1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-21 18:22:33 +01:00
rpcs3/Utilities/bin_patch.cpp
2023-12-30 19:07:35 +01:00

1989 lines
60 KiB
C++

#include "bin_patch.h"
#include "File.h"
#include "Config.h"
#include "version.h"
#include "Emu/Memory/vm.h"
#include "Emu/System.h"
#include "Emu/VFS.h"
#include "util/types.hpp"
#include "util/endian.hpp"
#include "util/asm.hpp"
#include <charconv>
LOG_CHANNEL(patch_log, "PAT");
template <>
void fmt_class_string<YAML::NodeType::value>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](YAML::NodeType::value value)
{
switch (value)
{
case YAML::NodeType::Undefined: return "Undefined";
case YAML::NodeType::Null: return "Null";
case YAML::NodeType::Scalar: return "Scalar";
case YAML::NodeType::Sequence: return "Sequence";
case YAML::NodeType::Map: return "Map";
}
return unknown;
});
}
template <>
void fmt_class_string<patch_configurable_type>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](patch_configurable_type value)
{
switch (value)
{
case patch_configurable_type::double_range: return "double_range";
case patch_configurable_type::double_enum: return "double_enum";
case patch_configurable_type::long_range: return "long_range";
case patch_configurable_type::long_enum: return "long_enum";
}
return unknown;
});
}
template <>
void fmt_class_string<patch_type>::format(std::string& out, u64 arg)
{
format_enum(out, arg, [](patch_type value)
{
switch (value)
{
case patch_type::invalid: return "invalid";
case patch_type::alloc: return "alloc";
case patch_type::code_alloc: return "calloc";
case patch_type::jump: return "jump";
case patch_type::jump_link: return "jumpl";
case patch_type::jump_func: return "jumpf";
case patch_type::load: return "load";
case patch_type::byte: return "byte";
case patch_type::le16: return "le16";
case patch_type::le32: return "le32";
case patch_type::le64: return "le64";
case patch_type::bef32: return "bef32";
case patch_type::bef64: return "bef64";
case patch_type::be16: return "be16";
case patch_type::be32: return "be32";
case patch_type::bd32: return "bd32";
case patch_type::be64: return "be64";
case patch_type::bd64: return "bd64";
case patch_type::lef32: return "lef32";
case patch_type::lef64: return "lef64";
case patch_type::bp_exec: return "bpex";
case patch_type::utf8: return "utf8";
case patch_type::c_utf8: return "cutf8";
case patch_type::move_file: return "move_file";
case patch_type::hide_file: return "hide_file";
}
return unknown;
});
}
void patch_engine::patch_config_value::set_and_check_value(f64 new_value, const std::string& name)
{
switch (type)
{
case patch_configurable_type::double_enum:
case patch_configurable_type::long_enum:
{
if (std::none_of(allowed_values.begin(), allowed_values.end(), [&new_value](const patch_allowed_value& allowed_value){ return allowed_value.value == new_value; }))
{
patch_log.error("Can't set configurable enumerated value '%s' to %f. Using default value %f", name, new_value, value);
return;
}
break;
}
case patch_configurable_type::double_range:
case patch_configurable_type::long_range:
{
if (new_value < min || new_value > max)
{
patch_log.error("Can't set configurable range value '%s' to %f. Using default value %f", name, new_value, value);
return;
}
break;
}
}
value = new_value;
}
patch_engine::patch_engine()
{
}
std::string patch_engine::get_patch_config_path()
{
#ifdef _WIN32
const std::string config_dir = fs::get_config_dir() + "config/";
const std::string patch_path = config_dir + "patch_config.yml";
if (!fs::create_path(config_dir))
{
patch_log.error("Could not create path: %s (%s)", patch_path, fs::g_tls_error);
}
return patch_path;
#else
return fs::get_config_dir() + "patch_config.yml";
#endif
}
std::string patch_engine::get_patches_path()
{
return fs::get_config_dir() + "patches/";
}
std::string patch_engine::get_imported_patch_path()
{
return get_patches_path() + "imported_patch.yml";
}
static void append_log_message(std::stringstream* log_messages, const std::string& message, const logs::message* channel = nullptr)
{
if (channel)
{
channel->operator()("%s", message);
}
if (log_messages && !message.empty())
{
*log_messages << message << std::endl;
}
};
bool patch_engine::load(patch_map& patches_map, const std::string& path, std::string content, bool importing, std::stringstream* log_messages)
{
if (content.empty())
{
// Load patch file
fs::file file{path};
if (!file)
{
// Do nothing
return true;
}
content = file.to_string();
}
// Interpret yaml nodes
auto [root, error] = yaml_load(content);
if (!error.empty() || !root)
{
append_log_message(log_messages, "Fatal Error: Failed to load file!");
patch_log.fatal("Failed to load patch file %s:\n%s", path, error);
return false;
}
// Load patch config to determine which patches are enabled
patch_map patch_config;
if (!importing)
{
patch_config = load_config();
}
std::string version;
if (const auto version_node = root[patch_key::version])
{
version = version_node.Scalar();
if (version != patch_engine_version)
{
append_log_message(log_messages, fmt::format("Error: File version %s does not match patch engine target version %s (location: %s, file: %s)", version, patch_engine_version, get_yaml_node_location(version_node), path), &patch_log.error);
return false;
}
// We don't need the Version node in local memory anymore
root.remove(patch_key::version);
}
else
{
append_log_message(log_messages, fmt::format("Error: No '%s' entry found. Patch engine version = %s (file: %s)", patch_key::version, patch_engine_version, path), &patch_log.error);
return false;
}
bool is_valid = true;
// Go through each main key in the file
for (auto pair : root)
{
const std::string& main_key = pair.first.Scalar();
if (main_key.empty())
{
append_log_message(log_messages, fmt::format("Error: Skipping empty key (location: %s, file: %s)", get_yaml_node_location(pair.first), path), &patch_log.error);
is_valid = false;
continue;
}
if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping key %s: expected Map, found %s (location: %s, file: %s)", main_key, yml_type, get_yaml_node_location(pair.second), path), &patch_log.error);
is_valid = false;
continue;
}
// Skip Anchors
if (main_key == patch_key::anchors)
{
continue;
}
// Find or create an entry matching the key/hash in our map
patch_container& container = patches_map[main_key];
container.hash = main_key;
container.version = version;
// Go through each patch
for (auto patches_entry : pair.second)
{
// Each key in "Patches" is also the patch description
const std::string& description = patches_entry.first.Scalar();
if (description.empty())
{
append_log_message(log_messages, fmt::format("Error: Empty patch name (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(patches_entry.first), path), &patch_log.error);
is_valid = false;
continue;
}
// Compile patch information
if (const auto yml_type = patches_entry.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping Patch key %s: expected Map, found %s (key: %s, location: %s, file: %s)", description, yml_type, main_key, get_yaml_node_location(patches_entry.second), path), &patch_log.error);
is_valid = false;
continue;
}
struct patch_info info {};
info.description = description;
info.hash = main_key;
info.version = version;
info.source_path = path;
if (const auto games_node = patches_entry.second[patch_key::games])
{
if (const auto yml_type = games_node.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping Games key: expected Map, found %s (patch: %s, key: %s, location: %s, file: %s)", yml_type, description, main_key, get_yaml_node_location(games_node), path), &patch_log.error);
is_valid = false;
continue;
}
for (const auto game_node : games_node)
{
const std::string& title = game_node.first.Scalar();
if (title.empty())
{
append_log_message(log_messages, fmt::format("Error: Empty game title (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(game_node), path), &patch_log.error);
is_valid = false;
continue;
}
if (const auto yml_type = game_node.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping game %s: expected Map, found %s (patch: %s, key: %s, location: %s, file: %s)", title, yml_type, description, main_key, get_yaml_node_location(game_node), path), &patch_log.error);
is_valid = false;
continue;
}
const bool title_is_all_key = title == patch_key::all;
for (const auto serial_node : game_node.second)
{
const std::string& serial = serial_node.first.Scalar();
if (serial.empty())
{
append_log_message(log_messages, fmt::format("Error: Using empty serial (title: %s, patch: %s, key: %s, location: %s, file: %s)", title, description, main_key, get_yaml_node_location(serial_node), path), &patch_log.error);
is_valid = false;
continue;
}
if (serial == patch_key::all)
{
if (!title_is_all_key)
{
append_log_message(log_messages, fmt::format("Error: Using '%s' as serial is not allowed for titles other than '%s' (title: %s, patch: %s, key: %s, location: %s, file: %s)", patch_key::all, patch_key::all, title, description, main_key, get_yaml_node_location(serial_node), path), &patch_log.error);
is_valid = false;
continue;
}
}
else if (title_is_all_key)
{
append_log_message(log_messages, fmt::format("Error: Only '%s' is allowed as serial if the title is '%s' (serial: %s, patch: %s, key: %s, location: %s, file: %s)", patch_key::all, patch_key::all, serial, description, main_key, get_yaml_node_location(serial_node), path), &patch_log.error);
is_valid = false;
continue;
}
if (const auto yml_type = serial_node.second.Type(); yml_type != YAML::NodeType::Sequence)
{
append_log_message(log_messages, fmt::format("Error: Skipping %s: expected Sequence, found %s (title: %s, patch: %s, key: %s, location: %s, file: %s)", serial, title, yml_type, description, main_key, get_yaml_node_location(serial_node), path), &patch_log.error);
is_valid = false;
continue;
}
patch_app_versions app_versions;
for (const auto version : serial_node.second)
{
const std::string& app_version = version.Scalar();
// Get this patch's config values
const patch_config_values& config_values = patch_config[main_key].patch_info_map[description].titles[title][serial][app_version];
app_versions[version.Scalar()] = config_values;
}
if (app_versions.empty())
{
append_log_message(log_messages, fmt::format("Error: Skipping %s: empty Sequence (title: %s, patch: %s, key: %s, location: %s, file: %s)", serial, title, description, main_key, get_yaml_node_location(serial_node), path), &patch_log.error);
is_valid = false;
}
else
{
info.titles[title][serial] = app_versions;
}
}
}
}
if (const auto author_node = patches_entry.second[patch_key::author])
{
info.author = author_node.Scalar();
}
if (const auto patch_version_node = patches_entry.second[patch_key::patch_version])
{
info.patch_version = patch_version_node.Scalar();
}
if (const auto notes_node = patches_entry.second[patch_key::notes])
{
if (notes_node.IsSequence())
{
for (const auto note : notes_node)
{
if (note)
{
if (note.IsScalar())
{
info.notes += note.Scalar();
}
else
{
append_log_message(log_messages, fmt::format("Error: Skipping sequenced Note (patch: %s, key: %s, location: %s, file: %s)", description, main_key, get_yaml_node_location(note), path), &patch_log.error);
is_valid = false;
}
}
else
{
append_log_message(log_messages, fmt::format("Error: Skipping sequenced Note (patch: %s, key: %s, location: %s, file: %s)", description, main_key, get_yaml_node_location(notes_node), path), &patch_log.error);
is_valid = false;
}
}
}
else
{
info.notes = notes_node.Scalar();
}
}
if (const auto patch_group_node = patches_entry.second[patch_key::group])
{
info.patch_group = patch_group_node.Scalar();
}
if (const auto config_values_node = patches_entry.second[patch_key::config_values])
{
if (const auto yml_type = config_values_node.Type(); yml_type != YAML::NodeType::Map || config_values_node.size() == 0)
{
append_log_message(log_messages, fmt::format("Error: Skipping configurable values: expected Map, found %s (patch: %s, key: %s, location: %s, file: %s)", yml_type, description, main_key, get_yaml_node_location(config_values_node), path), &patch_log.error);
is_valid = false;
}
else
{
for (const auto config_value_node : config_values_node)
{
const std::string& value_key = config_value_node.first.Scalar();
if (const auto yml_type = config_value_node.second.Type(); yml_type != YAML::NodeType::Map)
{
append_log_message(log_messages, fmt::format("Error: Skipping configurable value %s: expected Map, found %s (patch: %s, key: %s, location: %s, file: %s)", value_key, yml_type, description, main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
else
{
patch_config_value& config_value = info.default_config_values[value_key];
if (const auto config_value_type_node = config_value_node.second[patch_key::type]; config_value_type_node && config_value_type_node.IsScalar())
{
const std::string& str_type = config_value_type_node.Scalar();
bool is_valid_type = false;
for (patch_configurable_type type : { patch_configurable_type::double_range, patch_configurable_type::double_enum, patch_configurable_type::long_range, patch_configurable_type::long_enum })
{
if (str_type == fmt::format("%s", type))
{
config_value.type = type;
is_valid_type = true;
break;
}
}
if (is_valid_type)
{
const auto get_and_check_config_value = [&](const YAML::Node& node)
{
std::string err;
f64 val{};
switch (config_value.type)
{
case patch_configurable_type::double_range:
case patch_configurable_type::double_enum:
val = get_yaml_node_value<f64>(node, err);
break;
case patch_configurable_type::long_range:
case patch_configurable_type::long_enum:
val = static_cast<f64>(get_yaml_node_value<s64>(node, err));
break;
}
if (!err.empty())
{
append_log_message(log_messages, fmt::format("Error: Invalid data type found in configurable value: %s (key: %s, location: %s, file: %s)", err, main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
return val;
};
if (const auto config_value_value_node = config_value_node.second[patch_key::value]; config_value_value_node && config_value_value_node.IsScalar())
{
config_value.value = get_and_check_config_value(config_value_value_node);
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid or missing configurable value (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
switch (config_value.type)
{
case patch_configurable_type::double_range:
case patch_configurable_type::long_range:
{
if (const auto config_value_min_node = config_value_node.second[patch_key::min]; config_value_min_node && config_value_min_node.IsScalar())
{
config_value.min = get_and_check_config_value(config_value_min_node);
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid or missing configurable min (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
if (const auto config_value_max_node = config_value_node.second[patch_key::max]; config_value_max_node && config_value_max_node.IsScalar())
{
config_value.max = get_and_check_config_value(config_value_max_node);
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid or missing configurable max (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
if (config_value.min >= config_value.max)
{
append_log_message(log_messages, fmt::format("Error: Configurable max has to be larger than configurable min (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
if (config_value.value < config_value.min || config_value.value > config_value.max)
{
append_log_message(log_messages, fmt::format("Error: Configurable value out of range (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
break;
}
case patch_configurable_type::double_enum:
case patch_configurable_type::long_enum:
{
if (const auto config_value_allowed_values_node = config_value_node.second[patch_key::allowed_values]; config_value_allowed_values_node && config_value_allowed_values_node.IsMap())
{
config_value.allowed_values.clear();
for (const auto allowed_value : config_value_allowed_values_node)
{
if (allowed_value.second && allowed_value.second.IsScalar())
{
patch_allowed_value new_allowed_value{};
new_allowed_value.label = allowed_value.first.Scalar();
new_allowed_value.value = get_and_check_config_value(allowed_value.second);
if (std::any_of(config_value.allowed_values.begin(), config_value.allowed_values.end(), [&new_allowed_value](const patch_allowed_value& other){ return new_allowed_value.value == other.value || new_allowed_value.label == other.label; }))
{
append_log_message(log_messages, fmt::format("Error: Skipping configurable allowed value. Another entry with the same label or value already exists. (patch: %s, key: %s, location: %s, file: %s)", description, main_key, get_yaml_node_location(allowed_value), path), &patch_log.error);
is_valid = false;
}
else
{
config_value.allowed_values.push_back(new_allowed_value);
}
}
else
{
append_log_message(log_messages, fmt::format("Error: Skipping configurable allowed value (patch: %s, key: %s, location: %s, file: %s)", description, main_key, get_yaml_node_location(allowed_value), path), &patch_log.error);
is_valid = false;
}
}
if (config_value.allowed_values.size() < 2)
{
append_log_message(log_messages, fmt::format("Error: Configurable allowed values need at least 2 entries (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_allowed_values_node), path), &patch_log.error);
is_valid = false;
}
if (std::none_of(config_value.allowed_values.begin(), config_value.allowed_values.end(), [&config_value](const patch_allowed_value& other){ return other.value == config_value.value; }))
{
append_log_message(log_messages, fmt::format("Error: Configurable value was not found in allowed values (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_allowed_values_node), path), &patch_log.error);
is_valid = false;
}
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid or missing configurable allowed values (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
break;
}
}
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid configurable type (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_type_node), path), &patch_log.error);
is_valid = false;
}
}
else
{
append_log_message(log_messages, fmt::format("Error: Invalid or missing configurable type (key: %s, location: %s, file: %s)", main_key, get_yaml_node_location(config_value_node), path), &patch_log.error);
is_valid = false;
}
}
}
}
}
if (const auto patch_node = patches_entry.second[patch_key::patch])
{
if (!read_patch_node(info, patch_node, root, log_messages))
{
for (const auto& it : patches_entry.second)
{
if (it.first.Scalar() == patch_key::patch)
{
append_log_message(log_messages, fmt::format("Skipping invalid patch node %s: (key: %s, location: %s)", info.description, main_key, get_yaml_node_location(it.first)), &patch_log.error);
break;
}
}
is_valid = false;
}
}
// Skip this patch if a higher patch version already exists
if (container.patch_info_map.contains(description))
{
bool ok;
const std::string& existing_version = container.patch_info_map[description].patch_version;
const bool version_is_bigger = utils::compare_versions(info.patch_version, existing_version, ok) > 0;
if (!ok || !version_is_bigger)
{
append_log_message(log_messages, fmt::format("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s (in file %s)", info.patch_version, existing_version, main_key, description, path), &patch_log.warning);
continue;
}
if (!importing)
{
patch_log.warning("A lower patch version was found ('%s' vs '%s') for %s: %s (in file %s)", existing_version, info.patch_version, main_key, description, container.patch_info_map[description].source_path);
}
}
// Insert patch information
container.patch_info_map[description] = info;
}
}
return is_valid;
}
patch_type patch_engine::get_patch_type(const std::string& text)
{
u64 type_val = 0;
if (!cfg::try_to_enum_value(&type_val, &fmt_class_string<patch_type>::format, text))
{
return patch_type::invalid;
}
return static_cast<patch_type>(type_val);
}
patch_type patch_engine::get_patch_type(YAML::Node node)
{
if (!node || !node.IsScalar())
{
return patch_type::invalid;
}
return get_patch_type(node.Scalar());
}
bool patch_engine::add_patch_data(YAML::Node node, patch_info& info, u32 modifier, const YAML::Node& root, std::stringstream* log_messages)
{
if (!node || !node.IsSequence())
{
append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s, location: %s)", info.description, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
const auto type_node = node[0];
const auto addr_node = node[1];
const auto value_node = node[2];
const auto type = get_patch_type(type_node);
if (type == patch_type::invalid)
{
const auto type_str = type_node && type_node.IsScalar() ? type_node.Scalar() : "";
append_log_message(log_messages, fmt::format("Skipping patch node %s: type '%s' is invalid. (key: %s, location: %s)", info.description, type_str, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
if (type == patch_type::load)
{
// Special syntax: anchors (named sequence)
// Check if the anchor was resolved.
if (const auto yml_type = addr_node.Type(); yml_type != YAML::NodeType::Sequence)
{
append_log_message(log_messages, fmt::format("Skipping patch node %s: expected Sequence, found %s (key: %s, location: %s)", info.description, yml_type, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
// Address modifier (optional)
const u32 mod = value_node.as<u32>(0);
bool is_valid = true;
for (const auto& item : addr_node)
{
if (!add_patch_data(item, info, mod, root, log_messages))
{
is_valid = false;
}
}
return is_valid;
}
if (const auto yml_type = value_node.Type(); yml_type != YAML::NodeType::Scalar)
{
append_log_message(log_messages, fmt::format("Skipping patch node %s. Value element has wrong type %s. (key: %s, location: %s)", info.description, yml_type, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
if (patch_type_uses_hex_offset(type) && !addr_node.Scalar().starts_with("0x"))
{
append_log_message(log_messages, fmt::format("Skipping patch node %s. Address element has wrong format %s. (key: %s, location: %s)", info.description, addr_node.Scalar(), info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
struct patch_data p_data{};
p_data.type = type;
p_data.offset = addr_node.as<u32>(0) + modifier;
p_data.original_offset = addr_node.Scalar();
p_data.original_value = value_node.Scalar();
const bool is_config_value = info.default_config_values.contains(p_data.original_value);
const patch_config_value config_value = is_config_value ? ::at32(info.default_config_values, p_data.original_value) : patch_config_value{};
std::string error_message;
// Validate offset
switch (p_data.type)
{
case patch_type::move_file:
case patch_type::hide_file:
break;
default:
{
[[maybe_unused]] const u32 offset = get_yaml_node_value<u32>(addr_node, error_message);
if (!error_message.empty())
{
error_message = fmt::format("Skipping patch data entry: [ %s, 0x%.8x, %s ] (key: %s, location: %s) Invalid patch offset '%s' (not a valid u32 or overflow)",
p_data.type, p_data.offset, p_data.original_value.empty() ? "?" : p_data.original_value, info.hash, get_yaml_node_location(node), p_data.original_offset);
append_log_message(log_messages, error_message, &patch_log.error);
return false;
}
if ((0xFFFFFFFF - modifier) < p_data.offset)
{
error_message = fmt::format("Skipping patch data entry: [ %s, 0x%.8x, %s ] (key: %s, location: %s) Invalid combination of patch offset 0x%.8x and modifier 0x%.8x (overflow)",
p_data.type, p_data.offset, p_data.original_value.empty() ? "?" : p_data.original_value, info.hash, get_yaml_node_location(node), p_data.offset, modifier);
append_log_message(log_messages, error_message, &patch_log.error);
return false;
}
break;
}
}
switch (p_data.type)
{
case patch_type::bp_exec:
case patch_type::utf8:
case patch_type::jump_func:
case patch_type::move_file:
case patch_type::hide_file:
{
break;
}
case patch_type::bef32:
case patch_type::lef32:
case patch_type::bef64:
case patch_type::lef64:
{
p_data.value.double_value = is_config_value ? config_value.value : get_yaml_node_value<f64>(value_node, error_message);
break;
}
default:
{
p_data.value.long_value = is_config_value ? static_cast<u64>(config_value.value) : get_yaml_node_value<u64>(value_node, error_message);
if (error_message.find("bad conversion") != std::string::npos)
{
error_message.clear();
p_data.value.long_value = get_yaml_node_value<s64>(value_node, error_message);
}
break;
}
}
if (!error_message.empty())
{
error_message = fmt::format("Skipping patch data entry: [ %s, 0x%.8x, %s ] (key: %s, location: %s) %s",
p_data.type, p_data.offset, p_data.original_value.empty() ? "?" : p_data.original_value, info.hash, get_yaml_node_location(node), error_message);
append_log_message(log_messages, error_message, &patch_log.error);
return false;
}
info.data_list.emplace_back(p_data);
return true;
}
bool patch_engine::read_patch_node(patch_info& info, YAML::Node node, const YAML::Node& root, std::stringstream* log_messages)
{
if (!node)
{
append_log_message(log_messages, fmt::format("Skipping invalid patch node %s. (key: %s, location: %s)", info.description, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
if (const auto yml_type = node.Type(); yml_type != YAML::NodeType::Sequence)
{
append_log_message(log_messages, fmt::format("Skipping patch node %s: expected Sequence, found %s (key: %s, location: %s)", info.description, yml_type, info.hash, get_yaml_node_location(node)), &patch_log.error);
return false;
}
bool is_valid = true;
for (auto patch : node)
{
if (!add_patch_data(patch, info, 0, root, log_messages))
{
is_valid = false;
}
}
return is_valid;
}
void patch_engine::append_global_patches()
{
// Regular patch.yml
load(m_map, get_patches_path() + "patch.yml");
// Imported patch.yml
load(m_map, get_imported_patch_path());
}
void patch_engine::append_title_patches(const std::string& title_id)
{
if (title_id.empty())
{
return;
}
// Regular patch.yml
load(m_map, get_patches_path() + title_id + "_patch.yml");
}
void ppu_register_range(u32 addr, u32 size);
bool ppu_form_branch_to_code(u32 entry, u32 target, bool link = false, bool with_toc = false, std::string module_name = {});
u32 ppu_generate_id(std::string_view name);
void unmap_vm_area(std::shared_ptr<vm::block_t>& ptr)
{
if (ptr && ptr->flags & (1ull << 62))
{
vm::unmap(0, true, &ptr);
}
}
// Returns old 'applied' size
static usz apply_modification(std::basic_string<u32>& applied, patch_engine::patch_info& patch, std::function<u8*(u32, u32)> mem_translate, u32 filesz, u32 min_addr)
{
const usz old_applied_size = applied.size();
// Update configurable values
for (const auto& [key, config_value] : patch.actual_config_values)
{
for (usz i = 0; i < patch.data_list.size(); i++)
{
patch_engine::patch_data& p = ::at32(patch.data_list, i);
if (p.original_value == key)
{
switch (p.type)
{
case patch_type::bef32:
case patch_type::lef32:
case patch_type::bef64:
case patch_type::lef64:
{
p.value.double_value = config_value.value;
patch_log.notice("Using configurable value (key='%s', value=%f, index=%d, hash='%s', description='%s', author='%s', patch_version='%s', file_version='%s')",
key, p.value.double_value, i, patch.hash, patch.description, patch.author, patch.patch_version, patch.version);
break;
}
default:
{
p.value.long_value = static_cast<u64>(config_value.value);
patch_log.notice("Using configurable value (key='%s', value=0x%x=%d, index=%d, hash='%s', description='%s', author='%s', patch_version='%s', file_version='%s')",
key, p.value.long_value, p.value.long_value, i, patch.hash, patch.description, patch.author, patch.patch_version, patch.version);
break;
}
}
}
}
}
for (const patch_engine::patch_data& p : patch.data_list)
{
if (p.type != patch_type::alloc) continue;
// Do not allow null address or if resultant ptr is not a VM ptr
if (const u32 alloc_at = (p.offset & -4096); alloc_at >> 16)
{
const u32 alloc_size = utils::align(static_cast<u32>(p.value.long_value) + alloc_at % 4096, 4096);
// Allocate map if needed, if allocated flags will indicate that bit 62 is set (unique identifier)
auto alloc_map = vm::reserve_map(vm::any, alloc_at & -0x10000, utils::align(alloc_size, 0x10000), vm::page_size_64k | (1ull << 62));
u64 flags = vm::alloc_unwritable;
switch (p.offset % patch_engine::mem_protection::mask)
{
case patch_engine::mem_protection::wx: flags = vm::alloc_executable; break;
case patch_engine::mem_protection::ro: break;
case patch_engine::mem_protection::rx: flags |= vm::alloc_executable; break;
case patch_engine::mem_protection::rw: flags &= ~vm::alloc_unwritable; break;
default: ensure(false);
}
if (alloc_map)
{
if (alloc_map->falloc(alloc_at, alloc_size, nullptr, flags))
{
if (vm::check_addr(alloc_at, vm::page_1m_size))
{
p.alloc_addr = alloc_at & -0x100000;
}
else if (vm::check_addr(alloc_at, vm::page_64k_size))
{
p.alloc_addr = alloc_at & -0x10000;
}
else
{
p.alloc_addr = alloc_at & -0x1000;
}
if (flags & vm::alloc_executable)
{
ppu_register_range(alloc_at, alloc_size);
}
applied.push_back(::narrow<u32>(&p - patch.data_list.data())); // Remember index in case of failure to allocate any memory
continue;
}
// Revert if allocated map before failure
unmap_vm_area(alloc_map);
}
}
// Revert in case of failure
std::for_each(applied.begin() + old_applied_size, applied.end(), [&](u32 index)
{
const u32 addr = std::exchange(patch.data_list[index].alloc_addr, 0);
vm::dealloc(addr);
auto alloc_map = vm::get(vm::any, addr);
unmap_vm_area(alloc_map);
});
applied.resize(old_applied_size);
return old_applied_size;
}
// Fixup values from before
std::fill(applied.begin() + old_applied_size, applied.end(), u32{umax});
u32 relocate_instructions_at = 0;
for (const patch_engine::patch_data& p : patch.data_list)
{
u32 offset = p.offset;
if (relocate_instructions_at && vm::read32(relocate_instructions_at) != 0x6000'0000u)
{
// No longer points a NOP to be filled, meaning we ran out of instructions
relocate_instructions_at = 0;
}
u32 memory_size = 0;
switch (p.type)
{
case patch_type::invalid:
case patch_type::load:
{
// Invalid in this context
break;
}
case patch_type::alloc:
{
// Applied before
memory_size = 0;
continue;
}
case patch_type::byte:
{
memory_size = sizeof(u8);
break;
}
case patch_type::le16:
case patch_type::be16:
{
memory_size = sizeof(u16);
break;
}
case patch_type::code_alloc:
case patch_type::jump:
case patch_type::jump_link:
case patch_type::jump_func:
case patch_type::bp_exec:
case patch_type::le32:
case patch_type::lef32:
case patch_type::bd32:
case patch_type::be32:
case patch_type::bef32:
{
memory_size = sizeof(u32);
break;
}
case patch_type::lef64:
case patch_type::le64:
case patch_type::bd64:
case patch_type::be64:
case patch_type::bef64:
{
memory_size = sizeof(u64);
break;
}
case patch_type::utf8:
{
memory_size = ::size32(p.original_value);
break;
}
case patch_type::c_utf8:
{
memory_size = utils::add_saturate<u32>(::size32(p.original_value), 1);
break;
}
case patch_type::move_file:
case patch_type::hide_file:
{
memory_size = 0;
break;
}
}
if (memory_size != 0 && !relocate_instructions_at && (filesz < memory_size || offset < min_addr || offset - min_addr > filesz - memory_size))
{
// This patch is out of range for this segment
continue;
}
offset -= min_addr;
auto ptr = mem_translate(offset, memory_size);
if (!ptr && memory_size != 0 && !relocate_instructions_at)
{
// Memory translation failed
continue;
}
if (relocate_instructions_at)
{
offset = relocate_instructions_at;
ptr = vm::get_super_ptr<u8>(relocate_instructions_at);
relocate_instructions_at += 4; // Advance to the next instruction on dynamic memory
}
u32 resval = umax;
switch (p.type)
{
case patch_type::invalid:
case patch_type::load:
{
// Invalid in this context
continue;
}
case patch_type::alloc:
{
// Applied before
continue;
}
case patch_type::code_alloc:
{
const u32 out_branch = vm::try_get_addr(relocate_instructions_at ? vm::get_super_ptr<u8>(offset & -4) : mem_translate(offset & -4, 4)).first;
// Allow only if points to a PPU executable instruction
if (out_branch < 0x10000 || out_branch >= 0x4000'0000 || !vm::check_addr<4>(out_branch, vm::page_executable))
{
continue;
}
const u32 alloc_size = utils::align(static_cast<u32>(p.value.long_value + 1) * 4, 0x10000);
// Check if should maybe reuse previous code cave allocation (0 size)
if (alloc_size - 4 != 0)
{
// Nope
relocate_instructions_at = 0;
}
// Always executable
u64 flags = vm::alloc_executable | vm::alloc_unwritable;
switch (p.offset & patch_engine::mem_protection::mask)
{
case patch_engine::mem_protection::rw:
case patch_engine::mem_protection::wx:
{
flags &= ~vm::alloc_unwritable;
break;
}
case patch_engine::mem_protection::ro:
case patch_engine::mem_protection::rx:
{
break;
}
default: ensure(false);
}
const auto alloc_map = ensure(vm::get(vm::any, out_branch));
// Range allowed for absolute branches to operate at
// It takes into account that we need to put a branch for return at the end of memory space
const u32 addr = p.alloc_addr = (relocate_instructions_at ? relocate_instructions_at : alloc_map->alloc(alloc_size, nullptr, 0x10000, flags));
if (!addr)
{
patch_log.error("Failed to allocate 0x%x bytes for code (entry=0x%x)", alloc_size, addr, out_branch);
continue;
}
patch_log.success("Allocated 0x%x for code at 0x%x (entry=0x%x)", alloc_size, addr, out_branch);
// NOP filled
std::fill_n(vm::get_super_ptr<u32>(addr), p.value.long_value, 0x60000000);
// Check if already registered by previous code allocation
if (relocate_instructions_at != addr)
{
// Register code
ppu_register_range(addr, alloc_size);
}
resval = out_branch & -4;
// Write branch to return to code
if (!ppu_form_branch_to_code(addr + static_cast<u32>(p.value.long_value) * 4, resval + 4))
{
patch_log.error("Failed to write return jump at 0x%x", addr + static_cast<u32>(p.value.long_value) * 4);
ensure(alloc_map->dealloc(addr));
continue;
}
// Write branch to code
if (!ppu_form_branch_to_code(out_branch, addr))
{
patch_log.error("Failed to jump to code cave at 0x%x", out_branch);
ensure(alloc_map->dealloc(addr));
continue;
}
relocate_instructions_at = addr;
break;
}
case patch_type::jump:
case patch_type::jump_link:
{
const u32 out_branch = vm::try_get_addr(relocate_instructions_at ? vm::get_super_ptr<u8>(offset & -4) : mem_translate(offset & -4, 4)).first;
const u32 dest = static_cast<u32>(p.value.long_value);
// Allow only if points to a PPU executable instruction
if (!ppu_form_branch_to_code(out_branch, dest, p.type == patch_type::jump_link))
{
continue;
}
resval = out_branch & -4;
break;
}
case patch_type::jump_func:
{
const std::string& str = p.original_value;
const u32 out_branch = vm::try_get_addr(relocate_instructions_at ? vm::get_super_ptr<u8>(offset & -4) : mem_translate(offset & -4, 4)).first;
const usz sep_pos = str.find_first_of(':');
// Must contain only a single ':' or none
// If ':' is found: Left string is the module name, right string is the function name
// If ':' is not found: The entire string is a direct address of the function's descriptor in hexadecimal
if (str.size() <= 2 || !sep_pos || sep_pos == str.size() - 1 || sep_pos != str.find_last_of(":"))
{
continue;
}
const std::string_view func_name{std::string_view(str).substr(sep_pos + 1)};
u32 id = 0;
if (func_name.starts_with("0x"sv))
{
// Raw hexadecimal-formatted FNID (real function name cannot contain a digit at the start, derived from C/CPP which were used in PS3 development)
const auto result = std::from_chars(func_name.data() + 2, func_name.data() + func_name.size() - 2, id, 16);
if (result.ec != std::errc() || str.data() + sep_pos != result.ptr)
{
continue;
}
}
else
{
if (sep_pos == umax)
{
continue;
}
// Generate FNID using function name
id = ppu_generate_id(func_name);
}
// Allow only if points to a PPU executable instruction
// FNID/OPD-address is placed at target
if (!ppu_form_branch_to_code(out_branch, id, true, true, std::string{str.data(), sep_pos != umax ? sep_pos : 0}))
{
continue;
}
resval = out_branch & -4;
break;
}
case patch_type::byte:
{
*ptr = static_cast<u8>(p.value.long_value);
break;
}
case patch_type::le16:
{
le_t<u16> val = static_cast<u16>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::le32:
{
le_t<u32> val = static_cast<u32>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::lef32:
{
le_t<f32> val = static_cast<f32>(p.value.double_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::le64:
{
le_t<u64> val = static_cast<u64>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::lef64:
{
le_t<f64> val = p.value.double_value;
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::be16:
{
be_t<u16> val = static_cast<u16>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::bd32:
{
be_t<u32> val = static_cast<u32>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::be32:
{
be_t<u32> val = static_cast<u32>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
if (offset % 4 == 0)
resval = offset;
break;
}
case patch_type::bef32:
{
be_t<f32> val = static_cast<f32>(p.value.double_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::bd64:
{
be_t<u64> val = static_cast<u64>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::be64:
{
be_t<u64> val = static_cast<u64>(p.value.long_value);
std::memcpy(ptr, &val, sizeof(val));
if (offset % 4)
{
break;
}
resval = offset;
applied.push_back((offset + 7) & -4); // Two 32-bit locations
break;
}
case patch_type::bef64:
{
be_t<f64> val = p.value.double_value;
std::memcpy(ptr, &val, sizeof(val));
break;
}
case patch_type::bp_exec:
{
const u32 exec_addr = vm::try_get_addr(relocate_instructions_at ? vm::get_super_ptr<u8>(offset & -4) : mem_translate(offset & -4, 4)).first;
if (exec_addr)
{
Emu.GetCallbacks().add_breakpoint(exec_addr);
}
break;
}
case patch_type::utf8:
{
std::memcpy(ptr, p.original_value.data(), p.original_value.size());
break;
}
case patch_type::c_utf8:
{
std::memcpy(ptr, p.original_value.data(), p.original_value.size() + 1);
break;
}
case patch_type::move_file:
case patch_type::hide_file:
{
const bool is_hide = p.type == patch_type::hide_file;
std::string original_vfs_path = p.original_offset;
std::string dest_vfs_path = p.original_value;
if (original_vfs_path.empty())
{
patch_log.error("Failed to patch file: original path is empty", original_vfs_path);
continue;
}
if (!is_hide && dest_vfs_path.empty())
{
patch_log.error("Failed to patch file: destination path is empty", dest_vfs_path);
continue;
}
if (!original_vfs_path.starts_with("/dev_"))
{
original_vfs_path.insert(0, "/dev_");
}
if (!is_hide && !dest_vfs_path.starts_with("/dev_"))
{
dest_vfs_path.insert(0, "/dev_");
}
const std::string dest_path = is_hide ? fs::get_config_dir() + "delete_this_dir.../delete_this..." : vfs::get(dest_vfs_path);
if (dest_path.empty())
{
patch_log.error("Failed to patch file path at '%s': destination is not mounted", original_vfs_path, dest_vfs_path);
continue;
}
if (!vfs::mount(original_vfs_path, dest_path))
{
patch_log.error("Failed to patch file path at '%s': vfs::mount(dest='%s') failed", original_vfs_path, dest_vfs_path);
continue;
}
break;
}
}
// Possibly an executable instruction
applied.push_back(resval);
}
return old_applied_size;
}
std::basic_string<u32> patch_engine::apply(const std::string& name, std::function<u8*(u32, u32)> mem_translate, u32 filesz, u32 min_addr)
{
if (!m_map.contains(name))
{
return {};
}
std::basic_string<u32> applied_total;
const patch_container& container = ::at32(m_map, name);
const std::string& serial = Emu.GetTitleID();
const std::string& app_version = Emu.GetAppVersion();
// Different containers in order to separate the patches
std::vector<std::shared_ptr<patch_info>> patches_for_this_serial_and_this_version;
std::vector<std::shared_ptr<patch_info>> patches_for_this_serial_and_all_versions;
std::vector<std::shared_ptr<patch_info>> patches_for_all_serials_and_this_version;
std::vector<std::shared_ptr<patch_info>> patches_for_all_serials_and_all_versions;
// Sort patches into different vectors based on their serial and version
for (const auto& [description, patch] : container.patch_info_map)
{
// Find out if this patch is enabled
for (const auto& [title, serials] : patch.titles)
{
bool is_all_serials = false;
bool is_all_versions = false;
std::string found_serial;
if (serials.contains(serial))
{
found_serial = serial;
}
else if (serials.contains(patch_key::all))
{
found_serial = patch_key::all;
is_all_serials = true;
}
if (found_serial.empty())
{
continue;
}
const patch_app_versions& app_versions = ::at32(serials, found_serial);
std::string found_app_version;
if (app_versions.contains(app_version))
{
found_app_version = app_version;
}
else if (app_versions.contains(patch_key::all))
{
found_app_version = patch_key::all;
is_all_versions = true;
}
if (found_app_version.empty())
{
continue;
}
const patch_config_values& config_values = ::at32(app_versions, found_app_version);
// Check if this patch is enabled
if (config_values.enabled)
{
// Make copy of this patch
std::shared_ptr<patch_info> p_ptr = std::make_shared<patch_info>(patch);
// Move configurable values to special container for readability
p_ptr->actual_config_values = p_ptr->default_config_values;
// Update configurable values
for (auto& [key, config_value] : config_values.config_values)
{
if (p_ptr->actual_config_values.contains(key))
{
patch_config_value& actual_config_value = ::at32(p_ptr->actual_config_values, key);
actual_config_value.set_and_check_value(config_value.value, key);
}
}
// Sort the patch by priority
if (is_all_serials)
{
if (is_all_versions)
{
patches_for_all_serials_and_all_versions.emplace_back(p_ptr);
}
else
{
patches_for_all_serials_and_this_version.emplace_back(p_ptr);
}
}
else if (is_all_versions)
{
patches_for_this_serial_and_all_versions.emplace_back(p_ptr);
}
else
{
patches_for_this_serial_and_this_version.emplace_back(p_ptr);
}
break;
}
}
}
// Sort specific patches after global patches
// So they will determine the end results
const auto patch_super_list =
{
&patches_for_all_serials_and_all_versions,
&patches_for_all_serials_and_this_version,
&patches_for_this_serial_and_all_versions,
&patches_for_this_serial_and_this_version
};
// Filter by patch group (reverse so specific patches will be prioritized over globals)
for (auto it = std::rbegin(patch_super_list); it != std::rend(patch_super_list); it++)
{
for (auto& patch : *it.operator*())
{
if (!patch->patch_group.empty())
{
if (!m_applied_groups.insert(patch->patch_group).second)
{
patch.reset();
}
}
}
}
// Apply modifications sequentially
for (auto patch_list : patch_super_list)
{
for (const std::shared_ptr<patch_info>& patch : *patch_list)
{
if (patch)
{
const usz old_size = apply_modification(applied_total, *patch, mem_translate, filesz, min_addr);
if (applied_total.size() != old_size)
{
patch_log.success("Applied patch (hash='%s', description='%s', author='%s', patch_version='%s', file_version='%s') (<- %u)",
patch->hash, patch->description, patch->author, patch->patch_version, patch->version, applied_total.size() - old_size);
}
}
}
}
return applied_total;
}
void patch_engine::unload(const std::string& name)
{
if (!m_map.contains(name))
{
return;
}
const patch_container& container = ::at32(m_map, name);
for (const auto& [description, patch] : container.patch_info_map)
{
for (const patch_data& entry : patch.data_list)
{
// Deallocate used memory
if (u32 addr = std::exchange(entry.alloc_addr, 0))
{
vm::dealloc(addr);
auto alloc_map = vm::get(vm::any, addr);
unmap_vm_area(alloc_map);
}
}
}
}
void patch_engine::save_config(const patch_map& patches_map)
{
const std::string path = get_patch_config_path();
patch_log.notice("Saving patch config file %s", path);
YAML::Emitter out;
out << YAML::BeginMap;
// Save values per hash, description, serial and app_version
patch_map config_map;
for (const auto& [hash, container] : patches_map)
{
for (const auto& [description, patch] : container.patch_info_map)
{
for (const auto& [title, serials] : patch.titles)
{
for (const auto& [serial, app_versions] : serials)
{
for (const auto& [app_version, config_values] : app_versions)
{
const bool config_values_dirty = !patch.default_config_values.empty() && !config_values.config_values.empty() && patch.default_config_values != config_values.config_values;
if (config_values.enabled || config_values_dirty)
{
config_map[hash].patch_info_map[description].titles[title][serial][app_version] = config_values;
}
}
}
}
}
if (const auto& patches_to_save = config_map[hash].patch_info_map; !patches_to_save.empty())
{
out << hash << YAML::BeginMap;
for (const auto& [description, patch] : patches_to_save)
{
out << description << YAML::BeginMap;
for (const auto& [title, serials] : patch.titles)
{
out << title << YAML::BeginMap;
for (const auto& [serial, app_versions] : serials)
{
out << serial << YAML::BeginMap;
for (const auto& [app_version, config_values] : app_versions)
{
const auto& default_config_values = ::at32(container.patch_info_map, description).default_config_values;
const bool config_values_dirty = !default_config_values.empty() && !config_values.config_values.empty() && default_config_values != config_values.config_values;
if (config_values.enabled || config_values_dirty)
{
out << app_version << YAML::BeginMap;
if (config_values.enabled)
{
out << patch_key::enabled << config_values.enabled;
}
if (config_values_dirty)
{
out << patch_key::config_values << YAML::BeginMap;
for (const auto& [name, config_value] : config_values.config_values)
{
out << name << config_value.value;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
}
}
out << YAML::EndMap;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
}
}
out << YAML::EndMap;
fs::pending_file file(path);
if (!file.file || (file.file.write(out.c_str(), out.size()), !file.commit()))
{
patch_log.error("Failed to create patch config file %s (error=%s)", path, fs::g_tls_error);
}
}
static void append_patches(patch_engine::patch_map& existing_patches, const patch_engine::patch_map& new_patches, usz& count, usz& total, std::stringstream* log_messages)
{
for (const auto& [hash, new_container] : new_patches)
{
total += new_container.patch_info_map.size();
if (!existing_patches.contains(hash))
{
existing_patches[hash] = new_container;
count += new_container.patch_info_map.size();
continue;
}
patch_engine::patch_container& container = existing_patches[hash];
for (const auto& [description, new_info] : new_container.patch_info_map)
{
if (!container.patch_info_map.contains(description))
{
container.patch_info_map[description] = new_info;
count++;
continue;
}
patch_engine::patch_info& info = container.patch_info_map[description];
bool ok;
const bool version_is_bigger = utils::compare_versions(new_info.patch_version, info.patch_version, ok) > 0;
if (!ok)
{
append_log_message(log_messages, fmt::format("Failed to compare patch versions ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description), &patch_log.error);
continue;
}
if (!version_is_bigger)
{
append_log_message(log_messages, fmt::format("A higher or equal patch version already exists ('%s' vs '%s') for %s: %s", new_info.patch_version, info.patch_version, hash, description), &patch_log.error);
continue;
}
for (const auto& [title, new_serials] : new_info.titles)
{
for (const auto& [serial, new_app_versions] : new_serials)
{
if (!new_app_versions.empty())
{
info.titles[title][serial].insert(new_app_versions.begin(), new_app_versions.end());
}
}
}
if (!new_info.patch_version.empty()) info.patch_version = new_info.patch_version;
if (!new_info.author.empty()) info.author = new_info.author;
if (!new_info.notes.empty()) info.notes = new_info.notes;
if (!new_info.data_list.empty()) info.data_list = new_info.data_list;
if (!new_info.source_path.empty()) info.source_path = new_info.source_path;
count++;
}
}
}
bool patch_engine::save_patches(const patch_map& patches, const std::string& path, std::stringstream* log_messages)
{
fs::file file(path, fs::rewrite);
if (!file)
{
append_log_message(log_messages, fmt::format("Failed to open patch file %s (%s)", path, fs::g_tls_error), &patch_log.fatal);
return false;
}
YAML::Emitter out;
out << YAML::BeginMap;
out << patch_key::version << patch_engine_version;
for (const auto& [hash, container] : patches)
{
if (container.patch_info_map.empty())
{
continue;
}
out << YAML::Newline << YAML::Newline;
out << hash << YAML::BeginMap;
for (const auto& [description, info] : container.patch_info_map)
{
out << description << YAML::BeginMap;
out << patch_key::games << YAML::BeginMap;
for (const auto& [title, serials] : info.titles)
{
out << title << YAML::BeginMap;
for (const auto& [serial, app_versions] : serials)
{
out << serial << YAML::BeginSeq;
for (const auto& [app_version, patch_config] : app_versions)
{
out << app_version;
}
out << YAML::EndSeq;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
if (!info.author.empty()) out << patch_key::author << info.author;
if (!info.patch_version.empty()) out << patch_key::patch_version << info.patch_version;
if (!info.patch_group.empty()) out << patch_key::group << info.patch_group;
if (!info.notes.empty()) out << patch_key::notes << info.notes;
if (!info.default_config_values.empty())
{
out << patch_key::config_values << YAML::BeginMap;
for (const auto& [key, config_value] : info.default_config_values)
{
out << key << YAML::BeginMap;
out << patch_key::type << fmt::format("%s", config_value.type);
out << patch_key::value << config_value.value;
switch (config_value.type)
{
case patch_configurable_type::double_range:
case patch_configurable_type::long_range:
out << patch_key::min << config_value.min;
out << patch_key::max << config_value.max;
break;
case patch_configurable_type::double_enum:
case patch_configurable_type::long_enum:
out << patch_key::allowed_values << YAML::BeginMap;
for (const auto& allowed_value : config_value.allowed_values)
{
out << allowed_value.label << allowed_value.value;
}
out << YAML::EndMap;
break;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
}
out << patch_key::patch << YAML::BeginSeq;
for (const auto& data : info.data_list)
{
if (data.type == patch_type::invalid || data.type == patch_type::load)
{
// Unreachable with current logic
continue;
}
out << YAML::Flow;
out << YAML::BeginSeq;
out << fmt::format("%s", data.type);
out << fmt::format("0x%.8x", data.offset);
out << data.original_value;
out << YAML::EndSeq;
}
out << YAML::EndSeq;
out << YAML::EndMap;
}
out << YAML::EndMap;
}
out << YAML::EndMap;
file.write(out.c_str(), out.size());
return true;
}
bool patch_engine::import_patches(const patch_engine::patch_map& patches, const std::string& path, usz& count, usz& total, std::stringstream* log_messages)
{
patch_map existing_patches;
if (load(existing_patches, path, "", true, log_messages))
{
append_patches(existing_patches, patches, count, total, log_messages);
return count == 0 || save_patches(existing_patches, path, log_messages);
}
return false;
}
bool patch_engine::remove_patch(const patch_info& info)
{
patch_map patches;
if (load(patches, info.source_path))
{
if (patches.contains(info.hash))
{
patch_container& container = patches[info.hash];
if (container.patch_info_map.contains(info.description))
{
container.patch_info_map.erase(info.description);
return save_patches(patches, info.source_path);
}
}
}
return false;
}
patch_engine::patch_map patch_engine::load_config()
{
patch_map config_map{};
const std::string path = get_patch_config_path();
patch_log.notice("Loading patch config file %s", path);
if (fs::file f{ path })
{
auto [root, error] = yaml_load(f.to_string());
if (!error.empty())
{
patch_log.fatal("Failed to load patch config file %s:\n%s", path, error);
return config_map;
}
for (const auto pair : root)
{
const std::string& hash = pair.first.Scalar();
if (const auto yml_type = pair.second.Type(); yml_type != YAML::NodeType::Map)
{
patch_log.error("Error loading patch config key %s: expected Map, found %s (file: %s)", hash, yml_type, path);
continue;
}
for (const auto patch : pair.second)
{
const std::string& description = patch.first.Scalar();
if (const auto yml_type = patch.second.Type(); yml_type != YAML::NodeType::Map)
{
patch_log.error("Error loading patch %s: expected Map, found %s (hash: %s, file: %s)", description, yml_type, hash, path);
continue;
}
for (const auto title_node : patch.second)
{
const std::string& title = title_node.first.Scalar();
if (const auto yml_type = title_node.second.Type(); yml_type != YAML::NodeType::Map)
{
patch_log.error("Error loading %s: expected Map, found %s (description: %s, hash: %s, file: %s)", title, yml_type, description, hash, path);
continue;
}
for (const auto serial_node : title_node.second)
{
const std::string& serial = serial_node.first.Scalar();
if (const auto yml_type = serial_node.second.Type(); yml_type != YAML::NodeType::Map)
{
patch_log.error("Error loading %s: expected Map, found %s (title: %s, description: %s, hash: %s, file: %s)", serial, yml_type, title, description, hash, path);
continue;
}
for (const auto app_version_node : serial_node.second)
{
const auto& app_version = app_version_node.first.Scalar();
auto& config_values = config_map[hash].patch_info_map[description].titles[title][serial][app_version];
if (app_version_node.second.IsMap())
{
if (const auto enable_node = app_version_node.second[patch_key::enabled])
{
config_values.enabled = enable_node.as<bool>(false);
}
if (const auto config_values_node = app_version_node.second[patch_key::config_values])
{
for (const auto config_value_node : config_values_node)
{
patch_config_value& config_value = config_values.config_values[config_value_node.first.Scalar()];
config_value.value = config_value_node.second.as<f64>(0.0);
}
}
}
else
{
// Legacy
config_values.enabled = app_version_node.second.as<bool>(false);
}
}
}
}
}
}
}
return config_map;
}