1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-22 02:32:36 +01:00
rpcs3/Utilities/Thread.cpp
2015-02-19 23:38:25 +03:00

1480 lines
30 KiB
C++

#include "stdafx.h"
#include "Log.h"
#include "rpcs3/Ini.h"
#include "Emu/System.h"
#include "Emu/CPU/CPUThread.h"
#include "Emu/SysCalls/SysCalls.h"
#include "Thread.h"
#ifdef _WIN32
#include <windows.h>
#else
#ifdef __APPLE__
#define _XOPEN_SOURCE
#define __USE_GNU
#endif
#include <signal.h>
#include <ucontext.h>
#endif
void SetCurrentThreadDebugName(const char* threadName)
{
#if defined(_MSC_VER) // this is VS-specific way to set thread names for the debugger
#pragma pack(push,8)
struct THREADNAME_INFO
{
DWORD dwType;
LPCSTR szName;
DWORD dwThreadID;
DWORD dwFlags;
} info;
#pragma pack(pop)
info.dwType = 0x1000;
info.szName = threadName;
info.dwThreadID = -1;
info.dwFlags = 0;
__try
{
RaiseException(0x406D1388, 0, sizeof(info) / sizeof(ULONG_PTR), (ULONG_PTR*)&info);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
}
#endif
}
enum x64_reg_t : u32
{
X64R_RAX = 0,
X64R_RCX,
X64R_RDX,
X64R_RBX,
X64R_RSP,
X64R_RBP,
X64R_RSI,
X64R_RDI,
X64R_R8,
X64R_R9,
X64R_R10,
X64R_R11,
X64R_R12,
X64R_R13,
X64R_R14,
X64R_R15,
X64R_XMM0 = 0,
X64R_XMM1,
X64R_XMM2,
X64R_XMM3,
X64R_XMM4,
X64R_XMM5,
X64R_XMM6,
X64R_XMM7,
X64R_XMM8,
X64R_XMM9,
X64R_XMM10,
X64R_XMM11,
X64R_XMM12,
X64R_XMM13,
X64R_XMM14,
X64R_XMM15,
X64R_AL,
X64R_CL,
X64R_DL,
X64R_BL,
X64R_AH,
X64R_CH,
X64R_DH,
X64R_BH,
X64_NOT_SET,
X64_IMM8,
X64_IMM16,
X64_IMM32,
X64R_ECX = X64R_CL,
};
enum x64_op_t : u32
{
X64OP_NONE,
X64OP_LOAD, // obtain and put the value into x64 register (from Memory.ReadMMIO32, for example)
X64OP_STORE, // take the value from x64 register or an immediate and use it (pass in Memory.WriteMMIO32, for example)
// example: add eax,[rax] -> X64OP_LOAD_ADD (add the value to x64 register)
// example: add [rax],eax -> X64OP_LOAD_ADD_STORE (this will probably never happen for MMIO registers)
X64OP_MOVS,
X64OP_STOS,
X64OP_XCHG,
X64OP_CMPXCHG,
};
void decode_x64_reg_op(const u8* code, x64_op_t& out_op, x64_reg_t& out_reg, size_t& out_size, size_t& out_length)
{
// simple analysis of x64 code allows to reinterpret MOV or other instructions in any desired way
out_length = 0;
u8 rex = 0, pg2 = 0;
bool oso = false, lock = false, repne = false, repe = false;
enum : u8
{
LOCK = 0xf0,
REPNE = 0xf2,
REPE = 0xf3,
};
// check prefixes:
for (;; code++, out_length++)
{
switch (const u8 prefix = *code)
{
case LOCK: // group 1
{
if (lock)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): LOCK prefix found twice", (size_t)code - out_length);
}
lock = true;
continue;
}
case REPNE: // group 1
{
if (repne)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REPNE/REPNZ prefix found twice", (size_t)code - out_length);
}
repne = true;
continue;
}
case REPE: // group 1
{
if (repe)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): REP/REPE/REPZ prefix found twice", (size_t)code - out_length);
}
repe = true;
continue;
}
case 0x2e: // group 2
case 0x36:
case 0x3e:
case 0x26:
case 0x64:
case 0x65:
{
if (pg2)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (group 2 prefix) found after 0x%02x", (size_t)code - out_length, prefix, pg2);
}
else
{
pg2 = prefix; // probably, segment register
}
continue;
}
case 0x66: // group 3
{
if (oso)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): operand-size override prefix found twice", (size_t)code - out_length);
}
oso = true;
continue;
}
case 0x67: // group 4
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): address-size override prefix found", (size_t)code - out_length, prefix);
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
return;
}
default:
{
if ((prefix & 0xf0) == 0x40) // check REX prefix
{
if (rex)
{
LOG_ERROR(MEMORY, "decode_x64_reg_op(%016llxh): 0x%02x (REX prefix) found after 0x%02x", (size_t)code - out_length, prefix, rex);
}
else
{
rex = prefix;
}
continue;
}
}
}
break;
}
auto get_modRM_reg = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_RAX);
};
auto get_modRM_reg_xmm = [](const u8* code, const u8 rex) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3 | (/* check REX.R bit */ rex & 4 ? 8 : 0)) + X64R_XMM0);
};
auto get_modRM_reg_lh = [](const u8* code) -> x64_reg_t
{
return (x64_reg_t)(((*code & 0x38) >> 3) + X64R_AL);
};
auto get_op_size = [](const u8 rex, const bool oso) -> size_t
{
return rex & 8 ? 8 : (oso ? 2 : 4);
};
auto get_modRM_size = [](const u8* code) -> size_t
{
switch (*code >> 6) // check Mod
{
case 0: return (*code & 0x07) == 4 ? 2 : 1; // check SIB
case 1: return (*code & 0x07) == 4 ? 3 : 2; // check SIB (disp8)
case 2: return (*code & 0x07) == 4 ? 6 : 5; // check SIB (disp32)
default: return 1;
}
};
const u8 op1 = (out_length++, *code++), op2 = code[0], op3 = code[1];
switch (op1)
{
case 0x0f:
{
out_length++, code++;
switch (op2)
{
case 0x7f:
{
if ((repe && !oso) || (!repe && oso)) // MOVDQU/MOVDQA xmm/m, xmm
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg_xmm(code, rex);
out_size = 16;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb0:
{
if (!oso) // CMPXCHG r8/m8, r8
{
out_op = X64OP_CMPXCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xb1:
{
if (true) // CMPXCHG r/m, r (16, 32, 64)
{
out_op = X64OP_CMPXCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
}
break;
}
case 0x86:
{
if (!oso) // XCHG r8/m8, r8
{
out_op = X64OP_XCHG;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x87:
{
if (true) // XCHG r/m, r (16, 32, 64)
{
out_op = X64OP_XCHG;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x88:
{
if (!lock && !oso) // MOV r8/m8, r8
{
out_op = X64OP_STORE;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x89:
{
if (!lock) // MOV r/m, r (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8a:
{
if (!lock && !oso) // MOV r8, r8/m8
{
out_op = X64OP_LOAD;
out_reg = rex & 8 ? get_modRM_reg(code, rex) : get_modRM_reg_lh(code);
out_size = 1;
out_length += get_modRM_size(code);
return;
}
break;
}
case 0x8b:
{
if (!lock) // MOV r, r/m (16, 32, 64)
{
out_op = X64OP_LOAD;
out_reg = get_modRM_reg(code, rex);
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code);
return;
}
break;
}
case 0xa4:
{
if (!oso && !lock && !repe && !rex) // MOVS
{
out_op = X64OP_MOVS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP MOVS
{
out_op = X64OP_MOVS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xaa:
{
if (!oso && !lock && !repe && !rex) // STOS
{
out_op = X64OP_STOS;
out_reg = X64_NOT_SET;
out_size = 1;
return;
}
if (!oso && !lock && repe) // REP STOS
{
out_op = X64OP_STOS;
out_reg = rex & 8 ? X64R_RCX : X64R_ECX;
out_size = 1;
return;
}
break;
}
case 0xc6:
{
if (!lock && !oso && get_modRM_reg(code, 0) == X64R_RAX) // MOV r8/m8, imm8
{
out_op = X64OP_STORE;
out_reg = X64_IMM8;
out_size = 1;
out_length += get_modRM_size(code) + 1;
return;
}
break;
}
case 0xc7:
{
if (!lock && get_modRM_reg(code, 0) == X64R_RAX) // MOV r/m, imm16/imm32 (16, 32, 64)
{
out_op = X64OP_STORE;
out_reg = oso ? X64_IMM16 : X64_IMM32;
out_size = get_op_size(rex, oso);
out_length += get_modRM_size(code) + (oso ? 2 : 4);
return;
}
break;
}
}
LOG_WARNING(MEMORY, "decode_x64_reg_op(%016llxh): unsupported opcode found (%016llX%016llX)", (size_t)code - out_length, *(be_t<u64>*)(code - out_length), *(be_t<u64>*)(code - out_length + 8));
out_op = X64OP_NONE;
out_reg = X64_NOT_SET;
out_size = 0;
out_length = 0;
}
#ifdef _WIN32
typedef CONTEXT x64_context;
#define X64REG(context, reg) (&(&(context)->Rax)[reg])
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(&(context)->Xmm0)[reg]))
#define EFLAGS(context) ((context)->EFlags)
#else
typedef ucontext_t x64_context;
#ifdef __APPLE__
#define X64REG(context, reg) (darwin_x64reg(context, reg))
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext->__fs.__fpu_xmm0[reg]))
#define EFLAGS(context) ((context)->uc_mcontext->__ss.__eflags)
uint64_t* darwin_x64reg(x64_context *context, int reg)
{
auto *state = &context->uc_mcontext->__ss;
switch(reg)
{
case 0: // RAX
return &state->__rax;
case 1: // RCX
return &state->__rcx;
case 2: // RDX
return &state->__rdx;
case 3: // RBX
return &state->__rbx;
case 4: // RSP
return &state->__rsp;
case 5: // RBP
return &state->__rbp;
case 6: // RSI
return &state->__rsi;
case 7: // RDI
return &state->__rdi;
case 8: // R8
return &state->__r8;
case 9: // R9
return &state->__r9;
case 10: // R10
return &state->__r10;
case 11: // R11
return &state->__r11;
case 12: // R12
return &state->__r12;
case 13: // R13
return &state->__r13;
case 14: // R14
return &state->__r14;
case 15: // R15
return &state->__r15;
case 16: // RIP
return &state->__rip;
default: // FAIL
assert(0);
}
}
#else
typedef decltype(REG_RIP) reg_table_t;
static const reg_table_t reg_table[17] =
{
REG_RAX, REG_RCX, REG_RDX, REG_RBX, REG_RSP, REG_RBP, REG_RSI, REG_RDI,
REG_R8, REG_R9, REG_R10, REG_R11, REG_R12, REG_R13, REG_R14, REG_R15, REG_RIP
};
#define X64REG(context, reg) (&(context)->uc_mcontext.gregs[reg_table[reg]])
#define XMMREG(context, reg) (reinterpret_cast<u128*>(&(context)->uc_mcontext.fpregs->_xmm[reg]))
#define EFLAGS(context) ((context)->uc_mcontext.gregs[REG_EFL])
#endif // __APPLE__
#endif
#define RAX(c) (*X64REG((c), 0))
#define RCX(c) (*X64REG((c), 1))
#define RDX(c) (*X64REG((c), 2))
#define RSI(c) (*X64REG((c), 6))
#define RDI(c) (*X64REG((c), 7))
#define RIP(c) (*X64REG((c), 16))
bool get_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, size_t i_size, u64& out_value)
{
// get x64 reg value (for store operations)
if (reg - X64R_RAX < 16)
{
// load the value from x64 register
const u64 reg_value = *X64REG(context, reg - X64R_RAX);
switch (d_size)
{
case 1: out_value = (u8)reg_value; return true;
case 2: out_value = (u16)reg_value; return true;
case 4: out_value = (u32)reg_value; return true;
case 8: out_value = reg_value; return true;
}
}
else if (reg - X64R_AL < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AL));
return true;
}
else if (reg - X64R_AH < 4 && d_size == 1)
{
out_value = (u8)(*X64REG(context, reg - X64R_AH) >> 8);
return true;
}
else if (reg == X64_IMM8)
{
const s8 imm_value = *(s8*)(RIP(context) + i_size - 1);
switch (d_size)
{
case 1: out_value = (u8)imm_value; return true;
}
}
else if (reg == X64_IMM16)
{
const s16 imm_value = *(s16*)(RIP(context) + i_size - 2);
switch (d_size)
{
case 2: out_value = (u16)imm_value; return true;
}
}
else if (reg == X64_IMM32)
{
// load the immediate value (assuming it's at the end of the instruction)
const s32 imm_value = *(s32*)(RIP(context) + i_size - 4);
switch (d_size)
{
case 4: out_value = (u32)imm_value; return true;
case 8: out_value = (u64)imm_value; return true; // sign-extended
}
}
else if (reg == X64R_ECX)
{
out_value = (u32)RCX(context);
return true;
}
LOG_ERROR(MEMORY, "get_x64_reg_value(): invalid arguments (reg=%d, d_size=%lld, i_size=%lld)", reg, d_size, i_size);
return false;
}
bool put_x64_reg_value(x64_context* context, x64_reg_t reg, size_t d_size, u64 value)
{
// save x64 reg value (for load operations)
if (reg - X64R_RAX < 16)
{
// save the value into x64 register
switch (d_size)
{
case 1: *X64REG(context, reg - X64R_RAX) = value & 0xff | *X64REG(context, reg - X64R_RAX) & 0xffffff00; return true;
case 2: *X64REG(context, reg - X64R_RAX) = value & 0xffff | *X64REG(context, reg - X64R_RAX) & 0xffff0000; return true;
case 4: *X64REG(context, reg - X64R_RAX) = value & 0xffffffff; return true;
case 8: *X64REG(context, reg - X64R_RAX) = value; return true;
}
}
LOG_ERROR(MEMORY, "put_x64_reg_value(): invalid destination (reg=%d, d_size=%lld, value=0x%llx)", reg, d_size, value);
return false;
}
bool set_x64_cmp_flags(x64_context* context, size_t d_size, u64 x, u64 y)
{
switch (d_size)
{
case 1: break;
case 2: break;
case 4: break;
case 8: break;
default: LOG_ERROR(MEMORY, "set_x64_cmp_flags(): invalid d_size (%lld)", d_size); return false;
}
const u64 sign = 1ull << (d_size * 8 - 1); // sign mask
const u64 diff = x - y;
const u64 summ = x + y;
if (((x & y) | ((x ^ y) & ~summ)) & sign)
{
EFLAGS(context) |= 0x1; // set CF
}
else
{
EFLAGS(context) &= ~0x1; // clear CF
}
if (x == y)
{
EFLAGS(context) |= 0x40; // set ZF
}
else
{
EFLAGS(context) &= ~0x40; // clear ZF
}
if (diff & sign)
{
EFLAGS(context) |= 0x80; // set SF
}
else
{
EFLAGS(context) &= ~0x80; // clear SF
}
if ((x ^ summ) & (y ^ summ) & sign)
{
EFLAGS(context) |= 0x800; // set OF
}
else
{
EFLAGS(context) &= ~0x800; // clear OF
}
const u8 p1 = (u8)diff ^ ((u8)diff >> 4);
const u8 p2 = p1 ^ (p1 >> 2);
const u8 p3 = p2 ^ (p2 >> 1);
if ((p3 & 1) == 0)
{
EFLAGS(context) |= 0x4; // set PF
}
else
{
EFLAGS(context) &= ~0x4; // clear PF
}
if (((x & y) | ((x ^ y) & ~summ)) & 0x8)
{
EFLAGS(context) |= 0x10; // set AF
}
else
{
EFLAGS(context) &= ~0x10; // clear AF
}
return true;
}
size_t get_x64_access_size(x64_context* context, x64_op_t op, x64_reg_t reg, size_t d_size, size_t i_size)
{
if (op == X64OP_MOVS || op == X64OP_STOS)
{
if (EFLAGS(context) & 0x400 /* direction flag */)
{
// skip reservation bound check (TODO)
return 0;
}
if (reg != X64_NOT_SET) // get "full" access size from RCX register
{
u64 counter;
if (!get_x64_reg_value(context, reg, 8, i_size, counter))
{
return -1;
}
return d_size * counter;
}
}
if (op == X64OP_CMPXCHG)
{
// detect whether this instruction can't actually modify memory to avoid breaking reservation;
// this may theoretically cause endless loop, but it shouldn't be a problem if only read_sync() generates such instruction
u64 cmp, exch;
if (!get_x64_reg_value(context, reg, d_size, i_size, cmp) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, exch))
{
return -1;
}
if (cmp == exch)
{
// skip reservation bound check
return 0;
}
}
return d_size;
}
bool handle_access_violation(u32 addr, bool is_writing, x64_context* context)
{
auto code = (const u8*)RIP(context);
x64_op_t op;
x64_reg_t reg;
size_t d_size;
size_t i_size;
// decode single x64 instruction that causes memory access
decode_x64_reg_op(code, op, reg, d_size, i_size);
if ((d_size | d_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid d_size (0x%llx)", d_size);
return false;
}
// get length of data being accessed
size_t a_size = get_x64_access_size(context, op, reg, d_size, i_size);
if ((a_size | a_size + addr) >= 0x100000000ull)
{
LOG_ERROR(MEMORY, "Invalid a_size (0x%llx)", a_size);
return false;
}
// check if address is RawSPU MMIO register
if (addr - RAW_SPU_BASE_ADDR < (6 * RAW_SPU_OFFSET) && (addr % RAW_SPU_OFFSET) >= RAW_SPU_PROB_OFFSET)
{
if (a_size != 4 || !d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
return false;
}
switch (op)
{
case X64OP_LOAD:
{
u32 value;
if (is_writing || !Memory.ReadMMIO32(addr, value) || !put_x64_reg_value(context, reg, d_size, re32(value)))
{
return false;
}
break;
}
case X64OP_STORE:
{
u64 reg_value;
if (!is_writing || !get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !Memory.WriteMMIO32(addr, re32((u32)reg_value)))
{
return false;
}
break;
}
case X64OP_MOVS: // possibly, TODO
case X64OP_STOS:
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, i_size=%lld)", op, reg, d_size, i_size);
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
}
// check if fault is caused by the reservation
return vm::reservation_query(addr, (u32)a_size, is_writing, [&]() -> bool
{
// write memory using "privileged" access to avoid breaking reservation
if (!d_size || !i_size)
{
LOG_ERROR(MEMORY, "Invalid or unsupported instruction (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
return false;
}
switch (op)
{
case X64OP_STORE:
{
if (d_size == 16)
{
if (reg - X64R_XMM0 >= 16)
{
LOG_ERROR(MEMORY, "X64OP_STORE: d_size=16, reg=%d", reg);
return false;
}
memcpy(vm::get_priv_ptr(addr), XMMREG(context, reg - X64R_XMM0), 16);
break;
}
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
memcpy(vm::get_priv_ptr(addr), &reg_value, d_size);
break;
}
case X64OP_MOVS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_MOVS: d_size=%lld", d_size);
return false;
}
if (vm::get_ptr(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_MOVS: rdi=0x%llx, rsi=0x%llx, addr=0x%x", (u64)RDI(context), (u64)RSI(context), addr);
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
u64 value;
// copy data
memcpy(&value, (void*)RSI(context), d_size);
memcpy(vm::get_priv_ptr(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_MOVS TODO: reversed direction");
return false;
//RSI(context) -= d_size;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RSI(context) += d_size;
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_STOS:
{
if (d_size > 8)
{
LOG_ERROR(MEMORY, "X64OP_STOS: d_size=%lld", d_size);
return false;
}
if (vm::get_ptr(addr) != (void*)RDI(context))
{
LOG_ERROR(MEMORY, "X64OP_STOS: rdi=0x%llx, addr=0x%x", (u64)RDI(context), addr);
return false;
}
u64 value;
if (!get_x64_reg_value(context, X64R_RAX, d_size, i_size, value))
{
return false;
}
u32 a_addr = addr;
while (a_addr >> 12 == addr >> 12)
{
// fill data with value
memcpy(vm::get_priv_ptr(a_addr), &value, d_size);
// shift pointers
if (EFLAGS(context) & 0x400 /* direction flag */)
{
LOG_ERROR(MEMORY, "X64OP_STOS TODO: reversed direction");
return false;
//RDI(context) -= d_size;
//a_addr -= (u32)d_size;
}
else
{
RDI(context) += d_size;
a_addr += (u32)d_size;
}
// decrement counter
if (reg == X64_NOT_SET || !--RCX(context))
{
break;
}
}
if (reg == X64_NOT_SET || !RCX(context))
{
break;
}
// don't skip partially processed instruction
return true;
}
case X64OP_XCHG:
{
u64 reg_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value))
{
return false;
}
switch (d_size)
{
case 1: reg_value = vm::get_priv_ref<atomic_le_t<u8>>(addr).exchange((u8)reg_value); break;
case 2: reg_value = vm::get_priv_ref<atomic_le_t<u16>>(addr).exchange((u16)reg_value); break;
case 4: reg_value = vm::get_priv_ref<atomic_le_t<u32>>(addr).exchange((u32)reg_value); break;
case 8: reg_value = vm::get_priv_ref<atomic_le_t<u64>>(addr).exchange((u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, reg, d_size, reg_value))
{
return false;
}
break;
}
case X64OP_CMPXCHG:
{
u64 reg_value, old_value, cmp_value;
if (!get_x64_reg_value(context, reg, d_size, i_size, reg_value) || !get_x64_reg_value(context, X64R_RAX, d_size, i_size, cmp_value))
{
return false;
}
switch (d_size)
{
case 1: old_value = vm::get_priv_ref<atomic_le_t<u8>>(addr).compare_and_swap((u8)cmp_value, (u8)reg_value); break;
case 2: old_value = vm::get_priv_ref<atomic_le_t<u16>>(addr).compare_and_swap((u16)cmp_value, (u16)reg_value); break;
case 4: old_value = vm::get_priv_ref<atomic_le_t<u32>>(addr).compare_and_swap((u32)cmp_value, (u32)reg_value); break;
case 8: old_value = vm::get_priv_ref<atomic_le_t<u64>>(addr).compare_and_swap((u64)cmp_value, (u64)reg_value); break;
default: return false;
}
if (!put_x64_reg_value(context, X64R_RAX, d_size, old_value) || !set_x64_cmp_flags(context, d_size, cmp_value, old_value))
{
return false;
}
break;
}
default:
{
LOG_ERROR(MEMORY, "Invalid or unsupported operation (op=%d, reg=%d, d_size=%lld, a_size=0x%llx, i_size=%lld)", op, reg, d_size, a_size, i_size);
return false;
}
}
// skip processed instruction
RIP(context) += i_size;
return true;
});
// TODO: allow recovering from a page fault as a feature of PS3 virtual memory
}
#ifdef _WIN32
void _se_translator(unsigned int u, EXCEPTION_POINTERS* pExp)
{
const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr;
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (u == EXCEPTION_ACCESS_VIOLATION && (u32)addr64 == addr64)
{
throw fmt::format("Access violation %s location 0x%llx", is_writing ? "writing" : "reading", addr64);
}
}
const PVOID exception_handler = (atexit([]{ RemoveVectoredExceptionHandler(exception_handler); }), AddVectoredExceptionHandler(1, [](PEXCEPTION_POINTERS pExp) -> LONG
{
const u64 addr64 = (u64)pExp->ExceptionRecord->ExceptionInformation[1] - (u64)vm::g_base_addr;
const bool is_writing = pExp->ExceptionRecord->ExceptionInformation[0] != 0;
if (pExp->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
(u32)addr64 == addr64 &&
GetCurrentNamedThread() &&
handle_access_violation((u32)addr64, is_writing, pExp->ContextRecord))
{
return EXCEPTION_CONTINUE_EXECUTION;
}
else
{
return EXCEPTION_CONTINUE_SEARCH;
}
}));
#else
void signal_handler(int sig, siginfo_t* info, void* uct)
{
const u64 addr64 = (u64)info->si_addr - (u64)vm::g_base_addr;
#ifdef __APPLE__
const bool is_writing = ((ucontext_t*)uct)->uc_mcontext->__es.__err & 0x2;
#else
const bool is_writing = ((ucontext_t*)uct)->uc_mcontext.gregs[REG_ERR] & 0x2;
#endif
if ((u32)addr64 == addr64 && GetCurrentNamedThread())
{
if (handle_access_violation((u32)addr64, is_writing, (ucontext_t*)uct))
{
return; // proceed execution
}
// TODO: this may be wrong
throw fmt::format("Access violation %s location 0x%llx", is_writing ? "writing" : "reading", addr64);
}
// else some fatal error
exit(EXIT_FAILURE);
}
const int sigaction_result = []() -> int
{
struct sigaction sa;
sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = signal_handler;
return sigaction(SIGSEGV, &sa, NULL);
}();
#endif
thread_local NamedThreadBase* g_tls_this_thread = nullptr;
std::atomic<u32> g_thread_count(0);
NamedThreadBase* GetCurrentNamedThread()
{
return g_tls_this_thread;
}
void SetCurrentNamedThread(NamedThreadBase* value)
{
const auto old_value = g_tls_this_thread;
if (old_value == value)
{
return;
}
if (old_value)
{
vm::reservation_free();
}
if (value && value->m_tls_assigned.exchange(true))
{
LOG_ERROR(GENERAL, "Thread '%s' was already assigned to g_tls_this_thread of another thread", value->GetThreadName());
g_tls_this_thread = nullptr;
}
else
{
g_tls_this_thread = value;
}
if (old_value)
{
old_value->m_tls_assigned = false;
}
}
std::string NamedThreadBase::GetThreadName() const
{
return m_name;
}
void NamedThreadBase::SetThreadName(const std::string& name)
{
m_name = name;
}
void NamedThreadBase::WaitForAnySignal(u64 time) // wait for Notify() signal or sleep
{
std::unique_lock<std::mutex> lock(m_signal_mtx);
m_signal_cv.wait_for(lock, std::chrono::milliseconds(time));
}
void NamedThreadBase::Notify() // wake up waiting thread or nothing
{
m_signal_cv.notify_one();
}
ThreadBase::ThreadBase(const std::string& name)
: NamedThreadBase(name)
, m_executor(nullptr)
, m_destroy(false)
, m_alive(false)
{
}
ThreadBase::~ThreadBase()
{
if(IsAlive())
Stop(false);
delete m_executor;
m_executor = nullptr;
}
void ThreadBase::Start()
{
if(m_executor) Stop();
std::lock_guard<std::mutex> lock(m_main_mutex);
m_destroy = false;
m_alive = true;
m_executor = new std::thread([this]()
{
SetCurrentThreadDebugName(GetThreadName().c_str());
#ifdef _WIN32
auto old_se_translator = _set_se_translator(_se_translator);
if (!exception_handler)
{
LOG_ERROR(GENERAL, "exception_handler not set");
return;
}
#else
if (sigaction_result == -1)
{
printf("sigaction() failed");
exit(EXIT_FAILURE);
}
#endif
SetCurrentNamedThread(this);
g_thread_count++;
try
{
Task();
}
catch (const char* e)
{
LOG_ERROR(GENERAL, "Exception: %s", e);
DumpInformation();
Emu.Pause();
}
catch (const std::string& e)
{
LOG_ERROR(GENERAL, "Exception: %s", e);
DumpInformation();
Emu.Pause();
}
m_alive = false;
SetCurrentNamedThread(nullptr);
g_thread_count--;
#ifdef _WIN32
_set_se_translator(old_se_translator);
#endif
});
}
void ThreadBase::Stop(bool wait, bool send_destroy)
{
std::lock_guard<std::mutex> lock(m_main_mutex);
if (send_destroy)
m_destroy = true;
if(!m_executor)
return;
if(wait && m_executor->joinable() && m_alive)
{
m_executor->join();
}
else
{
m_executor->detach();
}
delete m_executor;
m_executor = nullptr;
}
bool ThreadBase::Join() const
{
std::lock_guard<std::mutex> lock(m_main_mutex);
if(m_executor->joinable() && m_alive && m_executor != nullptr)
{
m_executor->join();
return true;
}
return false;
}
bool ThreadBase::IsAlive() const
{
std::lock_guard<std::mutex> lock(m_main_mutex);
return m_alive;
}
bool ThreadBase::TestDestroy() const
{
return m_destroy;
}
thread_t::thread_t(const std::string& name, bool autojoin, std::function<void()> func)
: m_name(name)
, m_state(TS_NON_EXISTENT)
, m_autojoin(autojoin)
{
start(func);
}
thread_t::thread_t(const std::string& name, std::function<void()> func)
: m_name(name)
, m_state(TS_NON_EXISTENT)
, m_autojoin(false)
{
start(func);
}
thread_t::thread_t(const std::string& name)
: m_name(name)
, m_state(TS_NON_EXISTENT)
, m_autojoin(false)
{
}
thread_t::thread_t()
: m_state(TS_NON_EXISTENT)
, m_autojoin(false)
{
}
void thread_t::set_name(const std::string& name)
{
m_name = name;
}
thread_t::~thread_t()
{
if (m_state == TS_JOINABLE)
{
if (m_autojoin)
{
m_thr.join();
}
else
{
m_thr.detach();
}
}
}
void thread_t::start(std::function<void()> func)
{
if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE)
{
m_thr.join(); // forcefully join previously created thread
}
std::string name = m_name;
m_thr = std::thread([func, name]()
{
SetCurrentThreadDebugName(name.c_str());
#ifdef _WIN32
auto old_se_translator = _set_se_translator(_se_translator);
#endif
NamedThreadBase info(name);
SetCurrentNamedThread(&info);
g_thread_count++;
if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(HLE, name + " started");
}
try
{
func();
}
catch (const char* e)
{
LOG_ERROR(GENERAL, "Exception: %s", e);
Emu.Pause();
}
catch (const std::string& e)
{
LOG_ERROR(GENERAL, "Exception: %s", e.c_str());
Emu.Pause();
}
if (Emu.IsStopped())
{
LOG_NOTICE(HLE, name + " aborted");
}
else if (Ini.HLELogging.GetValue())
{
LOG_NOTICE(HLE, name + " ended");
}
SetCurrentNamedThread(nullptr);
g_thread_count--;
#ifdef _WIN32
_set_se_translator(old_se_translator);
#endif
});
if (m_state.exchange(TS_JOINABLE) == TS_JOINABLE)
{
assert(!"thread_t::start() failed"); // probably started from another thread
}
}
void thread_t::detach()
{
if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE)
{
m_thr.detach();
}
else
{
assert(!"thread_t::detach() failed"); // probably joined or detached
}
}
void thread_t::join()
{
if (m_state.exchange(TS_NON_EXISTENT) == TS_JOINABLE)
{
m_thr.join();
}
else
{
assert(!"thread_t::join() failed"); // probably joined or detached
}
}
bool thread_t::joinable() const
{
//return m_thr.joinable();
return m_state == TS_JOINABLE;
}
bool waiter_map_t::is_stopped(u64 signal_id)
{
if (Emu.IsStopped())
{
LOG_WARNING(Log::HLE, "%s: waiter_op() aborted (signal_id=0x%llx)", m_name.c_str(), signal_id);
return true;
}
return false;
}
void waiter_map_t::waiter_reg_t::init()
{
if (!thread)
{
thread = GetCurrentNamedThread();
std::lock_guard<std::mutex> lock(map.m_mutex);
// add waiter
map.m_waiters.push_back({ signal_id, thread });
}
}
waiter_map_t::waiter_reg_t::~waiter_reg_t()
{
if (thread)
{
std::lock_guard<std::mutex> lock(map.m_mutex);
// remove waiter
for (s64 i = map.m_waiters.size() - 1; i >= 0; i--)
{
if (map.m_waiters[i].signal_id == signal_id && map.m_waiters[i].thread == thread)
{
map.m_waiters.erase(map.m_waiters.begin() + i);
return;
}
}
LOG_ERROR(HLE, "%s(): waiter not found (signal_id=0x%llx, map='%s')", __FUNCTION__, signal_id, map.m_name.c_str());
Emu.Pause();
}
}
void waiter_map_t::notify(u64 signal_id)
{
if (m_waiters.size())
{
std::lock_guard<std::mutex> lock(m_mutex);
// find waiter and signal
for (auto& v : m_waiters)
{
if (v.signal_id == signal_id)
{
v.thread->Notify();
}
}
}
}
const std::function<bool()> SQUEUE_ALWAYS_EXIT = [](){ return true; };
const std::function<bool()> SQUEUE_NEVER_EXIT = [](){ return false; };
bool squeue_test_exit()
{
return Emu.IsStopped();
}