1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-25 12:12:50 +01:00
rpcs3/Utilities/Thread.cpp
kd-11 df7b466656 spu: Speed hacks - Do not starve PPU threads
optionally hint to the OS scheduler to give less attention to SPUs

ui: Add speed 'hacks' as configurable options
2017-05-10 21:50:14 +03:00

1770 lines
37 KiB
C++

#include "stdafx.h"
#include "Emu/Memory/Memory.h"
#include "Emu/System.h"
#include "Emu/IdManager.h"
#include "Emu/Cell/RawSPUThread.h"
#include "Thread.h"
#ifdef _WIN32
#include <Windows.h>
#include <Psapi.h>
#include <process.h>
#else
#ifdef __APPLE__
#define _XOPEN_SOURCE
#define __USE_GNU
#endif
#include <errno.h>
#include <signal.h>
#include <ucontext.h>
#include <pthread.h>
#include <sys/time.h>
#include <sys/resource.h>
#endif
#include "sync.h"
thread_local u64 g_tls_fault_all = 0;
thread_local u64 g_tls_fault_rsx = 0;
thread_local u64 g_tls_fault_spu = 0;
static void report_fatal_error(const std::string& msg)
{
std::string _msg = msg + "\n"
"HOW TO REPORT ERRORS: Check the FAQ, README, other sources.\n"
"Please, don't send incorrect reports. Thanks for understanding.\n";
#ifdef _WIN32
_msg += "Press (Ctrl+C) to copy this message.";
MessageBoxA(0, _msg.c_str(), "Fatal error", MB_ICONERROR); // TODO: unicode message
#else
std::printf("Fatal error: \n%s", _msg.c_str());
#endif
}
[[noreturn]] void catch_all_exceptions()
{
try
{
throw;
}
catch (const std::exception& e)
{
report_fatal_error("Unhandled exception of type '"s + typeid(e).name() + "': "s + e.what());
}
catch (...)
{
report_fatal_error("Unhandled exception (unknown)");
}
std::abort();
}
enum x64_reg_t : u32
{
X64R_RAX = 0,
X64R_RCX,
X64R_RDX,
X64R_RBX,
X64R_RSP,
X64R_RBP,
X64R_RSI,
X64R_RDI,
X64R_R8,
X64R_R9,
X64R_R10,
X64R_R11,
X64R_R12,
X64R_R13,
X64R_R14,
X64R_R15,
X64R_XMM0 = 0,
X64R_XMM1,
X64R_XMM2,
X64R_XMM3,
X64R_XMM4,
X64R_XMM5,
X64R_XMM6,
X64R_XMM7,
X64R_XMM8,
X64R_XMM9,
X64R_XMM10,
X64R_XMM11,
X64R_XMM12,
X64R_XMM13,
X64R_XMM14,
X64R_XMM15,
X64R_AL,
X64R_CL,
X64R_DL,
X64R_BL,
X64R_AH,
X64R_CH,
X64R_DH,
X64R_BH,
X64_NOT_SET,
X64_IMM8,
X64_IMM16,
X64_IMM32,
X64_BIT_O = 0x90,
X64_BIT_NO,
X64_BIT_C,
X64_BIT_NC,
X64_BIT_Z,
X64_BIT_NZ,
X64_BIT_BE,
X64_BIT_NBE,
X64_BIT_S,
X64_BIT_NS,
X64_BIT_P,
X64_BIT_NP,
X64_BIT_L,
X64_BIT_NL,
X64_BIT_LE,
X64_BIT_NLE,
X64R_ECX = X64R_CL,
};
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register
X64OP_LOAD_BE,
X64OP_LOAD_CMP,
X64OP_LOAD_TEST,
X64OP_STORE, // take the value from x64 register or an immediate and use it
X64OP_STORE_BE,
X64OP_MOVS,
X64OP_STOS,
X64OP_XCHG,
X64OP_CMPXCHG,
X64OP_AND, // lock and [mem], ...
X64OP_OR, // lock or [mem], ...
X64OP_XOR, // lock xor [mem], ...
X64OP_INC, // lock inc [mem]
X64OP_DEC, // lock dec [mem]
X64OP_ADD, // lock add [mem], ...
X64OP_ADC, // lock adc [mem], ...
X64OP_SUB, // lock sub [mem], ...
X64OP_SBB, // lock sbb [mem], ...
};
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
out_length = 0;
u8 rex = 0, pg2 = 0;
bool oso = false, lock = false, repne = false, repe = false;
enum : u8
{
LOCK = 0xf0,
REPNE = 0xf2,
REPE = 0xf3,
};
// check prefixes:
for (;; code++, out_length++)
{
switch (const u8 prefix = *code)
{
case LOCK: // group 1
{
if (lock)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length);
}
lock = true;
continue;
}
case REPNE: // group 1
{
if (repne)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length);
}
repne = true;
continue;
}
case REPE: // group 1
{
if (repe)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length);
}
repe = true;
continue;
}
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (pg2)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2);
}
else
{
pg2 = prefix; // probably, segment register
}
continue;
}
case 0x66: // group 3
{
if (oso)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length);
}
oso = true;
continue;
}
case 0x67: // group 4
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix);
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
return;
}
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex);
}
else
{
rex = prefix;
}
continue;
}
}
}
break;
}
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX);
};
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0);
};
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL);
};
auto get_op_size = [](const u8 rex, const bool oso) -> size_t
{
return rex & 8 ? 8 : (oso ? 2 : 4);
};
auto get_modRM_size = [](const u8* code) -> size_t
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
switch (op1)
{
case 0x0f:
{
out_length++, code++;
switch (op2)
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb0:
{
if (!oso) // CMPXCHG r8/m8, r8
{
out_op = X64OP_CMPXCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb1:
{
if (true) // CMPXCHG r/m, r (16, 32, 64)
{
out_op = X64OP_CMPXCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
{
if (!lock) // SETcc
{
out_op = X64OP_STORE;
out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x38:
{
out_length++, code++;
switch (op3)
{
case 0xf0:
case 0xf1:
{
if (!repne) // MOVBE
{
out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
}
break;
}
case 0x20:
{
if (!oso)
{
out_op = X64OP_AND;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x21:
{
if (true)
{
out_op = X64OP_AND;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x80:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
//case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0x81:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
case 0x83:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + 1;
return;
}
case 0x86:
{
if (!oso) // XCHG r8/m8, r8
{
out_op = X64OP_XCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x87:
{
if (true) // XCHG r/m, r (16, 32, 64)
{
out_op = X64OP_XCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x88:
{
if (!lock && !oso) // MOV r8/m8, r8
{
out_op = X64OP_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x89:
{
if (!lock) // MOV r/m, r (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8a:
{
if (!lock && !oso) // MOV r8, r8/m8
{
out_op = X64OP_LOAD;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8b:
{
if (!lock) // MOV r, r/m (16, 32, 64)
{
out_op = X64OP_LOAD;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xa4:
{
if (!oso && !lock && !repe && !rex) // MOVS
{
out_op = X64OP_MOVS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP MOVS
{
out_op = X64OP_MOVS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xaa:
{
if (!oso && !lock && !repe && !rex) // STOS
{
out_op = X64OP_STOS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP STOS
{
out_op = X64OP_STOS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xc4: // 3-byte VEX prefix
case 0xc5: // 2-byte VEX prefix
{
// Last prefix byte: op2 or op3
const u8 opx = op1 == 0xc5 ? op2 : op3;
// Implied prefixes
rex |= op2 & 0x80 ? 0 : 0x4; // REX.R
rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ???
oso = (opx & 0x3) == 0x1;
repe = (opx & 0x3) == 0x2;
repne = (opx & 0x3) == 0x3;
const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f;
const u8 vop1 = op1 == 0xc5 ? op3 : code[2];
const u8 vlen = (opx & 0x4) ? 32 : 16;
const u8 vreg = (~opx >> 3) & 0xf;
out_length += op1 == 0xc5 ? 2 : 3;
code += op1 == 0xc5 ? 2 : 3;
if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if (repe || oso) // VMOVDQU/VMOVDQA mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
case 0xc6:
{
if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8
{
out_op = X64OP_STORE;
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
break;
}
case 0xc7:
{
if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
break;
}
case 0xf6:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0xf7:
{
switch (auto mod_code = get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
}
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
}
#ifdef _WIN32
typedef CONTEXT x64_context;
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
#define EFLAGS(context) ((context)->EFlags)
#define ARG1(context) RCX(context)
#define ARG2(context) RDX(context)
#else
typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
uint64_t* darwin_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext->__ss;
switch(reg)
{
case 0: return &state->__rax;
case 1: return &state->__rcx;
case 2: return &state->__rdx;
case 3: return &state->__rbx;
case 4: return &state->__rsp;
case 5: return &state->__rbp;
case 6: return &state->__rsi;
case 7: return &state->__rdi;
case 8: return &state->__r8;
case 9: return &state->__r9;
case 10: return &state->__r10;
case 11: return &state->__r11;
case 12: return &state->__r12;
case 13: return &state->__r13;
case 14: return &state->__r14;
case 15: return &state->__r15;
case 16: return &state->__rip;
default:
LOG_ERROR(GENERAL, "Invalid register index: %d", reg);
return nullptr;
}
}
#else
static const decltype(REG_RAX) reg_table[] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
#endif // __APPLE__
#define ARG1(context) RDI(context)
#define ARG2(context) RSI(context)
#endif
#define RAX(c) (*X64REG((c), 0))
#define RCX(c) (*X64REG((c), 1))
#define RDX(c) (*X64REG((c), 2))
#define RSP(c) (*X64REG((c), 4))
#define RSI(c) (*X64REG((c), 6))
#define RDI(c) (*X64REG((c), 7))
#define RIP(c) (*X64REG((c), 16))
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value)
{
// get x64 reg value (for store operations)
if (reg - X64R_RAX < 16)
{
// load the value from x64 register
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
switch (d_size)
{
case 1: out_value = (u8)reg_value; return true;
case 2: out_value = (u16)reg_value; return true;
case 4: out_value = (u32)reg_value; return true;
case 8: out_value = reg_value; return true;
}
}
else if (reg - X64R_AL < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AL));
return true;
}
else if (reg - X64R_AH < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8);
return true;
}
else if (reg == X64_IMM8)
{
// load the immediate value (assuming it's at the end of the instruction)
const s8 imm_value = *(s8*)(RIP(context) + i_size - 1);
switch (d_size)
{
case 1: out_value = (u8)imm_value; return true;
case 2: out_value = (u16)imm_value; return true; // sign-extended
case 4: out_value = (u32)imm_value; return true; // sign-extended
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64_IMM16)
{
const s16 imm_value = *(s16*)(RIP(context) + i_size - 2);
switch (d_size)
{
case 2: out_value = (u16)imm_value; return true;
}
}
else if (reg == X64_IMM32)
{
const s32 imm_value = *(s32*)(RIP(context) + i_size - 4);
switch (d_size)
{
case 4: out_value = (u32)imm_value; return true;
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64R_ECX)
{
out_value = (u32)RCX(context);
return true;
}
else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE)
{
const u32 _cf = EFLAGS(context) & 0x1;
const u32 _zf = EFLAGS(context) & 0x40;
const u32 _sf = EFLAGS(context) & 0x80;
const u32 _of = EFLAGS(context) & 0x800;
const u32 _pf = EFLAGS(context) & 0x4;
const u32 _l = (_sf << 4) ^ _of; // SF != OF
switch (reg & ~1)
{
case X64_BIT_O: out_value = !!_of ^ (reg & 1); break;
case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break;
case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break;
case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break;
case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break;
case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break;
case X64_BIT_L: out_value = !!_l ^ (reg & 1); break;
case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break;
}
return true;
}
LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", (u32)reg, d_size, i_size);
return false;
}
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value)
{
// save x64 reg value (for load operations)
if (reg - X64R_RAX < 16)
{
// save the value into x64 register
switch (d_size)
{
case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true;
case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true;
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
}
}
LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", (u32)reg, d_size, value);
return false;
}
bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y, bool carry = true)
{
switch (d_size)
{
case 1: break;
case 2: break;
case 4: break;
case 8: break;
default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
}
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
const u64 diff = x - y;
const u64 summ = x + y;
if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign)
{
EFLAGS(context) |= 0x1; // set CF
}
else if (carry)
{
EFLAGS(context) &= ~0x1; // clear CF
}
if (x == y)
{
EFLAGS(context) |= 0x40; // set ZF
}
else
{
EFLAGS(context) &= ~0x40; // clear ZF
}
if (diff & sign)
{
EFLAGS(context) |= 0x80; // set SF
}
else
{
EFLAGS(context) &= ~0x80; // clear SF
}
if ((x ^ summ) & (y ^ summ) & sign)
{
EFLAGS(context) |= 0x800; // set OF
}
else
{
EFLAGS(context) &= ~0x800; // clear OF
}
const u8 p1 = (u8)diff ^ ((u8)diff >> 4);
const u8 p2 = p1 ^ (p1 >> 2);
const u8 p3 = p2 ^ (p2 >> 1);
if ((p3 & 1) == 0)
{
EFLAGS(context) |= 0x4; // set PF
}
else
{
EFLAGS(context) &= ~0x4; // clear PF
}
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
{
EFLAGS(context) |= 0x10; // set AF
}
else
{
EFLAGS(context) &= ~0x10; // clear AF
}
return true;
}
size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size)
{
if (op == X64OP_MOVS || op == X64OP_STOS)
{
if (EFLAGS(context) & 0x400 /* direction flag */)
{
// TODO
return 0;
}
if (reg != X64_NOT_SET) // get "full" access size from RCX register
{
u64 counter;
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
{
return -1;
}
return d_size * counter;
}
}
return d_size;
}
namespace rsx
{
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
}
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
{
g_tls_fault_all++;
const auto cpu = get_current_cpu_thread();
if (rsx::g_access_violation_handler && rsx::g_access_violation_handler(addr, is_writing))
{
g_tls_fault_rsx++;
if (cpu)
{
cpu->test_state();
}
return true;
}
auto code = (const u8*)RIP(context);
x64_op_t op;
x64_reg_t reg;
size_t d_size;
size_t i_size;
// decode single x64 instruction that causes memory access
decode_x64_reg_op(code, op, reg, d_size, i_size);
auto report_opcode = [=]()
{
if (op == X64OP_NONE)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%p): unsupported opcode: %s", code, *(be_t<v128, 1>*)code);
}
};
if ((d_size | d_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size);
report_opcode();
return false;
}
// get length of data being accessed
size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size);
if ((a_size | a_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size);
report_opcode();
return false;
}
// check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
auto thread = idm::get<RawSPUThread>((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET);
if (!thread)
{
return false;
}
if (a_size != 4 || !d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", (u32)op, (u32)reg, d_size, a_size, i_size);
report_opcode();
return false;
}
switch (op)
{
case X64OP_LOAD:
case X64OP_LOAD_BE:
case X64OP_LOAD_CMP:
case X64OP_LOAD_TEST:
{
u32 value;
if (is_writing || !thread->read_reg(addr, value))
{
return false;
}
if (op != X64OP_LOAD_BE)
{
value = se_storage<u32>::swap(value);
}
if (op == X64OP_LOAD_CMP)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue))
{
return false;
}
break;
}
if (op == X64OP_LOAD_TEST)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0))
{
return false;
}
break;
}
if (!put_x64_reg_value(context, reg, d_size, value))
{
return false;
}
break;
}
case X64OP_STORE:
case X64OP_STORE_BE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
if (!thread->write_reg(addr, op == X64OP_STORE ? se_storage<u32>::swap((u32)reg_value) : (u32)reg_value))
{
return false;
}
break;
}
case X64OP_MOVS: // possibly, TODO
case X64OP_STOS:
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", (u32)op, (u32)reg, d_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
g_tls_fault_spu++;
return true;
}
if (vm::check_addr(addr, std::max<std::size_t>(1, d_size)))
{
if (cpu)
{
cpu->test_state();
}
return true;
}
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
if (cpu)
{
LOG_FATAL(MEMORY, "Access violation %s location 0x%x", is_writing ? "writing" : "reading", addr);
cpu->state += cpu_flag::dbg_pause;
cpu->check_state();
}
return true;
}
#ifdef __linux__
extern "C" struct dwarf_eh_bases
{
void* tbase;
void* dbase;
void* func;
};
extern "C" struct fde* _Unwind_Find_FDE(void* pc, struct dwarf_eh_bases* bases);
#endif
// Detect leaf function
static bool is_leaf_function(u64 rip)
{
#ifdef _WIN32
DWORD64 base = 0;
if (const auto rtf = RtlLookupFunctionEntry(rip, &base, nullptr))
{
// Access UNWIND_INFO structure
const auto uw = (u8*)(base + rtf->UnwindData);
// Leaf function has zero epilog size and no unwind codes
return uw[0] == 1 && uw[1] == 0 && uw[2] == 0 && uw[3] == 0;
}
// No unwind info implies leaf function
return true;
#elif __linux__
struct dwarf_eh_bases bases;
if (struct fde* f = _Unwind_Find_FDE(reinterpret_cast<void*>(rip), &bases))
{
const auto words = (const u32*)f;
if (words[0] < 0x14)
{
return true;
}
if (words[0] == 0x14 && !words[3] && !words[4])
{
return true;
}
// TODO
return false;
}
// No unwind info implies leaf function
return true;
#else
// Unsupported
return false;
#endif
}
#ifdef _WIN32
static LONG exception_handler(PEXCEPTION_POINTERS pExp)
{
const u64 addr64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr;
const u64 exec64 = pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_exec_addr;
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && addr64 < 0x100000000ull)
{
if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
}
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && exec64 < 0x100000000ull)
{
if (thread_ctrl::get_current() && handle_access_violation((u32)exec64, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
static LONG exception_filter(PEXCEPTION_POINTERS pExp)
{
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
{
const auto cause = pExp->ExceptionRecord->ExceptionInformation[0] != 0 ? "writing" : "reading";
msg += fmt::format("Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
}
else
{
msg += fmt::format("Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
{
msg += fmt::format("ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
}
}
std::vector<HMODULE> modules;
for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE))
{
modules.resize(size);
if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size))
{
modules.clear();
break;
}
}
msg += fmt::format("Instruction address: %p.\n", pExp->ContextRecord->Rip);
DWORD64 unwind_base;
if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr))
{
// Get function address
const DWORD64 func_addr = rtf->BeginAddress + unwind_base;
msg += fmt::format("Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress);
// Access UNWIND_INFO structure
//const auto uw = (u8*)(unwind_base + rtf->UnwindData);
}
for (HMODULE module : modules)
{
MODULEINFO info;
if (GetModuleInformation(GetCurrentProcess(), module, &info, sizeof(info)))
{
const DWORD64 base = (DWORD64)info.lpBaseOfDll;
if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage)
{
std::string module_name;
for (DWORD size = 15; module_name.size() != size;)
{
module_name.resize(size);
size = GetModuleBaseNameA(GetCurrentProcess(), module, &module_name.front(), size + 1);
if (!size)
{
module_name.clear();
break;
}
}
msg += fmt::format("Module name: '%s'.\n", module_name);
msg += fmt::format("Module base: %p.\n", info.lpBaseOfDll);
}
}
}
msg += fmt::format("RPCS3 image base: %p.\n", GetModuleHandle(NULL));
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ILLEGAL_INSTRUCTION)
{
msg += "\n"
"Illegal instruction exception occured.\n"
"Note that your CPU must support SSSE3 extension.\n";
}
// TODO: print registers and the callstack
// Report fatal error
report_fatal_error(msg);
return EXCEPTION_CONTINUE_SEARCH;
}
const bool s_exception_handler_set = []() -> bool
{
if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
{
report_fatal_error("AddVectoredExceptionHandler() failed.");
std::abort();
}
if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter))
{
report_fatal_error("SetUnhandledExceptionFilter() failed.");
std::abort();
}
return true;
}();
#else
static void signal_handler(int sig, siginfo_t* info, void* uct)
{
x64_context* context = (ucontext_t*)uct;
#ifdef __APPLE__
const bool is_writing = context->uc_mcontext->__es.__err & 0x2;
#else
const bool is_writing = context->uc_mcontext.gregs[REG_ERR] & 0x2;
#endif
const u64 addr64 = (u64)info->si_addr - (u64)vm::g_base_addr;
const u64 exec64 = (u64)info->si_addr - (u64)vm::g_exec_addr;
const auto cause = is_writing ? "writing" : "reading";
if (addr64 < 0x100000000ull)
{
// Try to process access violation
if (thread_ctrl::get_current() && handle_access_violation((u32)addr64, is_writing, context))
{
return;
}
}
if (exec64 < 0x100000000ull)
{
if (thread_ctrl::get_current() && handle_access_violation((u32)exec64, is_writing, context))
{
return;
}
}
// TODO (debugger interaction)
report_fatal_error(fmt::format("Segfault %s location %p at %p.", cause, info->si_addr, RIP(context)));
std::abort();
}
const bool s_exception_handler_set = []() -> bool
{
struct ::sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
{
std::printf("sigaction(SIGSEGV) failed (0x%x).", errno);
std::abort();
}
return true;
}();
#endif
// TODO
extern atomic_t<u32> g_thread_count(0);
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
extern thread_local std::string(*g_tls_log_prefix)();
void thread_ctrl::start(const std::shared_ptr<thread_ctrl>& ctrl, task_stack task)
{
#ifdef _WIN32
using thread_result = uint;
using thread_type = thread_result(__stdcall*)(void* arg);
#else
using thread_result = void*;
using thread_type = thread_result(*)(void* arg);
#endif
// Thread entry point
const thread_type entry = [](void* arg) -> thread_result
{
// Recover shared_ptr from short-circuited thread_ctrl object pointer
const std::shared_ptr<thread_ctrl> ctrl = static_cast<thread_ctrl*>(arg)->m_self;
try
{
ctrl->initialize();
task_stack{std::move(ctrl->m_task)}.invoke();
}
catch (...)
{
// Capture exception
ctrl->finalize(std::current_exception());
return 0;
}
ctrl->finalize(nullptr);
return 0;
};
ctrl->m_self = ctrl;
ctrl->m_task = std::move(task);
// TODO: implement simple thread pool
#ifdef _WIN32
std::uintptr_t thread = _beginthreadex(nullptr, 0, entry, ctrl.get(), 0, nullptr);
verify("thread_ctrl::start" HERE), thread != 0;
#else
pthread_t thread;
verify("thread_ctrl::start" HERE), pthread_create(&thread, nullptr, entry, ctrl.get()) == 0;
#endif
// TODO: this is unsafe and must be duplicated in thread_ctrl::initialize
ctrl->m_thread = thread;
}
void thread_ctrl::initialize()
{
// Initialize TLS variable
g_tls_this_thread = this;
g_tls_log_prefix = []
{
return g_tls_this_thread->m_name;
};
++g_thread_count;
#ifdef _MSC_VER
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
};
// Set thread name for VS debugger
if (IsDebuggerPresent())
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = m_name.c_str();
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
}
#endif
}
void thread_ctrl::finalize(std::exception_ptr eptr) noexcept
{
// Run atexit functions
m_task.invoke();
m_task.reset();
#ifdef _WIN32
ULONG64 cycles{};
QueryThreadCycleTime(GetCurrentThread(), &cycles);
FILETIME ctime, etime, ktime, utime;
GetThreadTimes(GetCurrentThread(), &ctime, &etime, &ktime, &utime);
const u64 time = ((ktime.dwLowDateTime | (u64)ktime.dwHighDateTime << 32) + (utime.dwLowDateTime | (u64)utime.dwHighDateTime << 32)) * 100ull;
#elif __linux__
const u64 cycles = 0; // Not supported
struct ::rusage stats{};
::getrusage(RUSAGE_THREAD, &stats);
const u64 time = (stats.ru_utime.tv_sec + stats.ru_stime.tv_sec) * 1000000000ull + (stats.ru_utime.tv_usec + stats.ru_stime.tv_usec) * 1000ull;
#else
const u64 cycles = 0;
const u64 time = 0;
#endif
g_tls_log_prefix = []
{
return g_tls_this_thread->m_name;
};
LOG_NOTICE(GENERAL, "Thread time: %fs (%fGc); Faults: %u [rsx:%u, spu:%u];",
time / 1000000000.,
cycles / 1000000000.,
g_tls_fault_all,
g_tls_fault_rsx,
g_tls_fault_spu);
--g_thread_count;
// Untangle circular reference, set exception
semaphore_lock{m_mutex}, m_self.reset(), m_exception = eptr;
// Signal joining waiters
m_jcv.notify_all();
}
void thread_ctrl::_push(task_stack task)
{
g_tls_this_thread->m_task.push(std::move(task));
}
bool thread_ctrl::_wait_for(u64 usec)
{
auto _this = g_tls_this_thread;
struct half_lock
{
semaphore<>& ref;
void lock()
{
// Used to avoid additional lock + unlock
}
void unlock()
{
ref.post();
}
}
_lock{_this->m_mutex};
do
{
// Mutex is unlocked at the start and after the waiting
if (u32 sig = _this->m_signal.load())
{
thread_ctrl::test();
if (sig & 1)
{
_this->m_signal &= ~1;
return true;
}
}
if (usec == 0)
{
// No timeout: return immediately
return false;
}
// Lock (semaphore)
_this->m_mutex.wait();
// Double-check the value
if (u32 sig = _this->m_signal.load())
{
if (sig & 2 && _this->m_exception)
{
_this->_throw();
}
if (sig & 1)
{
_this->m_signal &= ~1;
_this->m_mutex.post();
return true;
}
}
}
while (_this->m_cond.wait(_lock, std::exchange(usec, usec == -1 ? -1 : 0)));
// Timeout
return false;
}
[[noreturn]] void thread_ctrl::_throw()
{
std::exception_ptr ex = std::exchange(m_exception, std::exception_ptr{});
m_signal &= ~3;
m_mutex.post();
std::rethrow_exception(std::move(ex));
}
void thread_ctrl::_notify(cond_variable thread_ctrl::* ptr)
{
// Optimized lock + unlock
if (!m_mutex.get())
{
m_mutex.wait();
m_mutex.post();
}
(this->*ptr).notify_one();
}
thread_ctrl::thread_ctrl(std::string&& name)
: m_name(std::move(name))
{
}
thread_ctrl::~thread_ctrl()
{
if (m_thread)
{
#ifdef _WIN32
CloseHandle((HANDLE)m_thread.raw());
#else
pthread_detach(m_thread.raw());
#endif
}
}
std::exception_ptr thread_ctrl::get_exception() const
{
semaphore_lock lock(m_mutex);
return m_exception;
}
void thread_ctrl::set_exception(std::exception_ptr ptr)
{
semaphore_lock lock(m_mutex);
m_exception = ptr;
if (m_exception)
{
m_signal |= 2;
m_cond.notify_one();
}
else
{
m_signal &= ~2;
}
}
void thread_ctrl::join()
{
#ifdef _WIN32
//verify("thread_ctrl::join" HERE), WaitForSingleObjectEx((HANDLE)m_thread.load(), -1, false) == WAIT_OBJECT_0;
#endif
semaphore_lock lock(m_mutex);
while (m_self)
{
m_jcv.wait(lock);
}
if (UNLIKELY(m_exception && !std::uncaught_exception()))
{
std::rethrow_exception(m_exception);
}
}
void thread_ctrl::notify()
{
if (!(m_signal & 1))
{
m_signal |= 1;
_notify(&thread_ctrl::m_cond);
}
}
void thread_ctrl::test()
{
const auto _this = g_tls_this_thread;
if (_this->m_signal & 2)
{
_this->m_mutex.wait();
if (_this->m_exception)
{
_this->_throw();
}
_this->m_mutex.post();
}
}
named_thread::named_thread()
{
}
named_thread::~named_thread()
{
}
std::string named_thread::get_name() const
{
return fmt::format("('%s') Unnamed Thread", typeid(*this).name());
}
void named_thread::start_thread(const std::shared_ptr<void>& _this)
{
// Ensure it's not called from the constructor and the correct object is passed
verify("named_thread::start_thread" HERE), _this.get() == this;
// Run thread
thread_ctrl::spawn(m_thread, get_name(), [this, _this]()
{
try
{
LOG_TRACE(GENERAL, "Thread started");
on_spawn();
on_task();
LOG_TRACE(GENERAL, "Thread ended");
}
catch (const std::exception& e)
{
LOG_FATAL(GENERAL, "%s thrown: %s", typeid(e).name(), e.what());
Emu.Pause();
}
on_exit();
});
}
task_stack::task_base::~task_base()
{
}