1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00
rpcs3/Utilities/JIT.h
Megamouse 76629e1b52 Qt: Allow to use .gz files in Log viewer
Log viewer can open .gz files
Log viewer can save log as .gz
Refactored most instances of zip and unzip code to seperate functions
2023-10-13 07:45:16 +02:00

558 lines
13 KiB
C++

#pragma once
#include "util/types.hpp"
// Include asmjit with warnings ignored
#define ASMJIT_EMBED
#define ASMJIT_STATIC
#define ASMJIT_BUILD_DEBUG
#undef Bool
#ifdef _MSC_VER
#pragma warning(push, 0)
#include <asmjit/asmjit.h>
#pragma warning(pop)
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wall"
#pragma GCC diagnostic ignored "-Wextra"
#pragma GCC diagnostic ignored "-Wold-style-cast"
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wredundant-decls"
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#pragma GCC diagnostic ignored "-Weffc++"
#ifdef __clang__
#pragma GCC diagnostic ignored "-Wdeprecated-anon-enum-enum-conversion"
#pragma GCC diagnostic ignored "-Wcast-qual"
#else
#pragma GCC diagnostic ignored "-Wduplicated-branches"
#pragma GCC diagnostic ignored "-Wdeprecated-enum-enum-conversion"
#endif
#include <asmjit/asmjit.h>
#if defined(ARCH_ARM64)
#include <asmjit/a64.h>
#endif
#pragma GCC diagnostic pop
#endif
#include <array>
#include <functional>
#include <memory>
#include <string>
#include <string_view>
#include <unordered_map>
#include <util/v128.hpp>
#if defined(ARCH_X64)
using native_asm = asmjit::x86::Assembler;
using native_args = std::array<asmjit::x86::Gp, 4>;
#elif defined(ARCH_ARM64)
using native_asm = asmjit::a64::Assembler;
using native_args = std::array<asmjit::a64::Gp, 4>;
#endif
void jit_announce(uptr func, usz size, std::string_view name);
void jit_announce(auto* func, usz size, std::string_view name)
{
jit_announce(uptr(func), size, name);
}
enum class jit_class
{
ppu_code,
ppu_data,
spu_code,
spu_data,
};
struct jit_runtime_base
{
jit_runtime_base() noexcept = default;
virtual ~jit_runtime_base() = default;
jit_runtime_base(const jit_runtime_base&) = delete;
jit_runtime_base& operator=(const jit_runtime_base&) = delete;
const asmjit::Environment& environment() const noexcept;
void* _add(asmjit::CodeHolder* code) noexcept;
virtual uchar* _alloc(usz size, usz align) noexcept = 0;
};
// ASMJIT runtime for emitting code in a single 2G region
struct jit_runtime final : jit_runtime_base
{
jit_runtime();
~jit_runtime() override;
// Allocate executable memory
uchar* _alloc(usz size, usz align) noexcept override;
// Allocate memory
static u8* alloc(usz size, usz align, bool exec = true) noexcept;
// Should be called at least once after global initialization
static void initialize();
// Deallocate all memory
static void finalize() noexcept;
};
namespace asmjit
{
// Should only be used to build global functions
jit_runtime_base& get_global_runtime();
// Don't use directly
class inline_runtime : public jit_runtime_base
{
uchar* m_data;
usz m_size;
public:
inline_runtime(uchar* data, usz size);
~inline_runtime();
uchar* _alloc(usz size, usz align) noexcept override;
};
// Emit xbegin and adjacent loop, return label at xbegin (don't use xabort please)
template <typename F>
[[nodiscard]] inline asmjit::Label build_transaction_enter(asmjit::x86::Assembler& c, asmjit::Label fallback, F func)
{
Label fall = c.newLabel();
Label begin = c.newLabel();
c.jmp(begin);
c.bind(fall);
// Don't repeat on zero status (may indicate syscall or interrupt)
c.test(x86::eax, x86::eax);
c.jz(fallback);
// First invoked after failure (can fallback to proceed, or jump anywhere else)
func();
// Other bad statuses are ignored regardless of repeat flag (TODO)
c.align(AlignMode::kCode, 16);
c.bind(begin);
return fall;
// xbegin should be issued manually, allows to add more check before entering transaction
}
// Helper to spill RDX (EDX) register for RDTSC
inline void build_swap_rdx_with(asmjit::x86::Assembler& c, std::array<x86::Gp, 4>& args, const asmjit::x86::Gp& with)
{
#ifdef _WIN32
c.xchg(args[1], with);
args[1] = with;
#else
c.xchg(args[2], with);
args[2] = with;
#endif
}
// Get full RDTSC value into chosen register (clobbers rax/rdx or saves only rax with other target)
inline void build_get_tsc(asmjit::x86::Assembler& c, const asmjit::x86::Gp& to = asmjit::x86::rax)
{
if (&to != &x86::rax && &to != &x86::rdx)
{
// Swap to save its contents
c.xchg(x86::rax, to);
}
c.rdtsc();
c.shl(x86::rdx, 32);
if (&to == &x86::rax)
{
c.or_(x86::rax, x86::rdx);
}
else if (&to == &x86::rdx)
{
c.or_(x86::rdx, x86::rax);
}
else
{
// Swap back, maybe there is more effective way to do it
c.xchg(x86::rax, to);
c.mov(to.r32(), to.r32());
c.or_(to.r64(), x86::rdx);
}
}
inline void build_init_args_from_ghc(native_asm& c, native_args& args)
{
#if defined(ARCH_X64)
// TODO: handle case when args don't overlap with r13/rbp/r12/rbx
c.mov(args[0], x86::r13);
c.mov(args[1], x86::rbp);
c.mov(args[2], x86::r12);
c.mov(args[3], x86::rbx);
#else
static_cast<void>(c);
static_cast<void>(args);
#endif
}
inline void build_init_ghc_args(native_asm& c, native_args& args)
{
#if defined(ARCH_X64)
// TODO: handle case when args don't overlap with r13/rbp/r12/rbx
c.mov(x86::r13, args[0]);
c.mov(x86::rbp, args[1]);
c.mov(x86::r12, args[2]);
c.mov(x86::rbx, args[3]);
#else
static_cast<void>(c);
static_cast<void>(args);
#endif
}
#if defined(ARCH_X64)
struct simd_builder : native_asm
{
std::unordered_map<v128, Label> consts;
Operand v0, v1, v2, v3, v4, v5;
uint vsize = 16;
uint vmask = 0;
simd_builder(CodeHolder* ch) noexcept;
~simd_builder();
void operator()() noexcept;
void _init(uint new_vsize = 0);
void vec_cleanup_ret();
void vec_set_all_zeros(const Operand& v);
void vec_set_all_ones(const Operand& v);
void vec_set_const(const Operand& v, const v128& value);
void vec_clobbering_test(u32 esize, const Operand& v, const Operand& rhs);
void vec_broadcast_gpr(u32 esize, const Operand& v, const x86::Gp& r);
// return x86::ptr(base, ctr, X, 0) where X is set for esize accordingly
x86::Mem ptr_scale_for_vec(u32 esize, const x86::Gp& base, const x86::Gp& index);
void vec_load_unaligned(u32 esize, const Operand& v, const x86::Mem& src);
void vec_store_unaligned(u32 esize, const Operand& v, const x86::Mem& dst);
void vec_partial_move(u32 esize, const Operand& dst, const Operand& src);
void _vec_binary_op(x86::Inst::Id sse_op, x86::Inst::Id vex_op, x86::Inst::Id evex_op, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_shuffle_xi8(const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPshufb, kIdVpshufb, kIdVpshufb, dst, lhs, rhs);
}
void vec_xor(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPxor, kIdVpxor, kIdVpxord, dst, lhs, rhs);
}
void vec_or(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPor, kIdVpor, kIdVpord, dst, lhs, rhs);
}
void vec_andn(u32, const Operand& dst, const Operand& lhs, const Operand& rhs)
{
using enum x86::Inst::Id;
_vec_binary_op(kIdPandn, kIdVpandn, kIdVpandnd, dst, lhs, rhs);
}
void vec_umin(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_umax(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_cmp_eq(u32 esize, const Operand& dst, const Operand& lhs, const Operand& rhs);
void vec_extract_high(u32 esize, const Operand& dst, const Operand& src);
void vec_extract_gpr(u32 esize, const x86::Gp& dst, const Operand& src);
simd_builder& keep_if_not_masked()
{
if (vmask && vmask < 8)
{
this->k(x86::KReg(vmask));
}
return *this;
}
simd_builder& zero_if_not_masked()
{
if (vmask && vmask < 8)
{
this->k(x86::KReg(vmask));
this->z();
}
return *this;
}
void build_loop(u32 esize, const x86::Gp& reg_ctr, const x86::Gp& reg_cnt, auto&& build, auto&& reduce)
{
ensure((esize & (esize - 1)) == 0);
ensure(esize <= vsize);
Label body = this->newLabel();
Label next = this->newLabel();
Label exit = this->newLabel();
const u32 step = vsize / esize;
this->xor_(reg_ctr.r32(), reg_ctr.r32()); // Reset counter reg
this->cmp(reg_cnt, step);
this->jb(next); // If count < step, skip main loop body
this->align(AlignMode::kCode, 16);
this->bind(body);
this->sub(reg_cnt, step);
build();
this->add(reg_ctr, step);
this->cmp(reg_cnt, step);
this->jae(body);
this->bind(next);
if (vmask)
{
// Build single last iteration (masked)
this->test(reg_cnt, reg_cnt);
this->jz(exit);
if (esize == 1 && vsize == 64)
{
this->bzhi(reg_cnt.r64(), x86::Mem(consts[~u128()], 0), reg_cnt.r64());
this->kmovq(x86::k7, reg_cnt.r64());
}
else
{
this->bzhi(reg_cnt.r32(), x86::Mem(consts[~u128()], 0), reg_cnt.r32());
this->kmovd(x86::k7, reg_cnt.r32());
}
vmask = 7;
build();
// Rollout reduction step
this->bind(exit);
while (true)
{
vsize /= 2;
if (vsize < esize)
break;
this->_init(vsize);
reduce();
}
}
else
{
// Build unrolled loop tail (reduced vector width)
while (true)
{
vsize /= 2;
if (vsize < esize)
break;
// Shall not clobber flags
this->_init(vsize);
reduce();
if (vsize == esize)
{
// Last "iteration"
this->test(reg_cnt, reg_cnt);
this->jz(exit);
build();
}
else
{
const u32 step = vsize / esize;
Label next = this->newLabel();
this->cmp(reg_cnt, step);
this->jb(next);
build();
this->add(reg_ctr, step);
this->sub(reg_cnt, step);
this->bind(next);
}
}
this->bind(exit);
}
this->_init(0);
}
};
// for (; count > 0; ctr++, count--)
inline void build_loop(native_asm& c, auto ctr, auto count, auto&& build)
{
asmjit::Label body = c.newLabel();
asmjit::Label exit = c.newLabel();
c.test(count, count);
c.jz(exit);
c.align(asmjit::AlignMode::kCode, 16);
c.bind(body);
build();
c.inc(ctr);
c.sub(count, 1);
c.ja(body);
c.bind(exit);
}
inline void maybe_flush_lbr(native_asm& c, uint count = 2)
{
// Workaround for bad LBR callstacks which happen in some situations (mainly TSX) - execute additional RETs
Label next = c.newLabel();
c.lea(x86::rcx, x86::qword_ptr(next));
for (u32 i = 0; i < count; i++)
{
c.push(x86::rcx);
c.sub(x86::rcx, 16);
}
for (u32 i = 0; i < count; i++)
{
c.ret();
c.align(asmjit::AlignMode::kCode, 16);
}
c.bind(next);
}
#endif
}
// Build runtime function with asmjit::X86Assembler
template <typename FT, typename Asm = native_asm, typename F>
inline FT build_function_asm(std::string_view name, F&& builder, ::jit_runtime* custom_runtime = nullptr)
{
#ifdef __APPLE__
pthread_jit_write_protect_np(false);
#endif
using namespace asmjit;
auto& rt = custom_runtime ? *custom_runtime : get_global_runtime();
CodeHolder code;
code.init(rt.environment());
#if defined(ARCH_X64)
native_args args;
#ifdef _WIN32
args[0] = x86::rcx;
args[1] = x86::rdx;
args[2] = x86::r8;
args[3] = x86::r9;
#else
args[0] = x86::rdi;
args[1] = x86::rsi;
args[2] = x86::rdx;
args[3] = x86::rcx;
#endif
#elif defined(ARCH_ARM64)
native_args args;
args[0] = a64::x0;
args[1] = a64::x1;
args[2] = a64::x2;
args[3] = a64::x3;
#endif
Asm compiler(&code);
compiler.addEncodingOptions(EncodingOptions::kOptimizedAlign);
if constexpr (std::is_invocable_r_v<bool, F, Asm&, native_args&>)
{
if (!builder(compiler, args))
return nullptr;
}
else
{
builder(compiler, args);
}
if constexpr (std::is_invocable_r_v<void, Asm>)
{
// Finalization
compiler();
}
const auto result = rt._add(&code);
jit_announce(result, code.codeSize(), name);
return reinterpret_cast<FT>(uptr(result));
}
#ifdef LLVM_AVAILABLE
namespace llvm
{
class LLVMContext;
class ExecutionEngine;
class Module;
}
// Temporary compiler interface
class jit_compiler final
{
// Local LLVM context
std::unique_ptr<llvm::LLVMContext> m_context{};
// Execution instance
std::unique_ptr<llvm::ExecutionEngine> m_engine{};
// Arch
std::string m_cpu{};
public:
jit_compiler(const std::unordered_map<std::string, u64>& _link, const std::string& _cpu, u32 flags = 0);
~jit_compiler();
// Get LLVM context
auto& get_context()
{
return *m_context;
}
auto& get_engine() const
{
return *m_engine;
}
// Add module (path to obj cache dir)
void add(std::unique_ptr<llvm::Module> _module, const std::string& path);
// Add module (not cached)
void add(std::unique_ptr<llvm::Module> _module);
// Add object (path to obj file)
void add(const std::string& path);
// Update global mapping for a single value
void update_global_mapping(const std::string& name, u64 addr);
// Check object file
static bool check(const std::string& path);
// Finalize
void fin();
// Get compiled function address
u64 get(const std::string& name);
// Get CPU info
static std::string cpu(const std::string& _cpu);
// Get system triple (PPU)
static std::string triple1();
// Get system triple (SPU)
static std::string triple2();
};
#endif