_lock);
|
|
sync.pop_lock = 0;
|
|
});
|
|
|
|
m_rcv.notify_one();
|
|
return true;
|
|
}
|
|
|
|
bool peek(T& data, u32 start_pos, const volatile bool* do_exit)
|
|
{
|
|
return peek(data, start_pos, [do_exit](){ return do_exit && *do_exit; });
|
|
}
|
|
|
|
force_inline bool peek(T& data, u32 start_pos = 0)
|
|
{
|
|
return peek(data, start_pos, SQUEUE_NEVER_EXIT);
|
|
}
|
|
|
|
force_inline bool try_peek(T& data, u32 start_pos = 0)
|
|
{
|
|
return peek(data, start_pos, SQUEUE_ALWAYS_EXIT);
|
|
}
|
|
|
|
class squeue_data_t
|
|
{
|
|
T* const m_data;
|
|
const u32 m_pos;
|
|
const u32 m_count;
|
|
|
|
squeue_data_t(T* data, u32 pos, u32 count)
|
|
: m_data(data)
|
|
, m_pos(pos)
|
|
, m_count(count)
|
|
{
|
|
}
|
|
|
|
public:
|
|
T& operator [] (u32 index)
|
|
{
|
|
assert(index < m_count);
|
|
index += m_pos;
|
|
index = index < sq_size ? index : index - sq_size;
|
|
return m_data[index];
|
|
}
|
|
};
|
|
|
|
void process(void(*proc)(squeue_data_t data))
|
|
{
|
|
u32 pos, count;
|
|
|
|
while (m_sync.atomic_op([&pos, &count](squeue_sync_var_t& sync) -> u32
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
|
|
if (sync.pop_lock || sync.push_lock)
|
|
{
|
|
return SQSVR_LOCKED;
|
|
}
|
|
|
|
pos = sync.position;
|
|
count = sync.count;
|
|
sync.pop_lock = 1;
|
|
sync.push_lock = 1;
|
|
return SQSVR_OK;
|
|
}))
|
|
{
|
|
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
|
|
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
|
|
}
|
|
|
|
proc(squeue_data_t(m_data, pos, count));
|
|
|
|
m_sync.atomic_op([](squeue_sync_var_t& sync)
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
assert(sync.pop_lock && sync.push_lock);
|
|
sync.pop_lock = 0;
|
|
sync.push_lock = 0;
|
|
});
|
|
|
|
m_wcv.notify_one();
|
|
m_rcv.notify_one();
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
while (m_sync.atomic_op([](squeue_sync_var_t& sync) -> u32
|
|
{
|
|
assert(sync.count <= sq_size);
|
|
assert(sync.position < sq_size);
|
|
|
|
if (sync.pop_lock || sync.push_lock)
|
|
{
|
|
return SQSVR_LOCKED;
|
|
}
|
|
|
|
sync.pop_lock = 1;
|
|
sync.push_lock = 1;
|
|
return SQSVR_OK;
|
|
}))
|
|
{
|
|
std::unique_lock<std::mutex> rcv_lock(m_rcv_mutex);
|
|
m_rcv.wait_for(rcv_lock, std::chrono::milliseconds(1));
|
|
}
|
|
|
|
m_sync.exchange({});
|
|
m_wcv.notify_one();
|
|
m_rcv.notify_one();
|
|
}
|
|
};
|