1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-25 12:12:50 +01:00
rpcs3/Utilities/Thread.cpp
2021-05-01 18:08:03 +03:00

3015 lines
68 KiB
C++

#include "stdafx.h"
#include "Emu/System.h"
#include "Emu/Cell/SPUThread.h"
#include "Emu/Cell/PPUThread.h"
#include "Emu/Cell/lv2/sys_mmapper.h"
#include "Emu/Cell/lv2/sys_event.h"
#include "Emu/RSX/RSXThread.h"
#include "Thread.h"
#include "Utilities/JIT.h"
#include <thread>
#include <sstream>
#include <cfenv>
#ifdef _WIN32
#include <Windows.h>
#include <Psapi.h>
#include <process.h>
#include <sysinfoapi.h>
#else
#ifdef __APPLE__
#define _XOPEN_SOURCE
#define __USE_GNU
#include <mach/thread_act.h>
#include <mach/thread_policy.h>
#endif
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
#include <pthread_np.h>
#define cpu_set_t cpuset_t
#endif
#include <errno.h>
#include <signal.h>
#ifndef __OpenBSD__
#include <ucontext.h>
#endif
#include <pthread.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <time.h>
#endif
#ifdef __linux__
#include <sys/timerfd.h>
#include <unistd.h>
#endif
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
# include <sys/sysctl.h>
# include <unistd.h>
# if defined(__DragonFly__) || defined(__FreeBSD__)
# include <sys/user.h>
# endif
# if defined(__OpenBSD__)
# include <sys/param.h>
# include <sys/proc.h>
# endif
# if defined(__NetBSD__)
# undef KERN_PROC
# define KERN_PROC KERN_PROC2
# define kinfo_proc kinfo_proc2
# endif
# if defined(__APPLE__)
# define KP_FLAGS kp_proc.p_flag
# elif defined(__DragonFly__)
# define KP_FLAGS kp_flags
# elif defined(__FreeBSD__)
# define KP_FLAGS ki_flag
# elif defined(__NetBSD__)
# define KP_FLAGS p_flag
# elif defined(__OpenBSD__)
# define KP_FLAGS p_psflags
# define P_TRACED PS_TRACED
# endif
#endif
#include "util/vm.hpp"
#include "util/logs.hpp"
#include "util/asm.hpp"
#include "util/v128.hpp"
#include "util/v128sse.hpp"
#include "util/sysinfo.hpp"
#include "Emu/Memory/vm_locking.h"
LOG_CHANNEL(sig_log, "SIG");
LOG_CHANNEL(sys_log, "SYS");
LOG_CHANNEL(vm_log, "VM");
thread_local u64 g_tls_fault_all = 0;
thread_local u64 g_tls_fault_rsx = 0;
thread_local u64 g_tls_fault_spu = 0;
thread_local u64 g_tls_wait_time = 0;
thread_local u64 g_tls_wait_fail = 0;
thread_local bool g_tls_access_violation_recovered = false;
extern thread_local std::string(*g_tls_log_prefix)();
// Report error and call std::abort(), defined in main.cpp
[[noreturn]] void report_fatal_error(std::string_view);
template <>
void fmt_class_string<std::thread::id>::format(std::string& out, u64 arg)
{
std::ostringstream ss;
ss << get_object(arg);
out += ss.str();
}
std::string dump_useful_thread_info()
{
thread_local volatile bool guard = false;
std::string result;
// In case the dumping function was the cause for the exception/access violation
// Avoid recursion
if (std::exchange(guard, true))
{
return result;
}
if (auto cpu = get_current_cpu_thread())
{
result = cpu->dump_all();
}
guard = false;
return result;
}
#ifndef _WIN32
bool IsDebuggerPresent()
{
#if defined(__APPLE__) || defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
int mib[] = {
CTL_KERN,
KERN_PROC,
KERN_PROC_PID,
getpid(),
# if defined(__NetBSD__) || defined(__OpenBSD__)
sizeof(struct kinfo_proc),
1,
# endif
};
u_int miblen = std::size(mib);
struct kinfo_proc info;
usz size = sizeof(info);
if (sysctl(mib, miblen, &info, &size, NULL, 0))
{
return false;
}
return info.KP_FLAGS & P_TRACED;
#else
char buf[4096];
fs::file status_fd("/proc/self/status");
if (!status_fd)
{
std::fprintf(stderr, "Failed to open /proc/self/status\n");
return false;
}
const auto num_read = status_fd.read(buf, sizeof(buf) - 1);
if (num_read == 0 || num_read == umax)
{
std::fprintf(stderr, "Failed to read /proc/self/status (%d)\n", errno);
return false;
}
buf[num_read] = '\0';
std::string_view status = buf;
const auto found = status.find("TracerPid:");
if (found == umax)
{
std::fprintf(stderr, "Failed to find 'TracerPid:' in /proc/self/status\n");
return false;
}
for (const char* cp = status.data() + found + 10; cp <= status.data() + num_read; ++cp)
{
if (!std::isspace(*cp))
{
return std::isdigit(*cp) != 0 && *cp != '0';
}
}
return false;
#endif
}
#endif
enum x64_reg_t : u32
{
X64R_RAX = 0,
X64R_RCX,
X64R_RDX,
X64R_RBX,
X64R_RSP,
X64R_RBP,
X64R_RSI,
X64R_RDI,
X64R_R8,
X64R_R9,
X64R_R10,
X64R_R11,
X64R_R12,
X64R_R13,
X64R_R14,
X64R_R15,
X64R_XMM0 = 0,
X64R_XMM1,
X64R_XMM2,
X64R_XMM3,
X64R_XMM4,
X64R_XMM5,
X64R_XMM6,
X64R_XMM7,
X64R_XMM8,
X64R_XMM9,
X64R_XMM10,
X64R_XMM11,
X64R_XMM12,
X64R_XMM13,
X64R_XMM14,
X64R_XMM15,
X64R_AL,
X64R_CL,
X64R_DL,
X64R_BL,
X64R_AH,
X64R_CH,
X64R_DH,
X64R_BH,
X64_NOT_SET,
X64_IMM8,
X64_IMM16,
X64_IMM32,
X64_BIT_O = 0x90,
X64_BIT_NO,
X64_BIT_C,
X64_BIT_NC,
X64_BIT_Z,
X64_BIT_NZ,
X64_BIT_BE,
X64_BIT_NBE,
X64_BIT_S,
X64_BIT_NS,
X64_BIT_P,
X64_BIT_NP,
X64_BIT_L,
X64_BIT_NL,
X64_BIT_LE,
X64_BIT_NLE,
X64R_ECX = X64R_CL,
};
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register
X64OP_LOAD_BE,
X64OP_LOAD_CMP,
X64OP_LOAD_TEST,
X64OP_STORE, // take the value from x64 register or an immediate and use it
X64OP_STORE_BE,
X64OP_MOVS,
X64OP_STOS,
X64OP_XCHG,
X64OP_CMPXCHG,
X64OP_AND, // lock and [mem], ...
X64OP_OR, // lock or [mem], ...
X64OP_XOR, // lock xor [mem], ...
X64OP_INC, // lock inc [mem]
X64OP_DEC, // lock dec [mem]
X64OP_ADD, // lock add [mem], ...
X64OP_ADC, // lock adc [mem], ...
X64OP_SUB, // lock sub [mem], ...
X64OP_SBB, // lock sbb [mem], ...
};
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, usz& out_size, usz& out_length)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
out_length = 0;
u8 rex = 0, pg2 = 0;
bool oso = false, lock = false, repne = false, repe = false;
enum : u8
{
LOCK = 0xf0,
REPNE = 0xf2,
REPE = 0xf3,
};
// check prefixes:
for (;; code++, out_length++)
{
switch (const u8 prefix = *code)
{
case LOCK: // group 1
{
if (lock)
{
sig_log.error("decode_x64_reg_op(%016llxh): LOCK prefix found twice", code - out_length);
}
lock = true;
continue;
}
case REPNE: // group 1
{
if (repne)
{
sig_log.error("decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", code - out_length);
}
repne = true;
continue;
}
case REPE: // group 1
{
if (repe)
{
sig_log.error("decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", code - out_length);
}
repe = true;
continue;
}
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (pg2)
{
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", code - out_length, prefix, pg2);
}
else
{
pg2 = prefix; // probably, segment register
}
continue;
}
case 0x66: // group 3
{
if (oso)
{
sig_log.error("decode_x64_reg_op(%016llxh): operand-size override prefix found twice", code - out_length);
}
oso = true;
continue;
}
case 0x67: // group 4
{
sig_log.error("decode_x64_reg_op(%016llxh): address-size override prefix found", code - out_length, prefix);
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
return;
}
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
sig_log.error("decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", code - out_length, prefix, rex);
}
else
{
rex = prefix;
}
continue;
}
}
}
break;
}
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
{
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX};
};
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
{
return x64_reg_t{((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0};
};
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
{
return x64_reg_t{((*code & 0x38) >> 3) + X64R_AL};
};
auto get_op_size = [](const u8 rex, const bool oso) -> usz
{
return rex & 8 ? 8 : (oso ? 2 : 4);
};
auto get_modRM_size = [](const u8* code) -> usz
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
switch (op1)
{
case 0x0f:
{
out_length++, code++;
switch (op2)
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // MOVUPS/MOVAPS/MOVUPD/MOVAPD xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if (repe != oso) // MOVDQU/MOVDQA xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb0:
{
if (!oso) // CMPXCHG r8/m8, r8
{
out_op = X64OP_CMPXCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb1:
{
if (true) // CMPXCHG r/m, r (16, 32, 64)
{
out_op = X64OP_CMPXCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
{
if (!lock) // SETcc
{
out_op = X64OP_STORE;
out_reg = x64_reg_t(X64_BIT_O + op2 - 0x90); // 0x90 .. 0x9f
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x38:
{
out_length++, code++;
switch (op3)
{
case 0xf0:
case 0xf1:
{
if (!repne) // MOVBE
{
out_op = op3 == 0xf0 ? X64OP_LOAD_BE : X64OP_STORE_BE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
}
break;
}
case 0x20:
{
if (!oso)
{
out_op = X64OP_AND;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x21:
{
if (true)
{
out_op = X64OP_AND;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x80:
{
switch (get_modRM_reg(code, 0))
{
//case 0: out_op = X64OP_ADD; break; // TODO: strange info in instruction manual
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0x81:
{
switch (get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
case 0x83:
{
switch (get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_ADD; break;
case 1: out_op = X64OP_OR; break;
case 2: out_op = X64OP_ADC; break;
case 3: out_op = X64OP_SBB; break;
case 4: out_op = X64OP_AND; break;
case 5: out_op = X64OP_SUB; break;
case 6: out_op = X64OP_XOR; break;
default: out_op = X64OP_LOAD_CMP; break;
}
out_reg = X64_IMM8;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + 1;
return;
}
case 0x86:
{
if (!oso) // XCHG r8/m8, r8
{
out_op = X64OP_XCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x87:
{
if (true) // XCHG r/m, r (16, 32, 64)
{
out_op = X64OP_XCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x88:
{
if (!lock && !oso) // MOV r8/m8, r8
{
out_op = X64OP_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x89:
{
if (!lock) // MOV r/m, r (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8a:
{
if (!lock && !oso) // MOV r8, r8/m8
{
out_op = X64OP_LOAD;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8b:
{
if (!lock) // MOV r, r/m (16, 32, 64)
{
out_op = X64OP_LOAD;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xa4:
{
if (!oso && !lock && !repe && !rex) // MOVS
{
out_op = X64OP_MOVS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP MOVS
{
out_op = X64OP_MOVS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xaa:
{
if (!oso && !lock && !repe && !rex) // STOS
{
out_op = X64OP_STOS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP STOS
{
out_op = X64OP_STOS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xc4: // 3-byte VEX prefix
case 0xc5: // 2-byte VEX prefix
{
// Last prefix byte: op2 or op3
const u8 opx = op1 == 0xc5 ? op2 : op3;
// Implied prefixes
rex |= op2 & 0x80 ? 0 : 0x4; // REX.R
rex |= op1 == 0xc4 && op3 & 0x80 ? 0x8 : 0; // REX.W ???
oso = (opx & 0x3) == 0x1;
repe = (opx & 0x3) == 0x2;
repne = (opx & 0x3) == 0x3;
const u8 vopm = op1 == 0xc5 ? 1 : op2 & 0x1f;
const u8 vop1 = op1 == 0xc5 ? op3 : code[2];
const u8 vlen = (opx & 0x4) ? 32 : 16;
//const u8 vreg = (~opx >> 3) & 0xf;
out_length += op1 == 0xc5 ? 2 : 3;
code += op1 == 0xc5 ? 2 : 3;
if (vopm == 0x1) switch (vop1) // Implied leading byte 0x0F
{
case 0x11:
case 0x29:
{
if (!repe && !repne) // VMOVAPS/VMOVAPD/VMOVUPS/VMOVUPD mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x7f:
{
if (repe || oso) // VMOVDQU/VMOVDQA mem,reg
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = vlen;
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
case 0xc6:
{
if (!lock && !oso && get_modRM_reg(code, 0) == 0) // MOV r8/m8, imm8
{
out_op = X64OP_STORE;
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
break;
}
case 0xc7:
{
if (!lock && get_modRM_reg(code, 0) == 0) // MOV r/m, imm16/imm32 (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
break;
}
case 0xf6:
{
switch (get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
case 0xf7:
{
switch (get_modRM_reg(code, 0))
{
case 0: out_op = X64OP_LOAD_TEST; break;
default: out_op = X64OP_NONE; break; // TODO...
}
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
}
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
}
#ifdef _WIN32
typedef CONTEXT x64_context;
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(&(context)->Xmm0)[reg]))
#define EFLAGS(context) ((context)->EFlags)
#define ARG1(context) RCX(context)
#define ARG2(context) RDX(context)
#else
typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0.__xmm_reg[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__rflags)
u64* darwin_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext->__ss;
switch(reg)
{
case 0: return &state->__rax;
case 1: return &state->__rcx;
case 2: return &state->__rdx;
case 3: return &state->__rbx;
case 4: return &state->__rsp;
case 5: return &state->__rbp;
case 6: return &state->__rsi;
case 7: return &state->__rdi;
case 8: return &state->__r8;
case 9: return &state->__r9;
case 10: return &state->__r10;
case 11: return &state->__r11;
case 12: return &state->__r12;
case 13: return &state->__r13;
case 14: return &state->__r14;
case 15: return &state->__r15;
case 16: return &state->__rip;
default:
sig_log.error("Invalid register index: %d", reg);
return nullptr;
}
}
#elif defined(__DragonFly__) || defined(__FreeBSD__)
#define X64REG(context, reg) (freebsd_x64reg(context, reg))
#ifdef __DragonFly__
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<union savefpu*>(context)->uc_mcontext.mc_fpregs)->sv_xmm.sv_xmm[reg]))
#else
# define XMMREG(context, reg) (reinterpret_cast<v128*>((reinterpret_cast<struct savefpu*>(context)->uc_mcontext.mc_fpstate)->sv_xmm[reg]))
#endif
#define EFLAGS(context) ((context)->uc_mcontext.mc_rflags)
register_t* freebsd_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext;
switch(reg)
{
case 0: return &state->mc_rax;
case 1: return &state->mc_rcx;
case 2: return &state->mc_rdx;
case 3: return &state->mc_rbx;
case 4: return &state->mc_rsp;
case 5: return &state->mc_rbp;
case 6: return &state->mc_rsi;
case 7: return &state->mc_rdi;
case 8: return &state->mc_r8;
case 9: return &state->mc_r9;
case 10: return &state->mc_r10;
case 11: return &state->mc_r11;
case 12: return &state->mc_r12;
case 13: return &state->mc_r13;
case 14: return &state->mc_r14;
case 15: return &state->mc_r15;
case 16: return &state->mc_rip;
default:
sig_log.error("Invalid register index: %d", reg);
return nullptr;
}
}
#elif defined(__OpenBSD__)
#define X64REG(context, reg) (openbsd_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<v128*>((context)->sc_fpstate->fx_xmm[reg]))
#define EFLAGS(context) ((context)->sc_rflags)
long* openbsd_x64reg(x64_context *context, int reg)
{
auto *state = &context;
switch(reg)
{
case 0: return &state->sc_rax;
case 1: return &state->sc_rcx;
case 2: return &state->sc_rdx;
case 3: return &state->sc_rbx;
case 4: return &state->sc_rsp;
case 5: return &state->sc_rbp;
case 6: return &state->sc_rsi;
case 7: return &state->sc_rdi;
case 8: return &state->sc_r8;
case 9: return &state->sc_r9;
case 10: return &state->sc_r10;
case 11: return &state->sc_r11;
case 12: return &state->sc_r12;
case 13: return &state->sc_r13;
case 14: return &state->sc_r14;
case 15: return &state->sc_r15;
case 16: return &state->sc_rip;
default:
sig_log.error("Invalid register index: %d", reg);
return nullptr;
}
}
#elif defined(__NetBSD__)
static const decltype(_REG_RAX) reg_table[] =
{
_REG_RAX, _REG_RCX, _REG_RDX, _REG_RBX, _REG_RSP, _REG_RBP, _REG_RSI, _REG_RDI,
_REG_R8, _REG_R9, _REG_R10, _REG_R11, _REG_R12, _REG_R13, _REG_R14, _REG_R15, _REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.__gregs[reg_table[reg]])
#define XMM_sig(context, reg) (reinterpret_cast<v128*>(((struct fxsave64*)(context)->uc_mcontext.__fpregs)->fx_xmm[reg]))
#define EFLAGS(context) ((context)->uc_mcontext.__gregs[_REG_RFL])
#else
static const int reg_table[] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
#ifdef __sun
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs.fp_reg_set.fpchip_state.xmm[reg_table[reg]]))
#else
#define XMMREG(context, reg) (reinterpret_cast<v128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
#endif // __sun
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
#endif // __APPLE__
#define ARG1(context) RDI(context)
#define ARG2(context) RSI(context)
#endif
#define RAX(c) (*X64REG((c), 0))
#define RCX(c) (*X64REG((c), 1))
#define RDX(c) (*X64REG((c), 2))
#define RSP(c) (*X64REG((c), 4))
#define RSI(c) (*X64REG((c), 6))
#define RDI(c) (*X64REG((c), 7))
#define RIP(c) (*X64REG((c), 16))
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, usz d_size, usz i_size, u64& out_value)
{
// get x64 reg value (for store operations)
if (reg - X64R_RAX < 16)
{
// load the value from x64 register
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
switch (d_size)
{
case 1: out_value = static_cast<u8>(reg_value); return true;
case 2: out_value = static_cast<u16>(reg_value); return true;
case 4: out_value = static_cast<u32>(reg_value); return true;
case 8: out_value = reg_value; return true;
}
}
else if (reg - X64R_AL < 4 && d_size == 1)
{
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AL));
return true;
}
else if (reg - X64R_AH < 4 && d_size == 1)
{
out_value = static_cast<u8>(*X64REG(context, reg - X64R_AH) >> 8);
return true;
}
else if (reg == X64_IMM8)
{
// load the immediate value (assuming it's at the end of the instruction)
const s8 imm_value = *reinterpret_cast<s8*>(RIP(context) + i_size - 1);
switch (d_size)
{
case 1: out_value = static_cast<u8>(imm_value); return true;
case 2: out_value = static_cast<u16>(imm_value); return true; // sign-extended
case 4: out_value = static_cast<u32>(imm_value); return true; // sign-extended
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
}
}
else if (reg == X64_IMM16)
{
const s16 imm_value = *reinterpret_cast<s16*>(RIP(context) + i_size - 2);
switch (d_size)
{
case 2: out_value = static_cast<u16>(imm_value); return true;
}
}
else if (reg == X64_IMM32)
{
const s32 imm_value = *reinterpret_cast<s32*>(RIP(context) + i_size - 4);
switch (d_size)
{
case 4: out_value = static_cast<u32>(imm_value); return true;
case 8: out_value = static_cast<u64>(imm_value); return true; // sign-extended
}
}
else if (reg == X64R_ECX)
{
out_value = static_cast<u32>(RCX(context));
return true;
}
else if (reg >= X64_BIT_O && reg <= X64_BIT_NLE)
{
const u32 _cf = EFLAGS(context) & 0x1;
const u32 _zf = EFLAGS(context) & 0x40;
const u32 _sf = EFLAGS(context) & 0x80;
const u32 _of = EFLAGS(context) & 0x800;
const u32 _pf = EFLAGS(context) & 0x4;
const u32 _l = (_sf << 4) ^ _of; // SF != OF
switch (reg & ~1)
{
case X64_BIT_O: out_value = !!_of ^ (reg & 1); break;
case X64_BIT_C: out_value = !!_cf ^ (reg & 1); break;
case X64_BIT_Z: out_value = !!_zf ^ (reg & 1); break;
case X64_BIT_BE: out_value = !!(_cf | _zf) ^ (reg & 1); break;
case X64_BIT_S: out_value = !!_sf ^ (reg & 1); break;
case X64_BIT_P: out_value = !!_pf ^ (reg & 1); break;
case X64_BIT_L: out_value = !!_l ^ (reg & 1); break;
case X64_BIT_LE: out_value = !!(_l | _zf) ^ (reg & 1); break;
}
return true;
}
sig_log.error("get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", +reg, d_size, i_size);
return false;
}
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, usz d_size, u64 value)
{
// save x64 reg value (for load operations)
if (reg - X64R_RAX < 16)
{
// save the value into x64 register
switch (d_size)
{
case 1: *X64REG(context, reg - X64R_RAX) = (value & 0xff) | (*X64REG(context, reg - X64R_RAX) & 0xffffff00); return true;
case 2: *X64REG(context, reg - X64R_RAX) = (value & 0xffff) | (*X64REG(context, reg - X64R_RAX) & 0xffff0000); return true;
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
}
}
sig_log.error("put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", +reg, d_size, value);
return false;
}
bool set_x64_cmp_flags(x64_context* context, usz d_size, u64 x, u64 y, bool carry = true)
{
switch (d_size)
{
case 1: break;
case 2: break;
case 4: break;
case 8: break;
default: sig_log.error("set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
}
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
const u64 diff = x - y;
const u64 summ = x + y;
if (carry && ((x & y) | ((x ^ y) & ~summ)) & sign)
{
EFLAGS(context) |= 0x1; // set CF
}
else if (carry)
{
EFLAGS(context) &= ~0x1; // clear CF
}
if (x == y)
{
EFLAGS(context) |= 0x40; // set ZF
}
else
{
EFLAGS(context) &= ~0x40; // clear ZF
}
if (diff & sign)
{
EFLAGS(context) |= 0x80; // set SF
}
else
{
EFLAGS(context) &= ~0x80; // clear SF
}
if ((x ^ summ) & (y ^ summ) & sign)
{
EFLAGS(context) |= 0x800; // set OF
}
else
{
EFLAGS(context) &= ~0x800; // clear OF
}
const u8 p1 = static_cast<u8>(diff) ^ (static_cast<u8>(diff) >> 4);
const u8 p2 = p1 ^ (p1 >> 2);
const u8 p3 = p2 ^ (p2 >> 1);
if ((p3 & 1) == 0)
{
EFLAGS(context) |= 0x4; // set PF
}
else
{
EFLAGS(context) &= ~0x4; // clear PF
}
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
{
EFLAGS(context) |= 0x10; // set AF
}
else
{
EFLAGS(context) &= ~0x10; // clear AF
}
return true;
}
usz get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, usz d_size, usz i_size)
{
if (op == X64OP_MOVS || op == X64OP_STOS)
{
if (EFLAGS(context) & 0x400 /* direction flag */)
{
// TODO
return 0;
}
if (reg != X64_NOT_SET) // get "full" access size from RCX register
{
u64 counter = 1;
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
{
return -1;
}
return d_size * counter;
}
}
return d_size;
}
namespace rsx
{
extern std::function<bool(u32 addr, bool is_writing)> g_access_violation_handler;
}
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context) noexcept
{
g_tls_fault_all++;
const auto cpu = get_current_cpu_thread();
if (rsx::g_access_violation_handler)
{
if (cpu)
{
vm::temporary_unlock(*cpu);
}
bool handled = rsx::g_access_violation_handler(addr, is_writing);
if (handled)
{
g_tls_fault_rsx++;
if (cpu && cpu->test_stopped())
{
//
}
return true;
}
if (cpu && cpu->test_stopped())
{
}
}
const u8* const code = reinterpret_cast<u8*>(RIP(context));
x64_op_t op;
x64_reg_t reg;
usz d_size;
usz i_size;
// decode single x64 instruction that causes memory access
decode_x64_reg_op(code, op, reg, d_size, i_size);
auto report_opcode = [=]()
{
if (op == X64OP_NONE)
{
be_t<v128> dump;
std::memcpy(&dump, code, sizeof(dump));
sig_log.error("decode_x64_reg_op(%p): unsupported opcode: %s", code, dump);
}
};
if (0x1'0000'0000ull - addr < d_size)
{
sig_log.error("Invalid d_size (0x%llx)", d_size);
report_opcode();
return false;
}
// get length of data being accessed
usz a_size = get_x64_access_size(context, op, reg, d_size, i_size);
if (0x1'0000'0000ull - addr < a_size)
{
sig_log.error("Invalid a_size (0x%llx)", a_size);
report_opcode();
return false;
}
// check if address is RawSPU MMIO register
do if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
auto thread = idm::get<named_thread<spu_thread>>(spu_thread::find_raw_spu((addr - RAW_SPU_BASE_ADDR) / RAW_SPU_OFFSET));
if (!thread)
{
break;
}
if (!a_size || !d_size || !i_size)
{
sig_log.error("Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", +op, +reg, d_size, a_size, i_size);
report_opcode();
return false;
}
if (a_size != 4)
{
// Might be unimplemented, such as writing MFC proxy EAL+EAH using 64-bit store
break;
}
switch (op)
{
case X64OP_LOAD:
case X64OP_LOAD_BE:
case X64OP_LOAD_CMP:
case X64OP_LOAD_TEST:
{
u32 value;
if (is_writing || !thread->read_reg(addr, value))
{
return false;
}
if (op != X64OP_LOAD_BE)
{
value = stx::se_storage<u32>::swap(value);
}
if (op == X64OP_LOAD_CMP)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value, rvalue))
{
return false;
}
break;
}
if (op == X64OP_LOAD_TEST)
{
u64 rvalue;
if (!get_x64_reg_value(context, reg, d_size, i_size, rvalue) || !set_x64_cmp_flags(context, d_size, value & rvalue, 0))
{
return false;
}
break;
}
if (!put_x64_reg_value(context, reg, d_size, value))
{
return false;
}
break;
}
case X64OP_STORE:
case X64OP_STORE_BE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
u32 val32 = static_cast<u32>(reg_value);
if (!thread->write_reg(addr, op == X64OP_STORE ? stx::se_storage<u32>::swap(val32) : val32))
{
return false;
}
break;
}
case X64OP_MOVS: // possibly, TODO
case X64OP_STOS:
default:
{
sig_log.error("Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", +op, +reg, d_size, i_size);
report_opcode();
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
g_tls_fault_spu++;
return true;
} while (0);
if (vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable))
{
if (cpu && cpu->test_stopped())
{
//
}
return true;
}
// Hack: allocate memory in case the emulator is stopping
const auto hack_alloc = [&]()
{
g_tls_access_violation_recovered = true;
const auto area = vm::reserve_map(vm::any, addr & -0x10000, 0x10000);
if (!area)
{
return false;
}
if (vm::reader_lock rlock; vm::check_addr(addr, 0))
{
// For allocated memory with protection lower than required (such as protection::no or read-only while writing to it)
utils::memory_protect(vm::base(addr & -0x1000), 0x1000, utils::protection::rw);
return true;
}
area->falloc(addr & -0x10000, 0x10000);
return vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable);
};
if (cpu && (cpu->id_type() == 1 || cpu->id_type() == 2))
{
vm::temporary_unlock(*cpu);
u32 pf_port_id = 0;
if (auto& pf_entries = g_fxo->get<page_fault_notification_entries>(); true)
{
if (auto mem = vm::get(vm::any, addr))
{
reader_lock lock(pf_entries.mutex);
for (const auto& entry : pf_entries.entries)
{
if (entry.start_addr == mem->addr)
{
pf_port_id = entry.port_id;
break;
}
}
}
}
if (pf_port_id)
{
// We notify the game that a page fault occurred so it can rectify it.
// Note, for data3, were the memory readable AND we got a page fault, it must be due to a write violation since reads are allowed.
u64 data1 = addr;
u64 data2 = 0;
if (cpu->id_type() == 1)
{
data2 = (SYS_MEMORY_PAGE_FAULT_TYPE_PPU_THREAD << 32) | cpu->id;
}
else if (cpu->id_type() == 2)
{
const auto& spu = static_cast<spu_thread&>(*cpu);
const u64 type = spu.get_type() == spu_type::threaded ?
SYS_MEMORY_PAGE_FAULT_TYPE_SPU_THREAD :
SYS_MEMORY_PAGE_FAULT_TYPE_RAW_SPU;
data2 = (type << 32) | spu.lv2_id;
}
u64 data3;
{
vm::reader_lock rlock;
if (vm::check_addr(addr, is_writing ? vm::page_writable : vm::page_readable))
{
// Memory was allocated inbetween, retry
return true;
}
else if (vm::check_addr(addr))
{
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY; // TODO
}
else
{
data3 = SYS_MEMORY_PAGE_FAULT_CAUSE_NON_MAPPED;
}
}
// Deschedule
if (cpu->id_type() == 1)
{
lv2_obj::sleep(*cpu);
}
// Now, place the page fault event onto table so that other functions [sys_mmapper_free_address and pagefault recovery funcs etc]
// know that this thread is page faulted and where.
auto& pf_events = g_fxo->get<page_fault_event_entries>();
{
std::lock_guard pf_lock(pf_events.pf_mutex);
pf_events.events.emplace(cpu, addr);
}
sig_log.warning("Page_fault %s location 0x%x because of %s memory", is_writing ? "writing" : "reading",
addr, data3 == SYS_MEMORY_PAGE_FAULT_CAUSE_READ_ONLY ? "writing read-only" : "using unmapped");
if (cpu->id_type() == 1)
{
if (const auto func = static_cast<ppu_thread*>(cpu)->current_function)
{
sig_log.warning("Page_fault while in function %s", func);
}
}
error_code sending_error = sys_event_port_send(pf_port_id, data1, data2, data3);
// If we fail due to being busy, wait a bit and try again.
while (static_cast<u32>(sending_error) == CELL_EBUSY)
{
if (cpu->is_stopped())
{
sending_error = {};
break;
}
thread_ctrl::wait_for(1000);
sending_error = sys_event_port_send(pf_port_id, data1, data2, data3);
}
if (sending_error)
{
vm_log.error("Unknown error 0x%x while trying to pass page fault.", +sending_error);
return false;
}
else
{
// Wait until the thread is recovered
while (auto state = cpu->state.fetch_sub(cpu_flag::signal))
{
if (is_stopped(state) || state & cpu_flag::signal)
{
break;
}
thread_ctrl::wait_on(cpu->state, state);
}
}
// Reschedule, test cpu state and try recovery if stopped
if (cpu->test_stopped() && !hack_alloc())
{
return false;
}
return true;
}
if (cpu->id_type() == 2)
{
if (!g_tls_access_violation_recovered)
{
vm_log.notice("\n%s", dump_useful_thread_info());
vm_log.error("Access violation %s location 0x%x (%s) [type=u%u]", is_writing ? "writing" : "reading", addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory", d_size * 8);
}
// TODO:
// RawSPU: Send appropriate interrupt
// SPUThread: Send sys_spu exception event
cpu->state += cpu_flag::dbg_pause;
if (cpu->check_state() && !hack_alloc())
{
return false;
}
return true;
}
else
{
if (auto last_func = static_cast<ppu_thread*>(cpu)->current_function)
{
ppu_log.fatal("Function aborted: %s", last_func);
}
lv2_obj::sleep(*cpu);
}
}
Emu.Pause();
if (!g_tls_access_violation_recovered)
{
vm_log.notice("\n%s", dump_useful_thread_info());
}
// Note: a thread may access violate more than once after hack_alloc recovery
// Do not log any further access violations in this case.
if (!g_tls_access_violation_recovered)
{
vm_log.fatal("Access violation %s location 0x%x (%s) [type=u%u]", is_writing ? "writing" : "reading", addr, (is_writing && vm::check_addr(addr)) ? "read-only memory" : "unmapped memory", d_size * 8);
}
while (Emu.IsPaused())
{
thread_ctrl::wait();
}
if (Emu.IsStopped() && !hack_alloc())
{
return false;
}
return true;
}
static void append_thread_name(std::string& msg)
{
if (thread_ctrl::get_current())
{
fmt::append(msg, "Emu Thread Name: '%s'.\n", thread_ctrl::get_name());
}
else if (thread_ctrl::is_main())
{
fmt::append(msg, "Thread: Main Thread.\n");
}
else
{
fmt::append(msg, "Thread id = %s.\n", std::this_thread::get_id());
}
}
#ifdef _WIN32
static LONG exception_handler(PEXCEPTION_POINTERS pExp) noexcept
{
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_BREAKPOINT && IsDebuggerPresent())
{
return EXCEPTION_CONTINUE_SEARCH;
}
const auto ptr = reinterpret_cast<u8*>(pExp->ExceptionRecord->ExceptionInformation[1]);
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] == 1;
const bool is_executing = pExp->ExceptionRecord->ExceptionInformation[0] == 8;
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && !is_executing)
{
u32 addr = 0;
if (auto [addr0, ok] = vm::try_get_addr(ptr); ok)
{
addr = addr0;
}
else if (const usz exec64 = (ptr - vm::g_exec_addr) / 2; exec64 <= UINT32_MAX)
{
addr = static_cast<u32>(exec64);
}
else
{
return EXCEPTION_CONTINUE_SEARCH;
}
if (thread_ctrl::get_current() && handle_access_violation(addr, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
}
return EXCEPTION_CONTINUE_SEARCH;
}
static LONG exception_filter(PEXCEPTION_POINTERS pExp) noexcept
{
std::string msg = fmt::format("Unhandled Win32 exception 0x%08X.\n", pExp->ExceptionRecord->ExceptionCode);
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION)
{
const auto cause =
pExp->ExceptionRecord->ExceptionInformation[0] == 8 ? "executing" :
pExp->ExceptionRecord->ExceptionInformation[0] == 1 ? "writing" : "reading";
fmt::append(msg, "Segfault %s location %p at %p.\n", cause, pExp->ExceptionRecord->ExceptionInformation[1], pExp->ExceptionRecord->ExceptionAddress);
}
else
{
fmt::append(msg, "Exception address: %p.\n", pExp->ExceptionRecord->ExceptionAddress);
for (DWORD i = 0; i < pExp->ExceptionRecord->NumberParameters; i++)
{
fmt::append(msg, "ExceptionInformation[0x%x]: %p.\n", i, pExp->ExceptionRecord->ExceptionInformation[i]);
}
}
append_thread_name(msg);
std::vector<HMODULE> modules;
for (DWORD size = 256; modules.size() != size; size /= sizeof(HMODULE))
{
modules.resize(size);
if (!EnumProcessModules(GetCurrentProcess(), modules.data(), size * sizeof(HMODULE), &size))
{
modules.clear();
break;
}
}
fmt::append(msg, "Instruction address: %p.\n", pExp->ContextRecord->Rip);
DWORD64 unwind_base;
if (const auto rtf = RtlLookupFunctionEntry(pExp->ContextRecord->Rip, &unwind_base, nullptr))
{
// Get function address
const DWORD64 func_addr = rtf->BeginAddress + unwind_base;
fmt::append(msg, "Function address: %p (base+0x%x).\n", func_addr, rtf->BeginAddress);
// Access UNWIND_INFO structure
//const auto uw = (u8*)(unwind_base + rtf->UnwindData);
}
for (HMODULE _module : modules)
{
MODULEINFO info;
if (GetModuleInformation(GetCurrentProcess(), _module, &info, sizeof(info)))
{
const DWORD64 base = reinterpret_cast<DWORD64>(info.lpBaseOfDll);
if (pExp->ContextRecord->Rip >= base && pExp->ContextRecord->Rip < base + info.SizeOfImage)
{
std::string module_name;
for (DWORD size = 15; module_name.size() != size;)
{
module_name.resize(size);
size = GetModuleBaseNameA(GetCurrentProcess(), _module, &module_name.front(), size + 1);
if (!size)
{
module_name.clear();
break;
}
}
fmt::append(msg, "Module name: '%s'.\n", module_name);
fmt::append(msg, "Module base: %p.\n", info.lpBaseOfDll);
}
}
}
fmt::append(msg, "RPCS3 image base: %p.\n", GetModuleHandle(NULL));
// TODO: print registers and the callstack
thread_ctrl::emergency_exit(msg);
}
const bool s_exception_handler_set = []() -> bool
{
if (!AddVectoredExceptionHandler(1, (PVECTORED_EXCEPTION_HANDLER)exception_handler))
{
report_fatal_error("AddVectoredExceptionHandler() failed.");
}
if (!SetUnhandledExceptionFilter((LPTOP_LEVEL_EXCEPTION_FILTER)exception_filter))
{
report_fatal_error("SetUnhandledExceptionFilter() failed.");
}
return true;
}();
#else
static void signal_handler(int /*sig*/, siginfo_t* info, void* uct) noexcept
{
x64_context* context = static_cast<ucontext_t*>(uct);
#ifdef __APPLE__
const u64 err = context->uc_mcontext->__es.__err;
#elif defined(__DragonFly__) || defined(__FreeBSD__)
const u64 err = context->uc_mcontext.mc_err;
#elif defined(__OpenBSD__)
const u64 err = context->sc_err;
#elif defined(__NetBSD__)
const u64 err = context->uc_mcontext.__gregs[_REG_ERR];
#else
const u64 err = context->uc_mcontext.gregs[REG_ERR];
#endif
const bool is_executing = err & 0x10;
const bool is_writing = err & 0x2;
const u64 exec64 = (reinterpret_cast<u64>(info->si_addr) - reinterpret_cast<u64>(vm::g_exec_addr)) / 2;
const auto cause = is_executing ? "executing" : is_writing ? "writing" : "reading";
if (auto [addr, ok] = vm::try_get_addr(info->si_addr); ok && !is_executing)
{
// Try to process access violation
if (thread_ctrl::get_current() && handle_access_violation(addr, is_writing, context))
{
return;
}
}
if (exec64 < 0x100000000ull && !is_executing)
{
if (thread_ctrl::get_current() && handle_access_violation(static_cast<u32>(exec64), is_writing, context))
{
return;
}
}
std::string msg = fmt::format("Segfault %s location %p at %p.\n", cause, info->si_addr, RIP(context));
append_thread_name(msg);
if (IsDebuggerPresent())
{
sys_log.fatal("\n%s", msg);
sys_log.notice("\n%s", dump_useful_thread_info());
// Convert to SIGTRAP
raise(SIGTRAP);
return;
}
thread_ctrl::emergency_exit(msg);
}
void sigpipe_signaling_handler(int)
{
}
const bool s_exception_handler_set = []() -> bool
{
struct ::sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
if (::sigaction(SIGSEGV, &sa, NULL) == -1)
{
std::fprintf(stderr, "sigaction(SIGSEGV) failed (%d).\n", errno);
std::abort();
}
sa.sa_handler = sigpipe_signaling_handler;
if (::sigaction(SIGPIPE, &sa, NULL) == -1)
{
std::fprintf(stderr, "sigaction(SIGPIPE) failed (%d).\n", errno);
std::abort();
}
std::printf("Debugger: %d\n", +IsDebuggerPresent());
return true;
}();
#endif
const bool s_terminate_handler_set = []() -> bool
{
std::set_terminate([]()
{
if (IsDebuggerPresent())
#ifdef _MSC_VER
__debugbreak();
#else
__asm("int3;");
#endif
report_fatal_error("RPCS3 has abnormally terminated.");
});
return true;
}();
thread_local DECLARE(thread_ctrl::g_tls_this_thread) = nullptr;
thread_local DECLARE(thread_ctrl::g_tls_error_callback) = nullptr;
DECLARE(thread_ctrl::g_native_core_layout) { native_core_arrangement::undefined };
static atomic_t<u128, 64> s_thread_bits{0};
static atomic_t<thread_base**> s_thread_pool[128]{};
void thread_base::start()
{
for (u128 bits = s_thread_bits.load(); bits; bits &= bits - 1)
{
const u32 pos = utils::ctz128(bits);
if (!s_thread_pool[pos])
{
continue;
}
thread_base** tls = s_thread_pool[pos].exchange(nullptr);
if (!tls)
{
continue;
}
// Receive "that" native thread handle, sent "this" thread_base
const u64 _self = reinterpret_cast<u64>(atomic_storage<thread_base*>::load(*tls));
m_thread.release(_self);
ensure(_self != reinterpret_cast<u64>(this));
atomic_storage<thread_base*>::store(*tls, this);
s_thread_pool[pos].notify_one();
return;
}
#ifdef _WIN32
m_thread = ::_beginthreadex(nullptr, 0, entry_point, this, CREATE_SUSPENDED, nullptr);
ensure(m_thread);
ensure(::ResumeThread(reinterpret_cast<HANDLE>(+m_thread)) != -1);
#else
ensure(pthread_create(reinterpret_cast<pthread_t*>(&m_thread.raw()), nullptr, entry_point, this) == 0);
#endif
}
void thread_base::initialize(void (*error_cb)())
{
#ifndef _WIN32
m_thread.release(reinterpret_cast<u64>(pthread_self()));
#endif
// Initialize TLS variables
thread_ctrl::g_tls_this_thread = this;
thread_ctrl::g_tls_error_callback = error_cb;
g_tls_log_prefix = []
{
return thread_ctrl::get_name_cached();
};
atomic_wait_engine::set_wait_callback([](const void*, u64 attempts, u64 stamp0) -> bool
{
if (attempts == umax)
{
g_tls_wait_time += __rdtsc() - stamp0;
}
else if (attempts > 1)
{
g_tls_wait_fail += attempts - 1;
}
return true;
});
set_name(thread_ctrl::get_name_cached());
}
void thread_base::set_name(std::string name)
{
#ifdef _MSC_VER
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
};
// Set thread name for VS debugger
if (IsDebuggerPresent()) [&]() NEVER_INLINE
{
THREADNAME_INFO info;
info.dwType = 0x1000;
info.szName = name.c_str();
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
}();
#endif
#if defined(__APPLE__)
name.resize(std::min<usz>(15, name.size()));
pthread_setname_np(name.c_str());
#elif defined(__DragonFly__) || defined(__FreeBSD__) || defined(__OpenBSD__)
pthread_set_name_np(pthread_self(), name.c_str());
#elif defined(__NetBSD__)
pthread_setname_np(pthread_self(), "%s", name.data());
#elif !defined(_WIN32)
name.resize(std::min<usz>(15, name.size()));
pthread_setname_np(pthread_self(), name.c_str());
#endif
}
u64 thread_base::finalize(thread_state result_state) noexcept
{
// Report pending errors
error_code::error_report(0, 0, 0, 0);
#ifdef _WIN32
ULONG64 cycles{};
QueryThreadCycleTime(GetCurrentThread(), &cycles);
FILETIME ctime, etime, ktime, utime;
GetThreadTimes(GetCurrentThread(), &ctime, &etime, &ktime, &utime);
const u64 time = ((ktime.dwLowDateTime | (u64)ktime.dwHighDateTime << 32) + (utime.dwLowDateTime | (u64)utime.dwHighDateTime << 32)) * 100ull;
const u64 fsoft = 0;
const u64 fhard = 0;
const u64 ctxvol = 0;
const u64 ctxinv = 0;
#elif defined(RUSAGE_THREAD)
const u64 cycles = 0; // Not supported
struct ::rusage stats{};
::getrusage(RUSAGE_THREAD, &stats);
const u64 time = (stats.ru_utime.tv_sec + stats.ru_stime.tv_sec) * 1000000000ull + (stats.ru_utime.tv_usec + stats.ru_stime.tv_usec) * 1000ull;
const u64 fsoft = stats.ru_minflt;
const u64 fhard = stats.ru_majflt;
const u64 ctxvol = stats.ru_nvcsw;
const u64 ctxinv = stats.ru_nivcsw;
#else
const u64 cycles = 0;
const u64 time = 0;
const u64 fsoft = 0;
const u64 fhard = 0;
const u64 ctxvol = 0;
const u64 ctxinv = 0;
#endif
g_tls_log_prefix = []
{
return thread_ctrl::get_name_cached();
};
sig_log.notice("Thread time: %fs (%fGc); Faults: %u [rsx:%u, spu:%u]; [soft:%u hard:%u]; Switches:[vol:%u unvol:%u]; Wait:[%.3fs, spur:%u]",
time / 1000000000.,
cycles / 1000000000.,
g_tls_fault_all,
g_tls_fault_rsx,
g_tls_fault_spu,
fsoft, fhard, ctxvol, ctxinv,
g_tls_wait_time / (utils::get_tsc_freq() / 1.),
g_tls_wait_fail);
atomic_wait_engine::set_wait_callback(nullptr);
// Avoid race with the destructor
const u64 _self = m_thread;
// Set result state (errored or finalized)
m_sync.fetch_op([&](u64& v)
{
v &= -4;
v |= static_cast<u32>(result_state);
});
// Signal waiting threads
m_sync.notify_all(2);
return _self;
}
thread_base::native_entry thread_base::finalize(u64 _self) noexcept
{
g_tls_fault_all = 0;
g_tls_fault_rsx = 0;
g_tls_fault_spu = 0;
g_tls_wait_time = 0;
g_tls_wait_fail = 0;
g_tls_access_violation_recovered = false;
const auto fake_self = reinterpret_cast<thread_base*>(_self);
g_tls_log_prefix = []() -> std::string { return {}; };
thread_ctrl::g_tls_this_thread = fake_self;
if (!_self)
{
return nullptr;
}
// Try to add self to thread pool
set_name("..pool");
thread_ctrl::set_native_priority(0);
thread_ctrl::set_thread_affinity_mask(0);
std::fesetround(FE_TONEAREST);
static constexpr u64 s_stop_bit = 0x8000'0000'0000'0000ull;
static atomic_t<u64> s_pool_ctr = []
{
std::atexit([]
{
s_pool_ctr |= s_stop_bit;
while (/*u64 remains = */s_pool_ctr & ~s_stop_bit)
{
for (u32 i = 0; i < std::size(s_thread_pool); i++)
{
if (thread_base** ptls = s_thread_pool[i].exchange(nullptr))
{
// Extract thread handle
const u64 _self = reinterpret_cast<u64>(*ptls);
// Wake up a thread and make sure it's joined
s_thread_pool[i].notify_one();
#ifdef _WIN32
const HANDLE handle = reinterpret_cast<HANDLE>(_self);
WaitForSingleObject(handle, INFINITE);
CloseHandle(handle);
#else
pthread_join(reinterpret_cast<pthread_t>(_self), nullptr);
#endif
}
}
}
});
return 0;
}();
s_pool_ctr++;
u32 pos = -1;
while (true)
{
const auto [bits, ok] = s_thread_bits.fetch_op([](u128& bits)
{
if (~bits) [[likely]]
{
// Set lowest clear bit
bits |= bits + 1;
return true;
}
return false;
});
if (ok) [[likely]]
{
pos = utils::ctz128(~bits);
break;
}
s_thread_bits.wait(bits);
}
const auto tls = &thread_ctrl::g_tls_this_thread;
s_thread_pool[pos] = tls;
atomic_wait::list<2> list{};
list.set<0>(s_pool_ctr, 0, s_stop_bit);
list.set<1>(s_thread_pool[pos], tls);
while (s_thread_pool[pos] == tls || atomic_storage<thread_base*>::load(*tls) == fake_self)
{
list.wait();
if (s_pool_ctr & s_stop_bit)
{
break;
}
}
// Free thread pool slot
s_thread_bits.atomic_op([pos](u128& val)
{
val &= ~(u128(1) << pos);
});
s_thread_bits.notify_one();
if (--s_pool_ctr & s_stop_bit)
{
return nullptr;
}
// Return new entry point
utils::prefetch_exec((*tls)->entry_point);
return (*tls)->entry_point;
}
thread_base::native_entry thread_base::make_trampoline(u64(*entry)(thread_base* _base))
{
return build_function_asm<native_entry>([&](asmjit::X86Assembler& c, auto& args)
{
using namespace asmjit;
Label _ret = c.newLabel();
c.push(x86::rbp);
c.sub(x86::rsp, 0x20);
// Call entry point (TODO: support for detached threads missing?)
c.call(imm_ptr(entry));
// Call finalize, return if zero
c.mov(args[0], x86::rax);
c.call(imm_ptr<native_entry(*)(u64)>(finalize));
c.test(x86::rax, x86::rax);
c.jz(_ret);
// Otherwise, call it as an entry point with first arg = new current thread
c.mov(x86::rbp, x86::rax);
c.call(imm_ptr(thread_ctrl::get_current));
c.mov(args[0], x86::rax);
c.add(x86::rsp, 0x28);
c.jmp(x86::rbp);
c.bind(_ret);
c.add(x86::rsp, 0x28);
c.ret();
});
}
thread_state thread_ctrl::state()
{
auto _this = g_tls_this_thread;
// Guard for recursive calls (TODO: may be more effective to reuse one of m_sync bits)
static thread_local bool s_tls_exec = false;
// Drain execution queue
if (!s_tls_exec)
{
s_tls_exec = true;
_this->exec();
s_tls_exec = false;
}
return static_cast<thread_state>(_this->m_sync & 3);
}
void thread_ctrl::_wait_for(u64 usec, bool alert /* true */)
{
auto _this = g_tls_this_thread;
#ifdef __linux__
static thread_local struct linux_timer_handle_t
{
// Allocate timer only if needed (i.e. someone calls _wait_for with alert and short period)
const int m_timer = timerfd_create(CLOCK_MONOTONIC, 0);
linux_timer_handle_t() noexcept
{
if (m_timer == -1)
{
sig_log.error("Linux timer allocation failed, using the fallback instead.");
}
}
operator int() const
{
return m_timer;
}
~linux_timer_handle_t()
{
if (m_timer != -1)
{
close(m_timer);
}
}
} fd_timer;
if (!alert && usec > 0 && usec <= 1000 && fd_timer != -1)
{
struct itimerspec timeout;
u64 missed;
u64 nsec = usec * 1000ull;
timeout.it_value.tv_nsec = (nsec % 1000000000ull);
timeout.it_value.tv_sec = nsec / 1000000000ull;
timeout.it_interval.tv_sec = 0;
timeout.it_interval.tv_nsec = 0;
timerfd_settime(fd_timer, 0, &timeout, NULL);
if (read(fd_timer, &missed, sizeof(missed)) != sizeof(missed))
sig_log.error("timerfd: read() failed");
return;
}
#endif
if (_this->m_sync.bit_test_reset(2) || _this->m_taskq)
{
return;
}
// Wait for signal and thread state abort
atomic_wait::list<2> list{};
list.set<0>(_this->m_sync, 0, 4 + 1);
list.set<1>(_this->m_taskq, nullptr);
list.wait(atomic_wait_timeout{usec <= 0xffff'ffff'ffff'ffff / 1000 ? usec * 1000 : 0xffff'ffff'ffff'ffff});
}
std::string thread_ctrl::get_name_cached()
{
auto _this = thread_ctrl::g_tls_this_thread;
if (!_this)
{
return {};
}
static thread_local shared_ptr<std::string> name_cache;
if (!_this->m_tname.is_equal(name_cache)) [[unlikely]]
{
_this->m_tname.peek_op([&](const shared_ptr<std::string>& ptr)
{
if (ptr != name_cache)
{
name_cache = ptr;
}
});
}
return *name_cache;
}
thread_base::thread_base(native_entry entry, std::string name)
: entry_point(entry)
, m_tname(make_single_value(std::move(name)))
{
}
thread_base::~thread_base()
{
// Cleanup abandoned tasks: initialize default results and signal
this->exec();
// Only cleanup on errored status
if ((m_sync & 3) == 2)
{
#ifdef _WIN32
const HANDLE handle0 = reinterpret_cast<HANDLE>(m_thread.load());
WaitForSingleObject(handle0, INFINITE);
CloseHandle(handle0);
#else
pthread_join(reinterpret_cast<pthread_t>(m_thread.load()), nullptr);
#endif
}
}
bool thread_base::join(bool dtor) const
{
// Check if already finished
if (m_sync & 2)
{
return (m_sync & 3) == 3;
}
// Hacked for too sleepy threads (1ms) TODO: make sure it's unneeded and remove
const auto timeout = dtor && Emu.IsStopped() ? atomic_wait_timeout{1'000'000} : atomic_wait_timeout::inf;
auto stamp0 = __rdtsc();
for (u64 i = 0; (m_sync & 3) <= 1; i++)
{
m_sync.wait(0, 2, timeout);
if (m_sync & 2)
{
break;
}
if (i >= 16 && !(i & (i - 1)) && timeout != atomic_wait_timeout::inf)
{
sig_log.error(u8"Thread [%s] is too sleepy. Waiting for it %.3fµs already!", *m_tname.load(), (__rdtsc() - stamp0) / (utils::get_tsc_freq() / 1000000.));
}
}
return (m_sync & 3) == 3;
}
void thread_base::notify()
{
// Set notification
m_sync |= 4;
m_sync.notify_one(4);
}
u64 thread_base::get_native_id() const
{
#ifdef _WIN32
return GetThreadId(reinterpret_cast<HANDLE>(m_thread.load()));
#else
return m_thread.load();
#endif
}
u64 thread_base::get_cycles()
{
u64 cycles = 0;
const u64 handle = m_thread;
#ifdef _WIN32
if (QueryThreadCycleTime(reinterpret_cast<HANDLE>(handle), &cycles))
{
#elif __APPLE__
mach_port_name_t port = pthread_mach_thread_np(reinterpret_cast<pthread_t>(handle));
mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t info;
kern_return_t ret = thread_info(port, THREAD_BASIC_INFO, reinterpret_cast<thread_info_t>(&info), &count);
if (ret == KERN_SUCCESS)
{
cycles = static_cast<u64>(info.user_time.seconds + info.system_time.seconds) * 1'000'000'000 +
static_cast<u64>(info.user_time.microseconds + info.system_time.microseconds) * 1'000;
#else
clockid_t _clock;
struct timespec thread_time;
if (!pthread_getcpuclockid(reinterpret_cast<pthread_t>(handle), &_clock) && !clock_gettime(_clock, &thread_time))
{
cycles = static_cast<u64>(thread_time.tv_sec) * 1'000'000'000 + thread_time.tv_nsec;
#endif
if (const u64 old_cycles = m_sync.fetch_op([&](u64& v){ v &= 7; v |= (cycles << 3); }) >> 3)
{
return cycles - old_cycles;
}
// Report 0 the first time this function is called
return 0;
}
else
{
return m_sync >> 3;
}
}
void thread_base::push(shared_ptr<thread_future> task)
{
const auto next = &task->next;
m_taskq.push_head(*next, std::move(task));
m_taskq.notify_one();
}
void thread_base::exec()
{
if (!m_taskq) [[likely]]
{
return;
}
while (shared_ptr<thread_future> head = m_taskq.exchange(null_ptr))
{
// TODO: check if adapting reverse algorithm is feasible here
shared_ptr<thread_future>* prev{};
for (auto ptr = head.get(); ptr; ptr = ptr->next.get())
{
utils::prefetch_exec(ptr->exec.load());
ptr->prev = prev;
if (ptr->next)
{
prev = &ptr->next;
}
}
if (!prev)
{
prev = &head;
}
for (auto ptr = prev->get(); ptr; ptr = ptr->prev->get())
{
if (auto task = ptr->exec.load()) [[likely]]
{
// Execute or discard (if aborting)
if ((m_sync & 3) == 0) [[likely]]
{
task(this, ptr);
}
else
{
task(nullptr, ptr);
}
// Notify waiters
ptr->exec.release(nullptr);
ptr->exec.notify_all();
}
if (ptr->next)
{
// Partial cleanup
ptr->next.reset();
}
if (!ptr->prev)
{
break;
}
}
if (!m_taskq) [[likely]]
{
return;
}
}
}
[[noreturn]] void thread_ctrl::emergency_exit(std::string_view reason)
{
if (std::string info = dump_useful_thread_info(); !info.empty())
{
sys_log.notice("\n%s", info);
}
sig_log.fatal("Thread terminated due to fatal error: %s", reason);
#ifdef _WIN32
if (IsDebuggerPresent())
{
__debugbreak();
}
#else
if (IsDebuggerPresent())
{
__asm("int3;");
}
#endif
if (const auto _this = g_tls_this_thread)
{
g_tls_error_callback();
u64 _self = _this->finalize(thread_state::errored);
if (!_self)
{
// Unused, detached thread support remnant
delete _this;
}
thread_base::finalize(0);
#ifdef _WIN32
_endthreadex(0);
#else
pthread_exit(nullptr);
#endif
}
report_fatal_error(reason);
}
void thread_ctrl::detect_cpu_layout()
{
if (!g_native_core_layout.compare_and_swap_test(native_core_arrangement::undefined, native_core_arrangement::generic))
return;
const auto system_id = utils::get_cpu_brand();
if (system_id.find("Ryzen") != umax)
{
g_native_core_layout.store(native_core_arrangement::amd_ccx);
}
else if (system_id.find("Intel") != umax)
{
#ifdef _WIN32
const LOGICAL_PROCESSOR_RELATIONSHIP relationship = LOGICAL_PROCESSOR_RELATIONSHIP::RelationProcessorCore;
DWORD buffer_size = 0;
// If buffer size is set to 0 bytes, it will be overwritten with the required size
if (GetLogicalProcessorInformationEx(relationship, nullptr, &buffer_size))
{
sig_log.error("GetLogicalProcessorInformationEx returned 0 bytes");
return;
}
DWORD error_code = GetLastError();
if (error_code != ERROR_INSUFFICIENT_BUFFER)
{
sig_log.error("Unexpected windows error code when detecting CPU layout: %u", error_code);
return;
}
std::vector<u8> buffer(buffer_size);
if (!GetLogicalProcessorInformationEx(relationship,
reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(buffer.data()), &buffer_size))
{
sig_log.error("GetLogicalProcessorInformationEx failed (size=%u, error=%u)", buffer_size, GetLastError());
}
else
{
// Iterate through the buffer until a core with hyperthreading is found
auto ptr = reinterpret_cast<uptr>(buffer.data());
const uptr end = ptr + buffer_size;
while (ptr < end)
{
auto info = reinterpret_cast<SYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX *>(ptr);
if (info->Relationship == relationship && info->Processor.Flags == LTP_PC_SMT)
{
g_native_core_layout.store(native_core_arrangement::intel_ht);
break;
}
ptr += info->Size;
}
}
#else
sig_log.todo("Thread scheduler is not implemented for Intel and this OS");
#endif
}
}
u64 thread_ctrl::get_affinity_mask(thread_class group)
{
detect_cpu_layout();
if (const auto thread_count = utils::get_thread_count())
{
const u64 all_cores_mask = process_affinity_mask;
switch (g_native_core_layout)
{
default:
case native_core_arrangement::generic:
{
return all_cores_mask;
}
case native_core_arrangement::amd_ccx:
{
if (thread_count <= 8)
{
// Single CCX or not enough threads, do nothing
return all_cores_mask;
}
u64 spu_mask, ppu_mask, rsx_mask;
spu_mask = ppu_mask = rsx_mask = all_cores_mask; // Fallback, in case someone is messing with core config
const auto system_id = utils::get_cpu_brand();
const auto family_id = utils::get_cpu_family();
const auto model_id = utils::get_cpu_model();
switch (family_id)
{
case 0x17: // Zen, Zen+, Zen2
case 0x18: // Dhyana core (Zen)
{
if (model_id > 0x30)
{
// Zen2 (models 49, 96, 113, 144)
// Much improved inter-CCX latency
switch (thread_count)
{
case 128:
case 64:
case 48:
case 32:
// TR 3000 series, or R9 3950X, Assign threads 9-32
ppu_mask = 0b11111111000000000000000000000000;
spu_mask = 0b00000000111111110000000000000000;
rsx_mask = 0b00000000000000001111111100000000;
break;
case 24:
// 3900X, Assign threads 7-24
ppu_mask = 0b111111000000000000000000;
spu_mask = 0b000000111111000000000000;
rsx_mask = 0b000000000000111111000000;
break;
case 16:
// 3700, 3800 family, Assign threads 1-16
ppu_mask = 0b0000000011110000;
spu_mask = 0b1111111100000000;
rsx_mask = 0b0000000000001111;
break;
case 12:
// 3600 family, Assign threads 1-12
ppu_mask = 0b000000111000;
spu_mask = 0b111111000000;
rsx_mask = 0b000000000111;
break;
default:
break;
}
}
else
{
// Zen, Zen+ (models 1, 8(+), 17, 24(+), 32)
switch (thread_count)
{
case 64:
// TR 2990WX, Assign threads 17-32
ppu_mask = 0b00000000111111110000000000000000;
spu_mask = ppu_mask;
rsx_mask = 0b11111111000000000000000000000000;
break;
case 48:
// TR 2970WX, Assign threads 9-24
ppu_mask = 0b000000111111000000000000;
spu_mask = ppu_mask;
rsx_mask = 0b111111000000000000000000;
break;
case 32:
// TR 2950X, TR 1950X, Assign threads 17-32
ppu_mask = 0b00000000111111110000000000000000;
spu_mask = ppu_mask;
rsx_mask = 0b11111111000000000000000000000000;
break;
case 24:
// TR 1920X, 2920X, Assign threads 13-24
ppu_mask = 0b000000111111000000000000;
spu_mask = ppu_mask;
rsx_mask = 0b111111000000000000000000;
break;
case 16:
// 1700, 1800, 2700, TR 1900X family
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
{
ppu_mask = 0b0010000010000000;
spu_mask = 0b0000101010101010;
rsx_mask = 0b1000000000000000;
}
else
{
ppu_mask = 0b1111111100000000;
spu_mask = ppu_mask;
rsx_mask = 0b0000000000111100;
}
break;
case 12:
// 1600, 2600 family, Assign threads 3-12
ppu_mask = 0b111111000000;
spu_mask = ppu_mask;
rsx_mask = 0b000000111100;
break;
default:
break;
}
}
break;
}
case 0x19: // Zen3
{
// Single-CCX architecture, just disable SMT if wide enough
// CCX now holds upto 16 threads
// Lack of hw availability makes testing difficult
switch (thread_count)
{
case 24:
// 5900X, Use same scheduler as 3900X
// Unverified on windows, may be worse than just disabling SMT and scheduler
ppu_mask = 0b111111000000000000000000;
spu_mask = 0b000000111111000000000000;
rsx_mask = 0b000000000000111111000000;
break;
case 16:
// 5800X
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
{
ppu_mask = 0b0000000011110000;
spu_mask = 0b1111111100000000;
rsx_mask = 0b0000000000001111;
}
else
{
// Verified by more than one windows user on 16-thread CPU
ppu_mask = spu_mask = rsx_mask = (0b10101010101010101010101010101010 & all_cores_mask);
}
break;
case 12:
// 5600X
if (g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
{
ppu_mask = 0b000000001100;
spu_mask = 0b111111110000;
rsx_mask = 0b000000000011;
}
else
{
ppu_mask = spu_mask = rsx_mask = all_cores_mask;
}
break;
default:
if (thread_count > 24)
{
ppu_mask = spu_mask = rsx_mask = (0b10101010101010101010101010101010 & all_cores_mask);
}
break;
}
break;
}
default:
{
break;
}
}
switch (group)
{
default:
case thread_class::general:
return all_cores_mask;
case thread_class::rsx:
return rsx_mask;
case thread_class::ppu:
return ppu_mask;
case thread_class::spu:
return spu_mask;
}
}
case native_core_arrangement::intel_ht:
{
if (thread_count >= 12 && g_cfg.core.thread_scheduler == thread_scheduler_mode::alt)
return (0b10101010101010101010101010101010 & all_cores_mask); // Potentially improves performance by mimicking HT off
return all_cores_mask;
}
}
}
return UINT64_MAX;
}
void thread_ctrl::set_native_priority(int priority)
{
#ifdef _WIN32
HANDLE _this_thread = GetCurrentThread();
INT native_priority = THREAD_PRIORITY_NORMAL;
if (priority > 0)
native_priority = THREAD_PRIORITY_ABOVE_NORMAL;
if (priority < 0)
native_priority = THREAD_PRIORITY_BELOW_NORMAL;
if (!SetThreadPriority(_this_thread, native_priority))
{
sig_log.error("SetThreadPriority() failed: 0x%x", GetLastError());
}
#else
int policy;
struct sched_param param;
pthread_getschedparam(pthread_self(), &policy, &param);
if (priority > 0)
param.sched_priority = sched_get_priority_max(policy);
if (priority < 0)
param.sched_priority = sched_get_priority_min(policy);
if (int err = pthread_setschedparam(pthread_self(), policy, &param))
{
sig_log.error("pthraed_setschedparam() failed: %d", err);
}
#endif
}
u64 thread_ctrl::get_process_affinity_mask()
{
static const u64 mask = []() -> u64
{
#ifdef _WIN32
DWORD_PTR res, _sys;
if (!GetProcessAffinityMask(GetCurrentProcess(), &res, &_sys))
{
sig_log.error("Failed to get process affinity mask.");
return 0;
}
return res;
#else
// Assume it's called from the main thread (this is a bit shaky)
return thread_ctrl::get_thread_affinity_mask();
#endif
}();
return mask;
}
DECLARE(thread_ctrl::process_affinity_mask) = get_process_affinity_mask();
void thread_ctrl::set_thread_affinity_mask(u64 mask)
{
sig_log.trace("set_thread_affinity_mask called with mask=0x%x", mask);
#ifdef _WIN32
HANDLE _this_thread = GetCurrentThread();
if (!SetThreadAffinityMask(_this_thread, !mask ? process_affinity_mask : mask))
{
sig_log.error("Failed to set thread affinity 0x%x: error 0x%x.", mask, GetLastError());
}
#elif __APPLE__
// Supports only one core
thread_affinity_policy_data_t policy = { static_cast<integer_t>(std::countr_zero(mask)) };
thread_port_t mach_thread = pthread_mach_thread_np(pthread_self());
thread_policy_set(mach_thread, THREAD_AFFINITY_POLICY, reinterpret_cast<thread_policy_t>(&policy), !mask ? 0 : 1);
#elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__)
if (!mask)
{
// Reset affinity mask
mask = process_affinity_mask;
}
cpu_set_t cs;
CPU_ZERO(&cs);
for (u32 core = 0; core < 64u; ++core)
{
const u64 shifted = mask >> core;
if (shifted & 1)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
CPU_SET(core, &cs);
#pragma GCC diagnostic pop
}
if (shifted <= 1)
{
break;
}
}
if (int err = pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs))
{
sig_log.error("Failed to set thread affinity 0x%x: error %d.", mask, err);
}
#endif
}
u64 thread_ctrl::get_thread_affinity_mask()
{
#ifdef _WIN32
const u64 res = process_affinity_mask;
if (DWORD_PTR result = SetThreadAffinityMask(GetCurrentThread(), res))
{
if (res != result)
{
SetThreadAffinityMask(GetCurrentThread(), result);
}
return result;
}
sig_log.error("Failed to get thread affinity mask.");
return 0;
#elif defined(__linux__) || defined(__DragonFly__) || defined(__FreeBSD__)
cpu_set_t cs;
CPU_ZERO(&cs);
if (int err = pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &cs))
{
sig_log.error("Failed to get thread affinity mask: error %d.", err);
return 0;
}
u64 result = 0;
for (u32 core = 0; core < 64u; core++)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wold-style-cast"
if (CPU_ISSET(core, &cs))
#pragma GCC diagnostic pop
{
result |= 1ull << core;
}
}
if (result == 0)
{
sig_log.error("Thread affinity mask is out of u64 range.");
return 0;
}
return result;
#else
return -1;
#endif
}
std::pair<void*, usz> thread_ctrl::get_thread_stack()
{
#ifdef _WIN32
ULONG_PTR _min = 0;
ULONG_PTR _max = 0;
GetCurrentThreadStackLimits(&_min, &_max);
const usz ssize = _max - _min;
const auto saddr = reinterpret_cast<void*>(_min);
#else
void* saddr = 0;
usz ssize = 0;
pthread_attr_t attr;
#if defined(__linux__)
pthread_getattr_np(pthread_self(), &attr);
pthread_attr_getstack(&attr, &saddr, &ssize);
#elif defined(__APPLE__)
saddr = pthread_get_stackaddr_np(pthread_self());
ssize = pthread_get_stacksize_np(pthread_self());
#else
pthread_attr_get_np(pthread_self(), &attr);
pthread_attr_getstackaddr(&attr, &saddr);
pthread_attr_getstacksize(&attr, &ssize);
#endif
#endif
return {saddr, ssize};
}
u64 thread_ctrl::get_tid()
{
#ifdef _WIN32
return GetCurrentThreadId();
#else
return reinterpret_cast<u64>(pthread_self());
#endif
}
bool thread_ctrl::is_main()
{
return get_tid() == utils::main_tid;
}