1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 10:42:36 +01:00
rpcs3/Utilities/BEType.h
Nekotekina d344701fd5 atomic.cpp: add sparse atomics
Set alignment as second template argument (typically cache line).
2020-10-26 01:15:31 +03:00

512 lines
11 KiB
C++

#ifndef BETYPE_H_GUARD
#define BETYPE_H_GUARD
#include "types.h"
#include "util/endian.hpp"
#include <cstring>
#include <cmath>
#if __has_include(<bit>)
#include <bit>
#else
#include <type_traits>
#endif
// 128-bit vector type and also se_storage<> storage type
union alignas(16) v128
{
uchar _bytes[16];
char _chars[16];
template <typename T, std::size_t N, std::size_t M>
struct masked_array_t // array type accessed as (index ^ M)
{
char m_data[16];
public:
T& operator[](std::size_t index)
{
return reinterpret_cast<T*>(m_data)[index ^ M];
}
const T& operator[](std::size_t index) const
{
return reinterpret_cast<const T*>(m_data)[index ^ M];
}
};
template <typename T, std::size_t N = 16 / sizeof(T)>
using normal_array_t = masked_array_t<T, N, std::endian::little == std::endian::native ? 0 : N - 1>;
template <typename T, std::size_t N = 16 / sizeof(T)>
using reversed_array_t = masked_array_t<T, N, std::endian::little == std::endian::native ? N - 1 : 0>;
normal_array_t<u64> _u64;
normal_array_t<s64> _s64;
reversed_array_t<u64> u64r;
reversed_array_t<s64> s64r;
normal_array_t<u32> _u32;
normal_array_t<s32> _s32;
reversed_array_t<u32> u32r;
reversed_array_t<s32> s32r;
normal_array_t<u16> _u16;
normal_array_t<s16> _s16;
reversed_array_t<u16> u16r;
reversed_array_t<s16> s16r;
normal_array_t<u8> _u8;
normal_array_t<s8> _s8;
reversed_array_t<u8> u8r;
reversed_array_t<s8> s8r;
normal_array_t<f32> _f;
normal_array_t<f64> _d;
reversed_array_t<f32> fr;
reversed_array_t<f64> dr;
__m128 vf;
__m128i vi;
__m128d vd;
struct bit_array_128
{
char m_data[16];
public:
class bit_element
{
u64& data;
const u64 mask;
public:
bit_element(u64& data, const u64 mask)
: data(data)
, mask(mask)
{
}
operator bool() const
{
return (data & mask) != 0;
}
bit_element& operator=(const bool right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
bit_element& operator=(const bit_element& right)
{
if (right)
{
data |= mask;
}
else
{
data &= ~mask;
}
return *this;
}
};
// Index 0 returns the MSB and index 127 returns the LSB
bit_element operator[](u32 index)
{
const auto data_ptr = reinterpret_cast<u64*>(m_data);
if constexpr (std::endian::little == std::endian::native)
{
return bit_element(data_ptr[1 - (index >> 6)], 0x8000000000000000ull >> (index & 0x3F));
}
else
{
return bit_element(data_ptr[index >> 6], 0x8000000000000000ull >> (index & 0x3F));
}
}
// Index 0 returns the MSB and index 127 returns the LSB
bool operator[](u32 index) const
{
const auto data_ptr = reinterpret_cast<const u64*>(m_data);
if constexpr (std::endian::little == std::endian::native)
{
return (data_ptr[1 - (index >> 6)] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
}
else
{
return (data_ptr[index >> 6] & (0x8000000000000000ull >> (index & 0x3F))) != 0;
}
}
} _bit;
static v128 from64(u64 _0, u64 _1 = 0)
{
v128 ret;
ret._u64[0] = _0;
ret._u64[1] = _1;
return ret;
}
static v128 from64r(u64 _1, u64 _0 = 0)
{
return from64(_0, _1);
}
static v128 from32(u32 _0, u32 _1 = 0, u32 _2 = 0, u32 _3 = 0)
{
v128 ret;
ret._u32[0] = _0;
ret._u32[1] = _1;
ret._u32[2] = _2;
ret._u32[3] = _3;
return ret;
}
static v128 from32r(u32 _3, u32 _2 = 0, u32 _1 = 0, u32 _0 = 0)
{
return from32(_0, _1, _2, _3);
}
static v128 from32p(u32 value)
{
v128 ret;
ret.vi = _mm_set1_epi32(static_cast<s32>(value));
return ret;
}
static v128 from16p(u16 value)
{
v128 ret;
ret.vi = _mm_set1_epi16(static_cast<s16>(value));
return ret;
}
static v128 from8p(u8 value)
{
v128 ret;
ret.vi = _mm_set1_epi8(static_cast<s8>(value));
return ret;
}
static v128 fromBit(u32 bit)
{
v128 ret = {};
ret._bit[bit] = true;
return ret;
}
static v128 fromV(__m128i value)
{
v128 ret;
ret.vi = value;
return ret;
}
static v128 fromF(__m128 value)
{
v128 ret;
ret.vf = value;
return ret;
}
static v128 fromD(__m128d value)
{
v128 ret;
ret.vd = value;
return ret;
}
// Unaligned load with optional index offset
static v128 loadu(const void* ptr, std::size_t index = 0)
{
v128 ret;
std::memcpy(&ret, static_cast<const u8*>(ptr) + index * sizeof(v128), sizeof(v128));
return ret;
}
// Unaligned store with optional index offset
static void storeu(v128 value, void* ptr, std::size_t index = 0)
{
std::memcpy(static_cast<u8*>(ptr) + index * sizeof(v128), &value, sizeof(v128));
}
static inline v128 add8(const v128& left, const v128& right)
{
return fromV(_mm_add_epi8(left.vi, right.vi));
}
static inline v128 add16(const v128& left, const v128& right)
{
return fromV(_mm_add_epi16(left.vi, right.vi));
}
static inline v128 add32(const v128& left, const v128& right)
{
return fromV(_mm_add_epi32(left.vi, right.vi));
}
static inline v128 addfs(const v128& left, const v128& right)
{
return fromF(_mm_add_ps(left.vf, right.vf));
}
static inline v128 addfd(const v128& left, const v128& right)
{
return fromD(_mm_add_pd(left.vd, right.vd));
}
static inline v128 sub8(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi8(left.vi, right.vi));
}
static inline v128 sub16(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi16(left.vi, right.vi));
}
static inline v128 sub32(const v128& left, const v128& right)
{
return fromV(_mm_sub_epi32(left.vi, right.vi));
}
static inline v128 subfs(const v128& left, const v128& right)
{
return fromF(_mm_sub_ps(left.vf, right.vf));
}
static inline v128 subfd(const v128& left, const v128& right)
{
return fromD(_mm_sub_pd(left.vd, right.vd));
}
static inline v128 maxu8(const v128& left, const v128& right)
{
return fromV(_mm_max_epu8(left.vi, right.vi));
}
static inline v128 minu8(const v128& left, const v128& right)
{
return fromV(_mm_min_epu8(left.vi, right.vi));
}
static inline v128 eq8(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi8(left.vi, right.vi));
}
static inline v128 eq16(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi16(left.vi, right.vi));
}
static inline v128 eq32(const v128& left, const v128& right)
{
return fromV(_mm_cmpeq_epi32(left.vi, right.vi));
}
static inline v128 eq32f(const v128& left, const v128& right)
{
return fromF(_mm_cmpeq_ps(left.vf, right.vf));
}
static inline v128 eq64f(const v128& left, const v128& right)
{
return fromD(_mm_cmpeq_pd(left.vd, right.vd));
}
static inline bool use_fma = false;
static inline v128 fma32f(v128 a, const v128& b, const v128& c)
{
#ifndef __FMA__
if (use_fma) [[likely]]
{
#ifdef _MSC_VER
a.vf = _mm_fmadd_ps(a.vf, b.vf, c.vf);
return a;
#else
__asm__("vfmadd213ps %[c], %[b], %[a]"
: [a] "+x" (a.vf)
: [b] "x" (b.vf)
, [c] "x" (c.vf));
return a;
#endif
}
for (int i = 0; i < 4; i++)
{
a._f[i] = std::fmaf(a._f[i], b._f[i], c._f[i]);
}
return a;
#else
a.vf = _mm_fmadd_ps(a.vf, b.vf, c.vf);
return a;
#endif
}
bool operator==(const v128& right) const
{
return _mm_movemask_epi8(v128::eq32(*this, right).vi) == 0xffff;
}
bool operator!=(const v128& right) const
{
return !operator==(right);
}
// result = (~left) & (right)
static inline v128 andnot(const v128& left, const v128& right)
{
return fromV(_mm_andnot_si128(left.vi, right.vi));
}
void clear()
{
*this = {};
}
};
template <typename T, std::size_t N, std::size_t M>
struct offset32_array<v128::masked_array_t<T, N, M>>
{
template <typename Arg>
static inline u32 index32(const Arg& arg)
{
return u32{sizeof(T)} * (static_cast<u32>(arg) ^ static_cast<u32>(M));
}
};
inline v128 operator|(const v128& left, const v128& right)
{
return v128::fromV(_mm_or_si128(left.vi, right.vi));
}
inline v128 operator&(const v128& left, const v128& right)
{
return v128::fromV(_mm_and_si128(left.vi, right.vi));
}
inline v128 operator^(const v128& left, const v128& right)
{
return v128::fromV(_mm_xor_si128(left.vi, right.vi));
}
inline v128 operator~(const v128& other)
{
return other ^ v128::from32p(UINT32_MAX); // XOR with ones
}
using stx::se_t;
using stx::se_storage;
// se_t<> with native endianness
template <typename T, std::size_t Align = alignof(T)>
using nse_t = se_t<T, false, Align>;
template <typename T, std::size_t Align = alignof(T)>
using be_t = se_t<T, std::endian::little == std::endian::native, Align>;
template <typename T, std::size_t Align = alignof(T)>
using le_t = se_t<T, std::endian::big == std::endian::native, Align>;
// Type converter: converts native endianness arithmetic/enum types to appropriate se_t<> type
template <typename T, bool Se, typename = void>
struct to_se
{
template <typename T2, typename = void>
struct to_se_
{
using type = T2;
};
template <typename T2>
struct to_se_<T2, std::enable_if_t<std::is_arithmetic<T2>::value || std::is_enum<T2>::value>>
{
using type = std::conditional_t<(sizeof(T2) > 1), se_t<T2, Se>, T2>;
};
// Convert arithmetic and enum types
using type = typename to_se_<T>::type;
};
template <bool Se>
struct to_se<v128, Se>
{
using type = se_t<v128, Se>;
};
template <bool Se>
struct to_se<u128, Se>
{
using type = se_t<u128, Se>;
};
template <bool Se>
struct to_se<s128, Se>
{
using type = se_t<s128, Se>;
};
template <typename T, bool Se>
struct to_se<const T, Se, std::enable_if_t<!std::is_array<T>::value>>
{
// Move const qualifier
using type = const typename to_se<T, Se>::type;
};
template <typename T, bool Se>
struct to_se<volatile T, Se, std::enable_if_t<!std::is_array<T>::value && !std::is_const<T>::value>>
{
// Move volatile qualifier
using type = volatile typename to_se<T, Se>::type;
};
template <typename T, bool Se>
struct to_se<T[], Se>
{
// Move array qualifier
using type = typename to_se<T, Se>::type[];
};
template <typename T, bool Se, std::size_t N>
struct to_se<T[N], Se>
{
// Move array qualifier
using type = typename to_se<T, Se>::type[N];
};
// BE/LE aliases for to_se<>
template <typename T>
using to_be_t = typename to_se<T, std::endian::little == std::endian::native>::type;
template <typename T>
using to_le_t = typename to_se<T, std::endian::big == std::endian::native>::type;
// BE/LE aliases for atomic_t
template <typename T, std::size_t Align = alignof(T)>
using atomic_be_t = atomic_t<be_t<T>, Align>;
template <typename T, std::size_t Align = alignof(T)>
using atomic_le_t = atomic_t<le_t<T>, Align>;
template <typename T, bool Se, std::size_t Align>
struct fmt_unveil<se_t<T, Se, Align>, void>
{
using type = typename fmt_unveil<T>::type;
static inline auto get(const se_t<T, Se, Align>& arg)
{
return fmt_unveil<T>::get(arg);
}
};
#endif // BETYPE_H_GUARD