mirror of
https://github.com/RPCS3/soundtouch.git
synced 2024-11-09 20:33:03 +01:00
182 lines
5.3 KiB
C++
182 lines
5.3 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
///
|
|
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
|
|
/// with kaiser window.
|
|
///
|
|
/// Notice. This algorithm is remarkably much heavier than linear or cubic
|
|
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
|
|
/// for experimental purposes
|
|
///
|
|
/// Author : Copyright (c) Olli Parviainen
|
|
/// Author e-mail : oparviai 'at' iki.fi
|
|
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
|
///
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// License :
|
|
//
|
|
// SoundTouch audio processing library
|
|
// Copyright (c) Olli Parviainen
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <math.h>
|
|
#include "InterpolateShannon.h"
|
|
#include "STTypes.h"
|
|
|
|
using namespace soundtouch;
|
|
|
|
|
|
/// Kaiser window with beta = 2.0
|
|
/// Values scaled down by 5% to avoid overflows
|
|
static const double _kaiser8[8] =
|
|
{
|
|
0.41778693317814,
|
|
0.64888025049173,
|
|
0.83508562409944,
|
|
0.93887857733412,
|
|
0.93887857733412,
|
|
0.83508562409944,
|
|
0.64888025049173,
|
|
0.41778693317814
|
|
};
|
|
|
|
|
|
InterpolateShannon::InterpolateShannon()
|
|
{
|
|
fract = 0;
|
|
}
|
|
|
|
|
|
void InterpolateShannon::resetRegisters()
|
|
{
|
|
fract = 0;
|
|
}
|
|
|
|
|
|
#define PI 3.1415926536
|
|
#define sinc(x) (sin(PI * (x)) / (PI * (x)))
|
|
|
|
/// Transpose mono audio. Returns number of produced output samples, and
|
|
/// updates "srcSamples" to amount of consumed source samples
|
|
int InterpolateShannon::transposeMono(SAMPLETYPE *pdest,
|
|
const SAMPLETYPE *psrc,
|
|
int &srcSamples)
|
|
{
|
|
int i;
|
|
int srcSampleEnd = srcSamples - 8;
|
|
int srcCount = 0;
|
|
|
|
i = 0;
|
|
while (srcCount < srcSampleEnd)
|
|
{
|
|
double out;
|
|
assert(fract < 1.0);
|
|
|
|
out = psrc[0] * sinc(-3.0 - fract) * _kaiser8[0];
|
|
out += psrc[1] * sinc(-2.0 - fract) * _kaiser8[1];
|
|
out += psrc[2] * sinc(-1.0 - fract) * _kaiser8[2];
|
|
if (fract < 1e-6)
|
|
{
|
|
out += psrc[3] * _kaiser8[3]; // sinc(0) = 1
|
|
}
|
|
else
|
|
{
|
|
out += psrc[3] * sinc(- fract) * _kaiser8[3];
|
|
}
|
|
out += psrc[4] * sinc( 1.0 - fract) * _kaiser8[4];
|
|
out += psrc[5] * sinc( 2.0 - fract) * _kaiser8[5];
|
|
out += psrc[6] * sinc( 3.0 - fract) * _kaiser8[6];
|
|
out += psrc[7] * sinc( 4.0 - fract) * _kaiser8[7];
|
|
|
|
pdest[i] = (SAMPLETYPE)out;
|
|
i ++;
|
|
|
|
// update position fraction
|
|
fract += rate;
|
|
// update whole positions
|
|
int whole = (int)fract;
|
|
fract -= whole;
|
|
psrc += whole;
|
|
srcCount += whole;
|
|
}
|
|
srcSamples = srcCount;
|
|
return i;
|
|
}
|
|
|
|
|
|
/// Transpose stereo audio. Returns number of produced output samples, and
|
|
/// updates "srcSamples" to amount of consumed source samples
|
|
int InterpolateShannon::transposeStereo(SAMPLETYPE *pdest,
|
|
const SAMPLETYPE *psrc,
|
|
int &srcSamples)
|
|
{
|
|
int i;
|
|
int srcSampleEnd = srcSamples - 8;
|
|
int srcCount = 0;
|
|
|
|
i = 0;
|
|
while (srcCount < srcSampleEnd)
|
|
{
|
|
double out0, out1, w;
|
|
assert(fract < 1.0);
|
|
|
|
w = sinc(-3.0 - fract) * _kaiser8[0];
|
|
out0 = psrc[0] * w; out1 = psrc[1] * w;
|
|
w = sinc(-2.0 - fract) * _kaiser8[1];
|
|
out0 += psrc[2] * w; out1 += psrc[3] * w;
|
|
w = sinc(-1.0 - fract) * _kaiser8[2];
|
|
out0 += psrc[4] * w; out1 += psrc[5] * w;
|
|
w = _kaiser8[3] * ((fract < 1e-5) ? 1.0 : sinc(- fract)); // sinc(0) = 1
|
|
out0 += psrc[6] * w; out1 += psrc[7] * w;
|
|
w = sinc( 1.0 - fract) * _kaiser8[4];
|
|
out0 += psrc[8] * w; out1 += psrc[9] * w;
|
|
w = sinc( 2.0 - fract) * _kaiser8[5];
|
|
out0 += psrc[10] * w; out1 += psrc[11] * w;
|
|
w = sinc( 3.0 - fract) * _kaiser8[6];
|
|
out0 += psrc[12] * w; out1 += psrc[13] * w;
|
|
w = sinc( 4.0 - fract) * _kaiser8[7];
|
|
out0 += psrc[14] * w; out1 += psrc[15] * w;
|
|
|
|
pdest[2*i] = (SAMPLETYPE)out0;
|
|
pdest[2*i+1] = (SAMPLETYPE)out1;
|
|
i ++;
|
|
|
|
// update position fraction
|
|
fract += rate;
|
|
// update whole positions
|
|
int whole = (int)fract;
|
|
fract -= whole;
|
|
psrc += 2*whole;
|
|
srcCount += whole;
|
|
}
|
|
srcSamples = srcCount;
|
|
return i;
|
|
}
|
|
|
|
|
|
/// Transpose stereo audio. Returns number of produced output samples, and
|
|
/// updates "srcSamples" to amount of consumed source samples
|
|
int InterpolateShannon::transposeMulti(SAMPLETYPE *,
|
|
const SAMPLETYPE *,
|
|
int &)
|
|
{
|
|
// not implemented
|
|
assert(false);
|
|
return 0;
|
|
}
|