/* Subroutines for insn-output.c for Sun SPARC. Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@cygnus.com) 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, at Cygnus Support. This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include "tree.h" #include "rtl.h" #include "regs.h" #include "hard-reg-set.h" #include "real.h" #include "insn-config.h" #include "conditions.h" #include "insn-flags.h" #include "output.h" #include "insn-attr.h" #include "flags.h" #include "expr.h" #include "recog.h" /* 1 if the caller has placed an "unimp" insn immediately after the call. This is used in v8 code when calling a function that returns a structure. v9 doesn't have this. Be careful to have this test be the same as that used on the call. */ #define SKIP_CALLERS_UNIMP_P \ (!TARGET_ARCH64 && current_function_returns_struct \ && ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \ && (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \ == INTEGER_CST)) /* Global variables for machine-dependent things. */ /* Size of frame. Need to know this to emit return insns from leaf procedures. ACTUAL_FSIZE is set by compute_frame_size() which is called during the reload pass. This is important as the value is later used in insn scheduling (to see what can go in a delay slot). APPARENT_FSIZE is the size of the stack less the register save area and less the outgoing argument area. It is used when saving call preserved regs. */ static int apparent_fsize; static int actual_fsize; /* Save the operands last given to a compare for use when we generate a scc or bcc insn. */ rtx sparc_compare_op0, sparc_compare_op1; /* We may need an epilogue if we spill too many registers. If this is non-zero, then we branch here for the epilogue. */ static rtx leaf_label; #ifdef LEAF_REGISTERS /* Vector to say how input registers are mapped to output registers. FRAME_POINTER_REGNUM cannot be remapped by this function to eliminate it. You must use -fomit-frame-pointer to get that. */ char leaf_reg_remap[] = { 0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1, -1, -1, -1, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, 8, 9, 10, 11, 12, 13, -1, 15, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100}; #endif /* Name of where we pretend to think the frame pointer points. Normally, this is "%fp", but if we are in a leaf procedure, this is "%sp+something". We record "something" separately as it may be too big for reg+constant addressing. */ static char *frame_base_name; static int frame_base_offset; static rtx pic_setup_code PROTO((void)); static rtx find_addr_reg PROTO((rtx)); static void sparc_init_modes PROTO((void)); static int save_regs PROTO((FILE *, int, int, char *, int, int, int)); static int restore_regs PROTO((FILE *, int, int, char *, int, int)); static void build_big_number PROTO((FILE *, int, char *)); static function_arg_slotno PROTO((const CUMULATIVE_ARGS *, enum machine_mode, tree, int, int, int *, int *)); #ifdef DWARF2_DEBUGGING_INFO extern char *dwarf2out_cfi_label (); #endif /* Option handling. */ /* Code model option as passed by user. */ char *sparc_cmodel_string; /* Parsed value. */ enum cmodel sparc_cmodel; /* Record alignment options as passed by user. */ char *sparc_align_loops_string; char *sparc_align_jumps_string; char *sparc_align_funcs_string; /* Parsed values, as a power of two. */ int sparc_align_loops; int sparc_align_jumps; int sparc_align_funcs; struct sparc_cpu_select sparc_select[] = { /* switch name, tune arch */ { (char *)0, "default", 1, 1 }, { (char *)0, "-mcpu=", 1, 1 }, { (char *)0, "-mtune=", 1, 0 }, { 0, 0 } }; /* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */ enum processor_type sparc_cpu; /* Validate and override various options, and do some machine dependent initialization. */ void sparc_override_options () { static struct code_model { char *name; int value; } cmodels[] = { { "32", CM_32 }, { "medlow", CM_MEDLOW }, { "medmid", CM_MEDMID }, { "medany", CM_MEDANY }, { "embmedany", CM_EMBMEDANY }, { 0, 0 } }; struct code_model *cmodel; /* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */ static struct cpu_default { int cpu; char *name; } cpu_default[] = { /* There must be one entry here for each TARGET_CPU value. */ { TARGET_CPU_sparc, "cypress" }, { TARGET_CPU_sparclet, "tsc701" }, { TARGET_CPU_sparclite, "f930" }, { TARGET_CPU_v8, "v8" }, { TARGET_CPU_supersparc, "supersparc" }, { TARGET_CPU_v9, "v9" }, { TARGET_CPU_ultrasparc, "ultrasparc" }, { 0 } }; struct cpu_default *def; /* Table of values for -m{cpu,tune}=. */ static struct cpu_table { char *name; enum processor_type processor; int disable; int enable; } cpu_table[] = { { "v7", PROCESSOR_V7, MASK_ISA, 0 }, { "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 }, { "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 }, /* TI TMS390Z55 supersparc */ { "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 }, { "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE }, /* The Fujitsu MB86930 is the original sparclite chip, with no fpu. The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */ { "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE }, { "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU }, { "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET }, /* TEMIC sparclet */ { "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET }, /* "v8plus" is what Sun calls Solaris2.5 running on UltraSPARC's. */ { "v8plus", PROCESSOR_V8PLUS, MASK_ISA, MASK_V9 }, { "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 }, /* TI ultrasparc */ { "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9 }, { 0 } }; struct cpu_table *cpu; struct sparc_cpu_select *sel; int fpu; #ifndef SPARC_BI_ARCH /* Check for unsupported architecture size. */ if (! TARGET_64BIT != DEFAULT_ARCH32_P) { error ("%s is not supported by this configuration", DEFAULT_ARCH32_P ? "-m64" : "-m32"); } #endif /* Code model selection. */ sparc_cmodel = SPARC_DEFAULT_CMODEL; if (sparc_cmodel_string != NULL) { if (TARGET_ARCH64) { for (cmodel = &cmodels[0]; cmodel->name; cmodel++) if (strcmp (sparc_cmodel_string, cmodel->name) == 0) break; if (cmodel->name == NULL) error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string); else sparc_cmodel = cmodel->value; } else error ("-mcmodel= is not supported on 32 bit systems"); } fpu = TARGET_FPU; /* save current -mfpu status */ /* Set the default CPU. */ for (def = &cpu_default[0]; def->name; ++def) if (def->cpu == TARGET_CPU_DEFAULT) break; if (! def->name) abort (); sparc_select[0].string = def->name; for (sel = &sparc_select[0]; sel->name; ++sel) { if (sel->string) { for (cpu = &cpu_table[0]; cpu->name; ++cpu) if (! strcmp (sel->string, cpu->name)) { if (sel->set_tune_p) sparc_cpu = cpu->processor; if (sel->set_arch_p) { target_flags &= ~cpu->disable; target_flags |= cpu->enable; } break; } if (! cpu->name) error ("bad value (%s) for %s switch", sel->string, sel->name); } } /* If -mfpu or -mno-fpu was explicitly used, don't override with the processor default. */ if (TARGET_FPU_SET) target_flags = (target_flags & ~MASK_FPU) | fpu; /* Use the deprecated v8 insns for sparc64 in 32 bit mode. */ if (TARGET_V9 && TARGET_ARCH32) target_flags |= MASK_DEPRECATED_V8_INSNS; /* Validate -malign-loops= value, or provide default. */ if (sparc_align_loops_string) { sparc_align_loops = exact_log2 (atoi (sparc_align_loops_string)); if (sparc_align_loops < 2 || sparc_align_loops > 7) fatal ("-malign-loops=%s is not between 4 and 128 or is not a power of two", sparc_align_loops_string); } else { /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if its 0. This sounds a bit kludgey. */ sparc_align_loops = 0; } /* Validate -malign-jumps= value, or provide default. */ if (sparc_align_jumps_string) { sparc_align_jumps = exact_log2 (atoi (sparc_align_jumps_string)); if (sparc_align_jumps < 2 || sparc_align_loops > 7) fatal ("-malign-jumps=%s is not between 4 and 128 or is not a power of two", sparc_align_jumps_string); } else { /* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if its 0. This sounds a bit kludgey. */ sparc_align_jumps = 0; } /* Validate -malign-functions= value, or provide default. */ if (sparc_align_funcs_string) { sparc_align_funcs = exact_log2 (atoi (sparc_align_funcs_string)); if (sparc_align_funcs < 2 || sparc_align_loops > 7) fatal ("-malign-functions=%s is not between 4 and 128 or is not a power of two", sparc_align_funcs_string); } else sparc_align_funcs = DEFAULT_SPARC_ALIGN_FUNCS; /* Do various machine dependent initializations. */ sparc_init_modes (); } /* Float conversions (v9 only). The floating point registers cannot hold DImode values because SUBREG's on them get the wrong register. "(subreg:SI (reg:DI M int-reg) 0)" is the same as "(subreg:SI (reg:DI N float-reg) 1)", but gcc doesn't know how to turn the "0" to a "1". Therefore, we must explicitly do the conversions to/from int/fp regs. `sparc64_fpconv_stack_slot' is the address of an 8 byte stack slot used during the transfer. ??? I could have used [%fp-16] but I didn't want to add yet another dependence on this. */ /* ??? Can we use assign_stack_temp here? */ static rtx fpconv_stack_temp; /* Called once for each function. */ void sparc_init_expanders () { fpconv_stack_temp = NULL_RTX; } /* Assign a stack temp for fp/int DImode conversions. */ rtx sparc64_fpconv_stack_temp () { if (fpconv_stack_temp == NULL_RTX) fpconv_stack_temp = assign_stack_local (DImode, GET_MODE_SIZE (DImode), 0); return fpconv_stack_temp; } /* Miscellaneous utilities. */ /* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_p (code) enum rtx_code code; { return (code == EQ || code == NE || code == GE || code == LT || code == LE || code == GT); } /* Operand constraints. */ /* Return non-zero only if OP is a register of mode MODE, or const0_rtx. Don't allow const0_rtx if TARGET_LIVE_G0 because %g0 may contain anything. */ int reg_or_0_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (TARGET_LIVE_G0) return 0; if (op == const0_rtx) return 1; if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && CONST_DOUBLE_LOW (op) == 0) return 1; if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT && GET_CODE (op) == CONST_DOUBLE && fp_zero_operand (op)) return 1; return 0; } /* Nonzero if OP is a floating point value with value 0.0. */ int fp_zero_operand (op) rtx op; { REAL_VALUE_TYPE r; REAL_VALUE_FROM_CONST_DOUBLE (r, op); return (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r)); } /* Nonzero if OP is an integer register. */ int intreg_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, SImode) || (TARGET_ARCH64 && register_operand (op, DImode))); } /* Nonzero if OP is a floating point condition code register. */ int fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { /* This can happen when recog is called from combine. Op may be a MEM. Fail instead of calling abort in this case. */ if (GET_CODE (op) != REG) return 0; if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode)) return 0; #if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */ if (reg_renumber == 0) return REGNO (op) >= FIRST_PSEUDO_REGISTER; return REGNO_OK_FOR_CCFP_P (REGNO (op)); #else return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4; #endif } /* Nonzero if OP is an integer or floating point condition code register. */ int icc_or_fcc_reg_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG) { if (mode != VOIDmode && mode != GET_MODE (op)) return 0; if (mode == VOIDmode && GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode) return 0; return 1; } return fcc_reg_operand (op, mode); } /* Nonzero if OP can appear as the dest of a RESTORE insn. */ int restore_operand (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == REG && GET_MODE (op) == mode && (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32))); } /* Call insn on SPARC can take a PC-relative constant address, or any regular memory address. */ int call_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) abort (); op = XEXP (op, 0); return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } int call_operand_address (op, mode) rtx op; enum machine_mode mode; { return (symbolic_operand (op, mode) || memory_address_p (Pmode, op)); } /* Returns 1 if OP is either a symbol reference or a sum of a symbol reference and a constant. */ int symbolic_operand (op, mode) register rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case SYMBOL_REF: case LABEL_REF: return 1; case CONST: op = XEXP (op, 0); return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF || GET_CODE (XEXP (op, 0)) == LABEL_REF) && GET_CODE (XEXP (op, 1)) == CONST_INT); /* ??? This clause seems to be irrelevant. */ case CONST_DOUBLE: return GET_MODE (op) == mode; default: return 0; } } /* Return truth value of statement that OP is a symbolic memory operand of mode MODE. */ int symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST || GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF); } /* Return truth value of statement that OP is a LABEL_REF of mode MODE. */ int label_ref_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != LABEL_REF) return 0; if (GET_MODE (op) != mode) return 0; return 1; } /* Return 1 if the operand is an argument used in generating pic references in either the medium/low or medium/anywhere code models of sparc64. */ int sp64_medium_pic_operand (op, mode) rtx op; enum machine_mode mode; { /* Check for (const (minus (symbol_ref:GOT) (const (minus (label) (pc))))). */ if (GET_CODE (op) != CONST) return 0; op = XEXP (op, 0); if (GET_CODE (op) != MINUS) return 0; if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF) return 0; /* ??? Ensure symbol is GOT. */ if (GET_CODE (XEXP (op, 1)) != CONST) return 0; if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS) return 0; return 1; } /* Return 1 if the operand is a data segment reference. This includes the readonly data segment, or in other words anything but the text segment. This is needed in the medium/anywhere code model on v9. These values are accessed with EMBMEDANY_BASE_REG. */ int data_segment_operand (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case SYMBOL_REF : return ! SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return data_segment_operand (XEXP (op, 0)); default : return 0; } } /* Return 1 if the operand is a text segment reference. This is needed in the medium/anywhere code model on v9. */ int text_segment_operand (op, mode) rtx op; enum machine_mode mode; { switch (GET_CODE (op)) { case LABEL_REF : return 1; case SYMBOL_REF : return SYMBOL_REF_FLAG (op); case PLUS : /* Assume canonical format of symbol + constant. Fall through. */ case CONST : return text_segment_operand (XEXP (op, 0)); default : return 0; } } /* Return 1 if the operand is either a register or a memory operand that is not symbolic. */ int reg_or_nonsymb_mem_operand (op, mode) register rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode)) return 1; return 0; } int sparc_operand (op, mode) rtx op; enum machine_mode mode; { if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return SMALL_INT (op); if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); if (GET_CODE (op) == LO_SUM) return (GET_CODE (XEXP (op, 0)) == REG && symbolic_operand (XEXP (op, 1), Pmode)); return memory_address_p (mode, op); } int move_operand (op, mode) rtx op; enum machine_mode mode; { if (mode == DImode && arith_double_operand (op, mode)) return 1; if (register_operand (op, mode)) return 1; if (GET_CODE (op) == CONST_INT) return SMALL_INT (op) || SPARC_SETHI_P (INTVAL (op)); if (GET_MODE (op) != mode) return 0; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); if (GET_CODE (op) != MEM) return 0; op = XEXP (op, 0); if (GET_CODE (op) == LO_SUM) return (register_operand (XEXP (op, 0), Pmode) && CONSTANT_P (XEXP (op, 1))); return memory_address_p (mode, op); } int splittable_symbolic_memory_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) return 0; if (! symbolic_operand (XEXP (op, 0), Pmode)) return 0; return 1; } int splittable_immediate_memory_operand (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) != MEM) return 0; if (! immediate_operand (XEXP (op, 0), Pmode)) return 0; return 1; } /* Return truth value of whether OP is EQ or NE. */ int eq_or_neq (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == EQ || GET_CODE (op) == NE); } /* Return 1 if this is a comparison operator, but not an EQ, NE, GEU, or LTU for non-floating-point. We handle those specially. */ int normal_comp_operator (op, mode) rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CCFPmode || GET_MODE (XEXP (op, 0)) == CCFPEmode) return 1; return (code != NE && code != EQ && code != GEU && code != LTU); } /* Return 1 if this is a comparison operator. This allows the use of MATCH_OPERATOR to recognize all the branch insns. */ int noov_compare_op (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode) /* These are the only branches which work with CC_NOOVmode. */ return (code == EQ || code == NE || code == GE || code == LT); return 1; } /* Nonzero if OP is a comparison operator suitable for use in v9 conditional move or branch on register contents instructions. */ int v9_regcmp_op (op, mode) register rtx op; enum machine_mode mode; { enum rtx_code code = GET_CODE (op); if (GET_RTX_CLASS (code) != '<') return 0; return v9_regcmp_p (code); } /* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */ int extend_op (op, mode) rtx op; enum machine_mode mode; { return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND; } /* Return nonzero if OP is an operator of mode MODE which can set the condition codes explicitly. We do not include PLUS and MINUS because these require CC_NOOVmode, which we handle explicitly. */ int cc_arithop (op, mode) rtx op; enum machine_mode mode; { if (GET_CODE (op) == AND || GET_CODE (op) == IOR || GET_CODE (op) == XOR) return 1; return 0; } /* Return nonzero if OP is an operator of mode MODE which can bitwise complement its second operand and set the condition codes explicitly. */ int cc_arithopn (op, mode) rtx op; enum machine_mode mode; { /* XOR is not here because combine canonicalizes (xor (not ...) ...) and (xor ... (not ...)) to (not (xor ...)). */ return (GET_CODE (op) == AND || GET_CODE (op) == IOR); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 13 bit immediate field. This is an acceptable SImode operand for most 3 address instructions. */ int arith_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SMALL_INT (op))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 11 bit immediate field. This is an acceptable SImode operand for the movcc instructions. */ int arith11_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op)))); } /* Return true if OP is a register, or is a CONST_INT that can fit in a signed 10 bit immediate field. This is an acceptable SImode operand for the movrcc instructions. */ int arith10_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op)))); } /* Return true if OP is a register, is a CONST_INT that fits in a 13 bit immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit immediate field. v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in a 13 bit immediate field. This is an acceptable DImode operand for most 3 address instructions. */ int arith_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_INT && SMALL_INT (op)) || (! TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000) || (TARGET_ARCH64 && GET_CODE (op) == CONST_DOUBLE && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x1000) == 0)))); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 11 bit immediate field. This is an acceptable DImode operand for the movcc instructions. */ /* ??? Replace with arith11_operand? */ int arith11_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x400) == 0x400) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x400) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800)); } /* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that can fit in an 10 bit immediate field. This is an acceptable DImode operand for the movrcc instructions. */ /* ??? Replace with arith10_operand? */ int arith10_double_operand (op, mode) rtx op; enum machine_mode mode; { return (register_operand (op, mode) || (GET_CODE (op) == CONST_DOUBLE && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400 && ((CONST_DOUBLE_HIGH (op) == -1 && (CONST_DOUBLE_LOW (op) & 0x200) == 0x200) || (CONST_DOUBLE_HIGH (op) == 0 && (CONST_DOUBLE_LOW (op) & 0x200) == 0))) || (GET_CODE (op) == CONST_INT && (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode) && (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400)); } /* Return truth value of whether OP is a integer which fits the range constraining immediate operands in most three-address insns, which have a 13 bit immediate field. */ int small_int (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == CONST_INT && SMALL_INT (op)); } /* Recognize operand values for the umul instruction. That instruction sign extends immediate values just like all other sparc instructions, but interprets the extended result as an unsigned number. */ int uns_small_int (op, mode) rtx op; enum machine_mode mode; { #if HOST_BITS_PER_WIDE_INT > 32 /* All allowed constants will fit a CONST_INT. */ return (GET_CODE (op) == CONST_INT && ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000) || (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000L))); #else return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000) || (GET_CODE (op) == CONST_DOUBLE && CONST_DOUBLE_HIGH (op) == 0 && (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000)); #endif } int uns_arith_operand (op, mode) rtx op; enum machine_mode mode; { return register_operand (op, mode) || uns_small_int (op, mode); } /* Return truth value of statement that OP is a call-clobbered register. */ int clobbered_register (op, mode) rtx op; enum machine_mode mode; { return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]); } /* X and Y are two things to compare using CODE. Emit the compare insn and return the rtx for the cc reg in the proper mode. */ rtx gen_compare_reg (code, x, y) enum rtx_code code; rtx x, y; { enum machine_mode mode = SELECT_CC_MODE (code, x, y); rtx cc_reg; /* ??? We don't have movcc patterns so we cannot generate pseudo regs for the fcc regs (cse can't tell they're really call clobbered regs and will remove a duplicate comparison even if there is an intervening function call - it will then try to reload the cc reg via an int reg which is why we need the movcc patterns). It is possible to provide the movcc patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two registers (say %g1,%g5) and it takes about 6 insns. A better fix would be to tell cse that CCFPE mode registers (even pseudos) are call clobbered. */ /* ??? This is an experiment. Rather than making changes to cse which may or may not be easy/clean, we do our own cse. This is possible because we will generate hard registers. Cse knows they're call clobbered (it doesn't know the same thing about pseudos). If we guess wrong, no big deal, but if we win, great! */ if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) #if 1 /* experiment */ { int reg; /* We cycle through the registers to ensure they're all exercised. */ static int next_fcc_reg = 0; /* Previous x,y for each fcc reg. */ static rtx prev_args[4][2]; /* Scan prev_args for x,y. */ for (reg = 0; reg < 4; reg++) if (prev_args[reg][0] == x && prev_args[reg][1] == y) break; if (reg == 4) { reg = next_fcc_reg; prev_args[reg][0] = x; prev_args[reg][1] = y; next_fcc_reg = (next_fcc_reg + 1) & 3; } cc_reg = gen_rtx (REG, mode, reg + SPARC_FIRST_V9_FCC_REG); } #else cc_reg = gen_reg_rtx (mode); #endif /* ! experiment */ else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT) cc_reg = gen_rtx (REG, mode, SPARC_FCC_REG); else cc_reg = gen_rtx (REG, mode, SPARC_ICC_REG); emit_insn (gen_rtx (SET, VOIDmode, cc_reg, gen_rtx (COMPARE, mode, x, y))); return cc_reg; } /* This function is used for v9 only. CODE is the code for an Scc's comparison. OPERANDS[0] is the target of the Scc insn. OPERANDS[1] is the value we compare against const0_rtx (which hasn't been generated yet). This function is needed to turn (set (reg:SI 110) (gt (reg:CCX 100 %icc) (const_int 0))) into (set (reg:SI 110) (gt:DI (reg:CCX 100 %icc) (const_int 0))) IE: The instruction recognizer needs to see the mode of the comparison to find the right instruction. We could use "gt:DI" right in the define_expand, but leaving it out allows us to handle DI, SI, etc. We refer to the global sparc compare operands sparc_compare_op0 and sparc_compare_op1. */ int gen_v9_scc (compare_code, operands) enum rtx_code compare_code; register rtx *operands; { rtx temp, op0, op1; if (! TARGET_ARCH64 && (GET_MODE (sparc_compare_op0) == DImode || GET_MODE (operands[0]) == DImode)) return 0; /* Handle the case where operands[0] == sparc_compare_op0. We "early clobber" the result. */ if (REGNO (operands[0]) == REGNO (sparc_compare_op0)) { op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0)); emit_move_insn (op0, sparc_compare_op0); } else op0 = sparc_compare_op0; /* For consistency in the following. */ op1 = sparc_compare_op1; /* Try to use the movrCC insns. */ if (TARGET_ARCH64 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT && op1 == const0_rtx && v9_regcmp_p (compare_code)) { /* Special case for op0 != 0. This can be done with one instruction if operands[0] == sparc_compare_op0. We don't assume they are equal now though. */ if (compare_code == NE && GET_MODE (operands[0]) == DImode && GET_MODE (op0) == DImode) { emit_insn (gen_rtx (SET, VOIDmode, operands[0], op0)); emit_insn (gen_rtx (SET, VOIDmode, operands[0], gen_rtx (IF_THEN_ELSE, DImode, gen_rtx (compare_code, DImode, op0, const0_rtx), const1_rtx, operands[0]))); return 1; } emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx)); if (GET_MODE (op0) != DImode) { temp = gen_reg_rtx (DImode); convert_move (temp, op0, 0); } else temp = op0; emit_insn (gen_rtx (SET, VOIDmode, operands[0], gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]), gen_rtx (compare_code, DImode, temp, const0_rtx), const1_rtx, operands[0]))); return 1; } else { operands[1] = gen_compare_reg (compare_code, op0, op1); switch (GET_MODE (operands[1])) { case CCmode : case CCXmode : case CCFPEmode : case CCFPmode : break; default : abort (); } emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx)); emit_insn (gen_rtx (SET, VOIDmode, operands[0], gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]), gen_rtx (compare_code, GET_MODE (operands[1]), operands[1], const0_rtx), const1_rtx, operands[0]))); return 1; } } /* Emit a conditional jump insn for the v9 architecture using comparison code CODE and jump target LABEL. This function exists to take advantage of the v9 brxx insns. */ void emit_v9_brxx_insn (code, op0, label) enum rtx_code code; rtx op0, label; { emit_jump_insn (gen_rtx (SET, VOIDmode, pc_rtx, gen_rtx (IF_THEN_ELSE, VOIDmode, gen_rtx (code, GET_MODE (op0), op0, const0_rtx), gen_rtx (LABEL_REF, VOIDmode, label), pc_rtx))); } /* Return nonzero if a return peephole merging return with setting of output register is ok. */ int leaf_return_peephole_ok () { return (actual_fsize == 0); } /* Return nonzero if TRIAL can go into the function epilogue's delay slot. SLOT is the slot we are trying to fill. */ int eligible_for_epilogue_delay (trial, slot) rtx trial; int slot; { rtx pat, src; if (slot >= 1) return 0; if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET) return 0; if (get_attr_length (trial) != 1) return 0; /* If %g0 is live, there are lots of things we can't handle. Rather than trying to find them all now, let's punt and only optimize things as necessary. */ if (TARGET_LIVE_G0) return 0; /* In the case of a true leaf function, anything can go into the delay slot. A delay slot only exists however if the frame size is zero, otherwise we will put an insn to adjust the stack after the return. */ if (leaf_function) { if (leaf_return_peephole_ok ()) return ((get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE)); return 0; } /* If only trivial `restore' insns work, nothing can go in the delay slot. */ else if (TARGET_BROKEN_SAVERESTORE) return 0; pat = PATTERN (trial); /* Otherwise, only operations which can be done in tandem with a `restore' insn can go into the delay slot. */ if (GET_CODE (SET_DEST (pat)) != REG || REGNO (SET_DEST (pat)) >= 32 || REGNO (SET_DEST (pat)) < 24) return 0; /* The set of insns matched here must agree precisely with the set of patterns paired with a RETURN in sparc.md. */ src = SET_SRC (pat); /* This matches "*return_[qhs]". */ if (arith_operand (src, GET_MODE (src))) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode); /* This matches "*return_di". */ else if (arith_double_operand (src, GET_MODE (src))) return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode); /* This matches "*return_sf_no_fpu". */ else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode) && register_operand (src, SFmode)) return 1; /* This matches "*return_addsi". */ else if (GET_CODE (src) == PLUS && arith_operand (XEXP (src, 0), SImode) && arith_operand (XEXP (src, 1), SImode) && (register_operand (XEXP (src, 0), SImode) || register_operand (XEXP (src, 1), SImode))) return 1; /* This matches "*return_adddi". */ else if (GET_CODE (src) == PLUS && arith_double_operand (XEXP (src, 0), DImode) && arith_double_operand (XEXP (src, 1), DImode) && (register_operand (XEXP (src, 0), DImode) || register_operand (XEXP (src, 1), DImode))) return 1; /* This matches "*return_subsi". */ else if (GET_CODE (src) == MINUS && register_operand (XEXP (src, 0), SImode) && small_int (XEXP (src, 1), VOIDmode) && INTVAL (XEXP (src, 1)) != -4096) return 1; return 0; } int short_branch (uid1, uid2) int uid1, uid2; { unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2]; if (delta + 1024 < 2048) return 1; /* warning ("long branch, distance %d", delta); */ return 0; } /* Return non-zero if REG is not used after INSN. We assume REG is a reload reg, and therefore does not live past labels or calls or jumps. */ int reg_unused_after (reg, insn) rtx reg; rtx insn; { enum rtx_code code, prev_code = UNKNOWN; while (insn = NEXT_INSN (insn)) { if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)]) return 1; code = GET_CODE (insn); if (GET_CODE (insn) == CODE_LABEL) return 1; if (GET_RTX_CLASS (code) == 'i') { rtx set = single_set (insn); int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set)); if (set && in_src) return 0; if (set && reg_overlap_mentioned_p (reg, SET_DEST (set))) return 1; if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn))) return 0; } prev_code = code; } return 1; } /* The table we use to reference PIC data. */ static rtx global_offset_table; /* Ensure that we are not using patterns that are not OK with PIC. */ int check_pic (i) int i; { switch (flag_pic) { case 1: if (GET_CODE (recog_operand[i]) == SYMBOL_REF || (GET_CODE (recog_operand[i]) == CONST && ! (GET_CODE (XEXP (recog_operand[i], 0)) == MINUS && (XEXP (XEXP (recog_operand[i], 0), 0) == global_offset_table) && (GET_CODE (XEXP (XEXP (recog_operand[i], 0), 1)) == CONST)))) abort (); case 2: default: return 1; } } /* Return true if X is an address which needs a temporary register when reloaded while generating PIC code. */ int pic_address_needs_scratch (x) rtx x; { /* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT && ! SMALL_INT (XEXP (XEXP (x, 0), 1))) return 1; return 0; } /* Legitimize PIC addresses. If the address is already position-independent, we return ORIG. Newly generated position-independent addresses go into a reg. This is REG if non zero, otherwise we allocate register(s) as necessary. */ rtx legitimize_pic_address (orig, mode, reg) rtx orig; enum machine_mode mode; rtx reg; { if (GET_CODE (orig) == SYMBOL_REF) { rtx pic_ref, address; rtx insn; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (flag_pic == 2) { /* If not during reload, allocate another temp reg here for loading in the address, so that these instructions can be optimized properly. */ rtx temp_reg = ((reload_in_progress || reload_completed) ? reg : gen_reg_rtx (Pmode)); /* Must put the SYMBOL_REF inside an UNSPEC here so that cse won't get confused into thinking that these two instructions are loading in the true address of the symbol. If in the future a PIC rtx exists, that should be used instead. */ emit_insn (gen_pic_sethi_si (temp_reg, orig)); emit_insn (gen_pic_lo_sum_si (temp_reg, temp_reg, orig)); address = temp_reg; } else address = orig; pic_ref = gen_rtx (MEM, Pmode, gen_rtx (PLUS, Pmode, pic_offset_table_rtx, address)); current_function_uses_pic_offset_table = 1; RTX_UNCHANGING_P (pic_ref) = 1; insn = emit_move_insn (reg, pic_ref); /* Put a REG_EQUAL note on this insn, so that it can be optimized by loop. */ REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig, REG_NOTES (insn)); return reg; } else if (GET_CODE (orig) == CONST) { rtx base, offset; if (GET_CODE (XEXP (orig, 0)) == PLUS && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) return orig; if (reg == 0) { if (reload_in_progress || reload_completed) abort (); else reg = gen_reg_rtx (Pmode); } if (GET_CODE (XEXP (orig, 0)) == PLUS) { base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, base == reg ? 0 : reg); } else abort (); if (GET_CODE (offset) == CONST_INT) { if (SMALL_INT (offset)) return plus_constant_for_output (base, INTVAL (offset)); else if (! reload_in_progress && ! reload_completed) offset = force_reg (Pmode, offset); else /* If we reach here, then something is seriously wrong. */ abort (); } return gen_rtx (PLUS, Pmode, base, offset); } else if (GET_CODE (orig) == LABEL_REF) /* ??? Why do we do this? */ current_function_uses_pic_offset_table = 1; return orig; } /* Set up PIC-specific rtl. This should not cause any insns to be emitted. */ void initialize_pic () { } /* Return the RTX for insns to set the PIC register. */ static rtx pic_setup_code () { rtx pic_pc_rtx; rtx l1, l2; rtx seq; start_sequence (); /* If -O0, show the PIC register remains live before this. */ if (obey_regdecls) emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx)); l1 = gen_label_rtx (); pic_pc_rtx = gen_rtx (CONST, Pmode, gen_rtx (MINUS, Pmode, global_offset_table, gen_rtx (CONST, Pmode, gen_rtx (MINUS, Pmode, gen_rtx (LABEL_REF, VOIDmode, l1), pc_rtx)))); /* sparc64: the RDPC instruction doesn't pair, and puts 4 bubbles in the pipe to boot. So don't use it here, especially when we're doing a save anyway because of %l7. */ l2 = gen_label_rtx (); emit_label (l1); /* Iff we are doing delay branch optimization, slot the sethi up here so that it will fill the delay slot of the call. */ if (flag_delayed_branch) emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx, gen_rtx (HIGH, Pmode, pic_pc_rtx))); /* Note that we pun calls and jumps here! */ emit_jump_insn (gen_get_pc_via_call (l2, l1)); emit_label (l2); if (!flag_delayed_branch) emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx, gen_rtx (HIGH, Pmode, pic_pc_rtx))); emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx, gen_rtx (LO_SUM, Pmode, pic_offset_table_rtx, pic_pc_rtx))); emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx, gen_rtx (PLUS, Pmode, pic_offset_table_rtx, gen_rtx (REG, Pmode, 15)))); /* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */ LABEL_PRESERVE_P (l1) = 1; LABEL_PRESERVE_P (l2) = 1; seq = gen_sequence (); end_sequence (); return seq; } /* Emit special PIC prologues and epilogues. */ void finalize_pic () { /* Labels to get the PC in the prologue of this function. */ int orig_flag_pic = flag_pic; rtx insn; if (current_function_uses_pic_offset_table == 0) return; if (! flag_pic) abort (); /* Initialize every time through, since we can't easily know this to be permanent. */ global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_"); flag_pic = 0; emit_insn_after (pic_setup_code (), get_insns ()); /* Insert the code in each nonlocal goto receiver. */ for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE && XINT (PATTERN (insn), 1) == 4) emit_insn_after (pic_setup_code (), insn); flag_pic = orig_flag_pic; /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp can cause life info to screw up. ??? In the case where we don't obey regdecls, this is not sufficient since we may not fall out the bottom. */ emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx)); } /* Emit insns to move operands[1] into operands[0]. Return 1 if we have written out everything that needs to be done to do the move. Otherwise, return 0 and the caller will emit the move normally. */ int emit_move_sequence (operands, mode) rtx *operands; enum machine_mode mode; { register rtx operand0 = operands[0]; register rtx operand1 = operands[1]; if (CONSTANT_P (operand1) && flag_pic && pic_address_needs_scratch (operand1)) operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0); /* Handle most common case first: storing into a register. */ if (register_operand (operand0, mode)) { if (register_operand (operand1, mode) || (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1)) || (GET_CODE (operand1) == CONST_DOUBLE && arith_double_operand (operand1, DImode)) || (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode) /* Only `general_operands' can come here, so MEM is ok. */ || GET_CODE (operand1) == MEM) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } } else if (GET_CODE (operand0) == MEM) { if (register_operand (operand1, mode) || (operand1 == const0_rtx && ! TARGET_LIVE_G0)) { /* Run this case quickly. */ emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1)); return 1; } if (! reload_in_progress) { operands[0] = validize_mem (operand0); operands[1] = operand1 = force_reg (mode, operand1); } } if (GET_CODE (operand1) == LABEL_REF && mode == SImode && flag_pic) { if (TARGET_ARCH64) abort (); emit_insn (gen_move_pic_label_si (operand0, operand1)); return 1; } /* Non-pic LABEL_REF's in sparc64 are expensive to do the normal way, so always use special code. */ else if (GET_CODE (operand1) == LABEL_REF && mode == DImode) { if (! TARGET_ARCH64) abort (); emit_insn (gen_move_label_di (operand0, operand1)); return 1; } /* DImode HIGH values in sparc64 need a clobber added. */ else if (TARGET_ARCH64 && GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode) { emit_insn (gen_sethi_di_sp64 (operand0, XEXP (operand1, 0))); return 1; } /* Simplify the source if we need to. */ else if (GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode)) { if (flag_pic && symbolic_operand (operand1, mode)) { rtx temp_reg = reload_in_progress ? operand0 : 0; operands[1] = legitimize_pic_address (operand1, mode, temp_reg); } else if (GET_CODE (operand1) == CONST_INT ? (! SMALL_INT (operand1) && ! SPARC_SETHI_P (INTVAL (operand1))) : GET_CODE (operand1) == CONST_DOUBLE ? ! arith_double_operand (operand1, DImode) : 1) { /* For DImode values, temp must be operand0 because of the way HI and LO_SUM work. The LO_SUM operator only copies half of the LSW from the dest of the HI operator. If the LO_SUM dest is not the same as the HI dest, then the MSW of the LO_SUM dest will never be set. ??? The real problem here is that the ...(HI:DImode pattern emits multiple instructions, and the ...(LO_SUM:DImode pattern emits one instruction. This fails, because the compiler assumes that LO_SUM copies all bits of the first operand to its dest. Better would be to have the HI pattern emit one instruction and the LO_SUM pattern multiple instructions. Even better would be to use four rtl insns. */ rtx temp = ((reload_in_progress || mode == DImode) ? operand0 : gen_reg_rtx (mode)); if (TARGET_ARCH64 && mode == DImode) emit_insn (gen_sethi_di_sp64 (temp, operand1)); else emit_insn (gen_rtx (SET, VOIDmode, temp, gen_rtx (HIGH, mode, operand1))); if (GET_CODE (operand1) == CONST_INT) operand1 = GEN_INT (INTVAL (operand1) & 0xffffffff); else if (GET_CODE (operand1) == CONST_DOUBLE) operand1 = GEN_INT (CONST_DOUBLE_LOW (operand1) & 0xffffffff); operands[1] = gen_rtx (LO_SUM, mode, temp, operand1); } } /* Now have insn-emit do whatever it normally does. */ return 0; } /* Return the best assembler insn template for moving operands[1] into operands[0] as a 4 byte quantity. This isn't intended to be very smart. It is up to the caller to choose the best way to do things. Note that OPERANDS may be modified to suit the returned string. */ char * singlemove_string (operands) rtx *operands; { if (GET_CODE (operands[0]) == MEM) { if (GET_CODE (operands[1]) != MEM) return "st %r1,%0"; else abort (); } else if (GET_CODE (operands[1]) == MEM) return "ld %1,%0"; else if (GET_CODE (operands[1]) == CONST_DOUBLE) { REAL_VALUE_TYPE r; long i; /* Must be SFmode, otherwise this doesn't make sense. */ if (GET_MODE (operands[1]) != SFmode) abort (); REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[1] = GEN_INT (i); if (CONST_OK_FOR_LETTER_P (i, 'I')) return "mov %1,%0"; else if ((i & 0x000003FF) != 0) return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0"; else return "sethi %%hi(%a1),%0"; } else if (GET_CODE (operands[1]) == CONST_INT && ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I')) { HOST_WIDE_INT i = INTVAL (operands[1]); /* If all low order 10 bits are clear, then we only need a single sethi insn to load the constant. */ /* FIXME: Use SETHI_P. */ if ((i & 0x000003FF) != 0) return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0"; else return "sethi %%hi(%a1),%0"; } /* Operand 1 must be a register, or a 'I' type CONST_INT. */ return "mov %1,%0"; } /* Return the best assembler insn template for moving operands[1] into operands[0] as an 8 byte quantity. This isn't intended to be very smart. It is up to the caller to choose the best way to do things. Note that OPERANDS may be modified to suit the returned string. */ char * doublemove_string (operands) rtx *operands; { rtx op0 = operands[0], op1 = operands[1]; if (GET_CODE (op0) == MEM) { if (GET_CODE (op1) == REG) { if (FP_REG_P (op1)) return "std %1,%0"; return TARGET_ARCH64 ? "stx %1,%0" : "std %1,%0"; } if (TARGET_ARCH64 && (op1 == const0_rtx || (GET_MODE (op1) != VOIDmode && op1 == CONST0_RTX (GET_MODE (op1))))) return "stx %r1,%0"; abort (); } else if (GET_CODE (op1) == MEM) { if (GET_CODE (op0) != REG) abort (); if (FP_REG_P (op0)) return "ldd %1,%0"; return TARGET_ARCH64 ? "ldx %1,%0" : "ldd %1,%0"; } else if (GET_CODE (operands[1]) == CONST_DOUBLE) { /* ??? Unfinished, and maybe not needed. */ abort (); } else if (GET_CODE (operands[1]) == CONST_INT && ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I')) { /* ??? Unfinished, and maybe not needed. */ abort (); } /* Operand 1 must be a register, or a 'I' type CONST_INT. */ return "mov %1,%0"; } /* Return non-zero if it is OK to assume that the given memory operand is aligned at least to a 8-byte boundary. This should only be called for memory accesses whose size is 8 bytes or larger. */ int mem_aligned_8 (mem) register rtx mem; { register rtx addr; register rtx base; register rtx offset; if (GET_CODE (mem) != MEM) return 0; /* It's gotta be a MEM! */ addr = XEXP (mem, 0); /* Now that all misaligned double parms are copied on function entry, we can assume any 64-bit object is 64-bit aligned except those which are at unaligned offsets from the stack or frame pointer. If the TARGET_UNALIGNED_DOUBLES switch is given, we do not make this assumption. */ /* See what register we use in the address. */ base = 0; if (GET_CODE (addr) == PLUS) { if (GET_CODE (XEXP (addr, 0)) == REG && GET_CODE (XEXP (addr, 1)) == CONST_INT) { base = XEXP (addr, 0); offset = XEXP (addr, 1); } } else if (GET_CODE (addr) == REG) { base = addr; offset = const0_rtx; } /* If it's the stack or frame pointer, check offset alignment. We can have improper alignment in the function entry code. */ if (base && (REGNO (base) == FRAME_POINTER_REGNUM || REGNO (base) == STACK_POINTER_REGNUM)) { if (((INTVAL (offset) - SPARC_STACK_BIAS) & 0x7) == 0) return 1; } /* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES is true, in which case we can only assume that an access is aligned if it is to a constant address, or the address involves a LO_SUM. We used to assume an address was aligned if MEM_IN_STRUCT_P was true. That assumption was deleted so that gcc generated code can be used with memory allocators that only guarantee 4 byte alignment. */ else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr) || GET_CODE (addr) == LO_SUM) return 1; /* An obviously unaligned address. */ return 0; } enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP }; /* Output assembler code to perform a doubleword move insn with operands OPERANDS. This is very similar to the following output_move_quad function. */ char * output_move_double (operands) rtx *operands; { register rtx op0 = operands[0]; register rtx op1 = operands[1]; register enum optype optype0; register enum optype optype1; rtx latehalf[2]; rtx addreg0 = 0; rtx addreg1 = 0; int highest_first = 0; int no_addreg1_decrement = 0; /* First classify both operands. */ if (REG_P (op0)) optype0 = REGOP; else if (offsettable_memref_p (op0)) optype0 = OFFSOP; else if (GET_CODE (op0) == MEM) optype0 = MEMOP; else optype0 = RNDOP; if (REG_P (op1)) optype1 = REGOP; else if (CONSTANT_P (op1)) optype1 = CNSTOP; else if (offsettable_memref_p (op1)) optype1 = OFFSOP; else if (GET_CODE (op1) == MEM) optype1 = MEMOP; else optype1 = RNDOP; /* Check for the cases that the operand constraints are not supposed to allow to happen. Abort if we get one, because generating code for these cases is painful. */ if (optype0 == RNDOP || optype1 == RNDOP || (optype0 == MEM && optype1 == MEM)) abort (); /* If an operand is an unoffsettable memory ref, find a register we can increment temporarily to make it refer to the second word. */ if (optype0 == MEMOP) addreg0 = find_addr_reg (XEXP (op0, 0)); if (optype1 == MEMOP) addreg1 = find_addr_reg (XEXP (op1, 0)); /* Ok, we can do one word at a time. Set up in LATEHALF the operands to use for the high-numbered (least significant) word and in some cases alter the operands in OPERANDS to be suitable for the low-numbered word. */ if (optype0 == REGOP) latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1); else if (optype0 == OFFSOP) latehalf[0] = adj_offsettable_operand (op0, 4); else latehalf[0] = op0; if (optype1 == REGOP) latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1); else if (optype1 == OFFSOP) latehalf[1] = adj_offsettable_operand (op1, 4); else if (optype1 == CNSTOP) { if (TARGET_ARCH64) { if (arith_double_operand (op1, DImode)) { operands[1] = gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (op1)); return "mov %1,%0"; } else { /* The only way to handle CONST_DOUBLEs or other 64 bit constants here is to use a temporary, such as is done for the V9 DImode sethi insn pattern. This is not a practical solution, so abort if we reach here. The md file should always force such constants to memory. */ abort (); } } else split_double (op1, &operands[1], &latehalf[1]); } else latehalf[1] = op1; /* Easy case: try moving both words at once. Check for moving between an even/odd register pair and a memory location. */ if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP && (TARGET_ARCH64 || (REGNO (op0) & 1) == 0)) || (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP && (TARGET_ARCH64 || (REGNO (op1) & 1) == 0))) { register rtx mem,reg; if (optype0 == REGOP) mem = op1, reg = op0; else mem = op0, reg = op1; /* In v9, ldd can be used for word aligned addresses, so technically some of this logic is unneeded. We still avoid ldd if the address is obviously unaligned though. */ if (mem_aligned_8 (mem) /* If this is a floating point register higher than %f31, then we *must* use an aligned load, since `ld' will not accept the register number. */ || (TARGET_V9 && REGNO (reg) >= 64)) { if (FP_REG_P (reg) || ! TARGET_ARCH64) return (mem == op1 ? "ldd %1,%0" : "std %1,%0"); else return (mem == op1 ? "ldx %1,%0" : "stx %1,%0"); } } if (TARGET_ARCH64) { if (optype0 == REGOP && optype1 == REGOP) { if (FP_REG_P (op0)) return "fmovd %1,%0"; else return "mov %1,%0"; } } /* If the first move would clobber the source of the second one, do them in the other order. */ /* Overlapping registers. */ if (optype0 == REGOP && optype1 == REGOP && REGNO (op0) == REGNO (latehalf[1])) { /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Do low-numbered word. */ return singlemove_string (operands); } /* Loading into a register which overlaps a register used in the address. */ else if (optype0 == REGOP && optype1 != REGOP && reg_overlap_mentioned_p (op0, op1)) { /* If both halves of dest are used in the src memory address, add the two regs and put them in the low reg (op0). Then it works to load latehalf first. */ if (reg_mentioned_p (op0, XEXP (op1, 0)) && reg_mentioned_p (latehalf[0], XEXP (op1, 0))) { rtx xops[2]; xops[0] = latehalf[0]; xops[1] = op0; output_asm_insn ("add %1,%0,%1", xops); operands[1] = gen_rtx (MEM, DImode, op0); latehalf[1] = adj_offsettable_operand (operands[1], 4); addreg1 = 0; highest_first = 1; } /* Only one register in the dest is used in the src memory address, and this is the first register of the dest, so we want to do the late half first here also. */ else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0))) highest_first = 1; /* Only one register in the dest is used in the src memory address, and this is the second register of the dest, so we want to do the late half last. If addreg1 is set, and addreg1 is the same register as latehalf, then we must suppress the trailing decrement, because it would clobber the value just loaded. */ else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0])) no_addreg1_decrement = 1; } /* Normal case: do the two words, low-numbered first. Overlap case (highest_first set): do high-numbered word first. */ if (! highest_first) output_asm_insn (singlemove_string (operands), operands); /* Make any unoffsettable addresses point at high-numbered word. */ if (addreg0) output_asm_insn ("add %0,0x4,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,0x4,%0", &addreg1); /* Do that word. */ output_asm_insn (singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("add %0,-0x4,%0", &addreg0); if (addreg1 && ! no_addreg1_decrement) output_asm_insn ("add %0,-0x4,%0", &addreg1); if (highest_first) output_asm_insn (singlemove_string (operands), operands); return ""; } /* Output assembler code to perform a quadword move insn with operands OPERANDS. This is very similar to the preceding output_move_double function. */ char * output_move_quad (operands) rtx *operands; { register rtx op0 = operands[0]; register rtx op1 = operands[1]; register enum optype optype0; register enum optype optype1; rtx wordpart[4][2]; rtx addreg0 = 0; rtx addreg1 = 0; /* First classify both operands. */ if (REG_P (op0)) optype0 = REGOP; else if (offsettable_memref_p (op0)) optype0 = OFFSOP; else if (GET_CODE (op0) == MEM) optype0 = MEMOP; else optype0 = RNDOP; if (REG_P (op1)) optype1 = REGOP; else if (CONSTANT_P (op1)) optype1 = CNSTOP; else if (offsettable_memref_p (op1)) optype1 = OFFSOP; else if (GET_CODE (op1) == MEM) optype1 = MEMOP; else optype1 = RNDOP; /* Check for the cases that the operand constraints are not supposed to allow to happen. Abort if we get one, because generating code for these cases is painful. */ if (optype0 == RNDOP || optype1 == RNDOP || (optype0 == MEM && optype1 == MEM)) abort (); /* If an operand is an unoffsettable memory ref, find a register we can increment temporarily to make it refer to the later words. */ if (optype0 == MEMOP) addreg0 = find_addr_reg (XEXP (op0, 0)); if (optype1 == MEMOP) addreg1 = find_addr_reg (XEXP (op1, 0)); /* Ok, we can do one word at a time. Set up in wordpart the operands to use for each word of the arguments. */ if (optype0 == REGOP) { wordpart[0][0] = gen_rtx (REG, word_mode, REGNO (op0) + 0); wordpart[1][0] = gen_rtx (REG, word_mode, REGNO (op0) + 1); if (TARGET_ARCH32) { wordpart[2][0] = gen_rtx (REG, word_mode, REGNO (op0) + 2); wordpart[3][0] = gen_rtx (REG, word_mode, REGNO (op0) + 3); } } else if (optype0 == OFFSOP) { wordpart[0][0] = adj_offsettable_operand (op0, 0); if (TARGET_ARCH32) { wordpart[1][0] = adj_offsettable_operand (op0, 4); wordpart[2][0] = adj_offsettable_operand (op0, 8); wordpart[3][0] = adj_offsettable_operand (op0, 12); } else wordpart[1][0] = adj_offsettable_operand (op0, 8); } else { wordpart[0][0] = op0; wordpart[1][0] = op0; wordpart[2][0] = op0; wordpart[3][0] = op0; } if (optype1 == REGOP) { wordpart[0][1] = gen_rtx (REG, word_mode, REGNO (op1) + 0); wordpart[1][1] = gen_rtx (REG, word_mode, REGNO (op1) + 1); if (TARGET_ARCH32) { wordpart[2][1] = gen_rtx (REG, word_mode, REGNO (op1) + 2); wordpart[3][1] = gen_rtx (REG, word_mode, REGNO (op1) + 3); } } else if (optype1 == OFFSOP) { wordpart[0][1] = adj_offsettable_operand (op1, 0); if (TARGET_ARCH32) { wordpart[1][1] = adj_offsettable_operand (op1, 4); wordpart[2][1] = adj_offsettable_operand (op1, 8); wordpart[3][1] = adj_offsettable_operand (op1, 12); } else wordpart[1][1] = adj_offsettable_operand (op1, 8); } else if (optype1 == CNSTOP) { REAL_VALUE_TYPE r; long l[4]; /* This only works for TFmode floating point constants. */ if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode) abort (); REAL_VALUE_FROM_CONST_DOUBLE (r, op1); REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l); wordpart[0][1] = GEN_INT (l[0]); wordpart[1][1] = GEN_INT (l[1]); wordpart[2][1] = GEN_INT (l[2]); wordpart[3][1] = GEN_INT (l[3]); } else { wordpart[0][1] = op1; wordpart[1][1] = op1; wordpart[2][1] = op1; wordpart[3][1] = op1; } /* Easy case: try moving the quad as two pairs. Check for moving between an even/odd register pair and a memory location. Also handle new v9 fp regs here. */ /* ??? Should also handle the case of non-offsettable addresses here. We can at least do the first pair as a ldd/std, and then do the third and fourth words individually. */ if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0) || (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0)) { rtx mem, reg; if (optype0 == REGOP) mem = op1, reg = op0; else mem = op0, reg = op1; if (mem_aligned_8 (mem) /* If this is a floating point register higher than %f31, then we *must* use an aligned load, since `ld' will not accept the register number. */ || (TARGET_V9 && REGNO (reg) >= SPARC_FIRST_V9_FP_REG)) { if (TARGET_V9 && FP_REG_P (reg) && TARGET_HARD_QUAD) { if ((REGNO (reg) & 3) != 0) abort (); /* ??? Can `mem' have an inappropriate alignment here? */ return (mem == op1 ? "ldq %1,%0" : "stq %1,%0"); } operands[2] = adj_offsettable_operand (mem, 8); /* ??? In arch64 case, shouldn't we use ldd/std for fp regs. */ if (mem == op1) return TARGET_ARCH64 ? "ldx %1,%0;ldx %2,%R0" : "ldd %1,%0;ldd %2,%S0"; else return TARGET_ARCH64 ? "stx %1,%0;stx %R1,%2" : "std %1,%0;std %S1,%2"; } } /* If the first move would clobber the source of the second one, do them in the other order. */ /* Overlapping registers? */ if (TARGET_ARCH32) { if (optype0 == REGOP && optype1 == REGOP && (REGNO (op0) == REGNO (wordpart[1][3]) || REGNO (op0) == REGNO (wordpart[1][2]) || REGNO (op0) == REGNO (wordpart[1][1]))) { /* Do fourth word. */ output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]); /* Do the third word. */ output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]); /* Do the second word. */ output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]); /* Do lowest-numbered word. */ output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]); return ""; } } else /* TARGET_ARCH64 */ { if (optype0 == REGOP && optype1 == REGOP && REGNO (op0) == REGNO (wordpart[1][1])) { output_asm_insn ("mov %1,%0", wordpart[1]); output_asm_insn ("mov %1,%0", wordpart[0]); return ""; } } /* Loading into a register which overlaps a register used in the address. */ if (optype0 == REGOP && optype1 != REGOP && reg_overlap_mentioned_p (op0, op1)) { /* ??? Not implemented yet. This is a bit complicated, because we must load which ever part overlaps the address last. If the address is a double-reg address, then there are two parts which need to be done last, which is impossible. We would need a scratch register in that case. */ abort (); } /* Normal case: move the words in lowest to highest address order. */ if (TARGET_ARCH32) { output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]); /* Make any unoffsettable addresses point at the second word. */ if (addreg0) output_asm_insn ("add %0,0x4,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,0x4,%0", &addreg1); /* Do the second word. */ output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]); /* Make any unoffsettable addresses point at the third word. */ if (addreg0) output_asm_insn ("add %0,0x4,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,0x4,%0", &addreg1); /* Do the third word. */ output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]); /* Make any unoffsettable addresses point at the fourth word. */ if (addreg0) output_asm_insn ("add %0,0x4,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,0x4,%0", &addreg1); /* Do the fourth word. */ output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("add %0,-0xc,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,-0xc,%0", &addreg1); } else /* TARGET_ARCH64 */ { output_asm_insn (doublemove_string (wordpart[0]), wordpart[0]); /* Make any unoffsettable addresses point at the second word. */ if (addreg0) output_asm_insn ("add %0,0x8,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,0x8,%0", &addreg1); /* Do the second word. */ output_asm_insn (doublemove_string (wordpart[1]), wordpart[1]); /* Undo the adds we just did. */ if (addreg0) output_asm_insn ("add %0,-0x8,%0", &addreg0); if (addreg1) output_asm_insn ("add %0,-0x8,%0", &addreg1); } return ""; } /* Output assembler code to perform a doubleword move insn with operands OPERANDS, one of which must be a floating point register. */ char * output_fp_move_double (operands) rtx *operands; { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1])) { if (TARGET_V9) return "fmovd %1,%0"; else return "fmovs %1,%0\n\tfmovs %R1,%R0"; } else if (GET_CODE (operands[1]) == REG) abort (); else return output_move_double (operands); } else if (FP_REG_P (operands[1])) { if (GET_CODE (operands[0]) == REG) abort (); else return output_move_double (operands); } else abort (); } /* Output assembler code to perform a quadword move insn with operands OPERANDS, one of which must be a floating point register. */ char * output_fp_move_quad (operands) rtx *operands; { register rtx op0 = operands[0]; register rtx op1 = operands[1]; if (FP_REG_P (op0)) { if (FP_REG_P (op1)) { if (TARGET_V9 && TARGET_HARD_QUAD) return "fmovq %1,%0"; else if (TARGET_V9) return "fmovd %1,%0\n\tfmovd %S1,%S0"; else return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0"; } else if (GET_CODE (op1) == REG) abort (); else return output_move_quad (operands); } else if (FP_REG_P (op1)) { if (GET_CODE (op0) == REG) abort (); else return output_move_quad (operands); } else abort (); } /* Return a REG that occurs in ADDR with coefficient 1. ADDR can be effectively incremented by incrementing REG. */ static rtx find_addr_reg (addr) rtx addr; { while (GET_CODE (addr) == PLUS) { /* We absolutely can not fudge the frame pointer here, because the frame pointer must always be 8 byte aligned. It also confuses debuggers. */ if (GET_CODE (XEXP (addr, 0)) == REG && REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM) addr = XEXP (addr, 0); else if (GET_CODE (XEXP (addr, 1)) == REG && REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 0))) addr = XEXP (addr, 1); else if (CONSTANT_P (XEXP (addr, 1))) addr = XEXP (addr, 0); else abort (); } if (GET_CODE (addr) == REG) return addr; abort (); } #if 0 /* not currently used */ void output_sized_memop (opname, mode, signedp) char *opname; enum machine_mode mode; int signedp; { static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" }; static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" }; static char *st_size_suffix[] = { "b", "h", "", "?", "d" }; char **opnametab, *modename; if (opname[0] == 'l') if (signedp) opnametab = ld_size_suffix_s; else opnametab = ld_size_suffix_u; else opnametab = st_size_suffix; modename = opnametab[GET_MODE_SIZE (mode) >> 1]; fprintf (asm_out_file, "\t%s%s", opname, modename); } void output_move_with_extension (operands) rtx *operands; { if (GET_MODE (operands[2]) == HImode) output_asm_insn ("sll %2,0x10,%0", operands); else if (GET_MODE (operands[2]) == QImode) output_asm_insn ("sll %2,0x18,%0", operands); else abort (); } #endif /* not currently used */ #if 0 /* ??? These are only used by the movstrsi pattern, but we get better code in general without that, because emit_block_move can do just as good a job as this function does when alignment and size are known. When they aren't known, a call to strcpy may be faster anyways, because it is likely to be carefully crafted assembly language code, and below we just do a byte-wise copy. Also, emit_block_move expands into multiple read/write RTL insns, which can then be optimized, whereas our movstrsi pattern can not be optimized at all. */ /* Load the address specified by OPERANDS[3] into the register specified by OPERANDS[0]. OPERANDS[3] may be the result of a sum, hence it could either be: (1) CONST (2) REG (2) REG + CONST_INT (3) REG + REG + CONST_INT (4) REG + REG (special case of 3). Note that (3) is not a legitimate address. All cases are handled here. */ void output_load_address (operands) rtx *operands; { rtx base, offset; if (CONSTANT_P (operands[3])) { output_asm_insn ("set %3,%0", operands); return; } if (REG_P (operands[3])) { if (REGNO (operands[0]) != REGNO (operands[3])) output_asm_insn ("mov %3,%0", operands); return; } if (GET_CODE (operands[3]) != PLUS) abort (); base = XEXP (operands[3], 0); offset = XEXP (operands[3], 1); if (GET_CODE (base) == CONST_INT) { rtx tmp = base; base = offset; offset = tmp; } if (GET_CODE (offset) != CONST_INT) { /* Operand is (PLUS (REG) (REG)). */ base = operands[3]; offset = const0_rtx; } if (REG_P (base)) { operands[6] = base; operands[7] = offset; if (SMALL_INT (offset)) output_asm_insn ("add %6,%7,%0", operands); else output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands); } else if (GET_CODE (base) == PLUS) { operands[6] = XEXP (base, 0); operands[7] = XEXP (base, 1); operands[8] = offset; if (SMALL_INT (offset)) output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands); else output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands); } else abort (); } /* Output code to place a size count SIZE in register REG. ALIGN is the size of the unit of transfer. Because block moves are pipelined, we don't include the first element in the transfer of SIZE to REG. */ static void output_size_for_block_move (size, reg, align) rtx size, reg; rtx align; { rtx xoperands[3]; xoperands[0] = reg; xoperands[1] = size; xoperands[2] = align; if (GET_CODE (size) == REG) output_asm_insn ("sub %1,%2,%0", xoperands); else { xoperands[1] = gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align)); output_asm_insn ("set %1,%0", xoperands); } } /* Emit code to perform a block move. OPERANDS[0] is the destination. OPERANDS[1] is the source. OPERANDS[2] is the size. OPERANDS[3] is the alignment safe to use. OPERANDS[4] is a register we can safely clobber as a temp. */ char * output_block_move (operands) rtx *operands; { /* A vector for our computed operands. Note that load_output_address makes use of (and can clobber) up to the 8th element of this vector. */ rtx xoperands[10]; rtx zoperands[10]; static int movstrsi_label = 0; int i; rtx temp1 = operands[4]; rtx sizertx = operands[2]; rtx alignrtx = operands[3]; int align = INTVAL (alignrtx); char label3[30], label5[30]; xoperands[0] = operands[0]; xoperands[1] = operands[1]; xoperands[2] = temp1; /* We can't move more than this many bytes at a time because we have only one register, %g1, to move them through. */ if (align > UNITS_PER_WORD) { align = UNITS_PER_WORD; alignrtx = gen_rtx (CONST_INT, VOIDmode, UNITS_PER_WORD); } /* We consider 8 ld/st pairs, for a total of 16 inline insns to be reasonable here. (Actually will emit a maximum of 18 inline insns for the case of size == 31 and align == 4). */ if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8 && memory_address_p (QImode, plus_constant_for_output (xoperands[0], INTVAL (sizertx))) && memory_address_p (QImode, plus_constant_for_output (xoperands[1], INTVAL (sizertx)))) { int size = INTVAL (sizertx); int offset = 0; /* We will store different integers into this particular RTX. */ xoperands[2] = rtx_alloc (CONST_INT); PUT_MODE (xoperands[2], VOIDmode); /* This case is currently not handled. Abort instead of generating bad code. */ if (align > UNITS_PER_WORD) abort (); if (TARGET_ARCH64 && align >= 8) { for (i = (size >> 3) - 1; i >= 0; i--) { INTVAL (xoperands[2]) = (i << 3) + offset; output_asm_insn ("ldx [%a1+%2],%%g1\n\tstx %%g1,[%a0+%2]", xoperands); } offset += (size & ~0x7); size = size & 0x7; if (size == 0) return ""; } if (align >= 4) { for (i = (size >> 2) - 1; i >= 0; i--) { INTVAL (xoperands[2]) = (i << 2) + offset; output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]", xoperands); } offset += (size & ~0x3); size = size & 0x3; if (size == 0) return ""; } if (align >= 2) { for (i = (size >> 1) - 1; i >= 0; i--) { INTVAL (xoperands[2]) = (i << 1) + offset; output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]", xoperands); } offset += (size & ~0x1); size = size & 0x1; if (size == 0) return ""; } if (align >= 1) { for (i = size - 1; i >= 0; i--) { INTVAL (xoperands[2]) = i + offset; output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]", xoperands); } return ""; } /* We should never reach here. */ abort (); } /* If the size isn't known to be a multiple of the alignment, we have to do it in smaller pieces. If we could determine that the size was a multiple of 2 (or whatever), we could be smarter about this. */ if (GET_CODE (sizertx) != CONST_INT) align = 1; else { int size = INTVAL (sizertx); while (size % align) align >>= 1; } if (align != INTVAL (alignrtx)) alignrtx = gen_rtx (CONST_INT, VOIDmode, align); xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++); xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align); xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++); ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3])); ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5])); /* This is the size of the transfer. Emit code to decrement the size value by ALIGN, and store the result in the temp1 register. */ output_size_for_block_move (sizertx, temp1, alignrtx); /* Must handle the case when the size is zero or negative, so the first thing we do is compare the size against zero, and only copy bytes if it is zero or greater. Note that we have already subtracted off the alignment once, so we must copy 1 alignment worth of bytes if the size is zero here. The SUN assembler complains about labels in branch delay slots, so we do this before outputting the load address, so that there will always be a harmless insn between the branch here and the next label emitted below. */ { char pattern[100]; sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]); output_asm_insn (pattern, xoperands); } zoperands[0] = operands[0]; zoperands[3] = plus_constant_for_output (operands[0], align); output_load_address (zoperands); /* ??? This might be much faster if the loops below were preconditioned and unrolled. That is, at run time, copy enough bytes one at a time to ensure that the target and source addresses are aligned to the the largest possible alignment. Then use a preconditioned unrolled loop to copy say 16 bytes at a time. Then copy bytes one at a time until finish the rest. */ /* Output the first label separately, so that it is spaced properly. */ ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3])); { char pattern[200]; register char *ld_suffix = ((align == 1) ? "ub" : (align == 2) ? "uh" : (align == 8 && TARGET_ARCH64) ? "x" : ""); register char *st_suffix = ((align == 1) ? "b" : (align == 2) ? "h" : (align == 8 && TARGET_ARCH64) ? "x" : ""); sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]); output_asm_insn (pattern, xoperands); } return ""; } #endif /* Output reasonable peephole for set-on-condition-code insns. Note that these insns assume a particular way of defining labels. Therefore, *both* sparc.h and this function must be changed if a new syntax is needed. */ char * output_scc_insn (operands, insn) rtx operands[]; rtx insn; { static char string[100]; rtx label = 0, next = insn; int need_label = 0; /* Try doing a jump optimization which jump.c can't do for us because we did not expose that setcc works by using branches. If this scc insn is followed by an unconditional branch, then have the jump insn emitted here jump to that location, instead of to the end of the scc sequence as usual. */ do { if (GET_CODE (next) == CODE_LABEL) label = next; next = NEXT_INSN (next); if (next == 0) break; } while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL); /* If we are in a sequence, and the following insn is a sequence also, then just following the current insn's next field will take us to the first insn of the next sequence, which is the wrong place. We don't want to optimize with a branch that has had its delay slot filled. Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next which fails only if NEXT is such a branch. */ if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next) && (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next)) label = JUMP_LABEL (next); /* If not optimizing, jump label fields are not set. To be safe, always check here to whether label is still zero. */ if (label == 0) { label = gen_label_rtx (); need_label = 1; } LABEL_NUSES (label) += 1; /* operands[3] is an unused slot. */ operands[3] = label; /* If we are in a delay slot, assume it is the delay slot of an fpcc insn since our type isn't allowed anywhere else. */ /* ??? Fpcc instructions no longer have delay slots, so this code is probably obsolete. */ /* The fastest way to emit code for this is an annulled branch followed by two move insns. This will take two cycles if the branch is taken, and three cycles if the branch is not taken. However, if we are in the delay slot of another branch, this won't work, because we can't put a branch in the delay slot of another branch. The above sequence would effectively take 3 or 4 cycles respectively since a no op would have be inserted between the two branches. In this case, we want to emit a move, annulled branch, and then the second move. This sequence always takes 3 cycles, and hence is faster when we are in a branch delay slot. */ if (final_sequence) { strcpy (string, "mov 0,%0\n\t"); strcat (string, output_cbranch (operands[2], 3, 0, 1, 0)); strcat (string, "\n\tmov 1,%0"); } else { strcpy (string, output_cbranch (operands[2], 3, 0, 1, 0)); strcat (string, "\n\tmov 1,%0\n\tmov 0,%0"); } if (need_label) strcat (string, "\n%l3:"); return string; } /* Vectors to keep interesting information about registers where it can easily be got. We use to use the actual mode value as the bit number, but there are more than 32 modes now. Instead we use two tables: one indexed by hard register number, and one indexed by mode. */ /* The purpose of sparc_mode_class is to shrink the range of modes so that they all fit (as bit numbers) in a 32 bit word (again). Each real mode is mapped into one sparc_mode_class mode. */ enum sparc_mode_class { S_MODE, D_MODE, T_MODE, O_MODE, SF_MODE, DF_MODE, TF_MODE, OF_MODE, CC_MODE, CCFP_MODE }; /* Modes for single-word and smaller quantities. */ #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE)) /* Modes for double-word and smaller quantities. */ #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE)) /* Modes for quad-word and smaller quantities. */ #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE)) /* Modes for single-float quantities. We must allow any single word or smaller quantity. This is because the fix/float conversion instructions take integer inputs/outputs from the float registers. */ #define SF_MODES (S_MODES) /* Modes for double-float and smaller quantities. */ #define DF_MODES (S_MODES | D_MODES) /* ??? Sparc64 fp regs cannot hold DImode values. */ #define DF_MODES64 (SF_MODES | DF_MODE /* | D_MODE*/) /* Modes for double-float only quantities. */ /* ??? Sparc64 fp regs cannot hold DImode values. See fix_truncsfdi2. */ #define DF_ONLY_MODES ((1 << (int) DF_MODE) /*| (1 << (int) D_MODE)*/) /* Modes for double-float and larger quantities. */ #define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES) /* Modes for quad-float only quantities. */ #define TF_ONLY_MODES (1 << (int) TF_MODE) /* Modes for quad-float and smaller quantities. */ #define TF_MODES (DF_MODES | TF_ONLY_MODES) /* ??? Sparc64 fp regs cannot hold DImode values. See fix_truncsfdi2. */ #define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES) /* Modes for condition codes. */ #define CC_MODES (1 << (int) CC_MODE) #define CCFP_MODES (1 << (int) CCFP_MODE) /* Value is 1 if register/mode pair is acceptable on sparc. The funny mixture of D and T modes is because integer operations do not specially operate on tetra quantities, so non-quad-aligned registers can hold quadword quantities (except %o4 and %i4 because they cross fixed registers). */ /* This points to either the 32 bit or the 64 bit version. */ int *hard_regno_mode_classes; static int hard_32bit_mode_classes[] = { S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; static int hard_64bit_mode_classes[] = { D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, /* FP regs f32 to f63. Only the even numbered registers actually exist, and none can hold SFmode/SImode values. */ DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0, /* %fcc[0123] */ CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES, /* %icc */ CC_MODES }; int sparc_mode_class [NUM_MACHINE_MODES]; enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER]; static void sparc_init_modes () { int i; for (i = 0; i < NUM_MACHINE_MODES; i++) { switch (GET_MODE_CLASS (i)) { case MODE_INT: case MODE_PARTIAL_INT: case MODE_COMPLEX_INT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) S_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) D_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) T_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) O_MODE; else sparc_mode_class[i] = 0; break; case MODE_FLOAT: case MODE_COMPLEX_FLOAT: if (GET_MODE_SIZE (i) <= 4) sparc_mode_class[i] = 1 << (int) SF_MODE; else if (GET_MODE_SIZE (i) == 8) sparc_mode_class[i] = 1 << (int) DF_MODE; else if (GET_MODE_SIZE (i) == 16) sparc_mode_class[i] = 1 << (int) TF_MODE; else if (GET_MODE_SIZE (i) == 32) sparc_mode_class[i] = 1 << (int) OF_MODE; else sparc_mode_class[i] = 0; break; case MODE_CC: default: /* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so we must explicitly check for them here. */ if (i == (int) CCFPmode || i == (int) CCFPEmode) sparc_mode_class[i] = 1 << (int) CCFP_MODE; else if (i == (int) CCmode || i == (int) CC_NOOVmode || i == (int) CCXmode || i == (int) CCX_NOOVmode) sparc_mode_class[i] = 1 << (int) CC_MODE; else sparc_mode_class[i] = 0; break; } } if (TARGET_ARCH64) hard_regno_mode_classes = hard_64bit_mode_classes; else hard_regno_mode_classes = hard_32bit_mode_classes; /* Initialize the array used by REGNO_REG_CLASS. */ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) { if (i < 32) sparc_regno_reg_class[i] = GENERAL_REGS; else if (i < 64) sparc_regno_reg_class[i] = FP_REGS; else if (i < 96) sparc_regno_reg_class[i] = EXTRA_FP_REGS; else if (i < 100) sparc_regno_reg_class[i] = FPCC_REGS; else sparc_regno_reg_class[i] = NO_REGS; } } /* Save non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int save_regs (file, low, high, base, offset, n_regs, real_offset) FILE *file; int low, high; char *base; int offset; int n_regs; int real_offset; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) { fprintf (file, "\tstx %s,[%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tstd %s,[%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, i, real_offset + 4 * n_regs); dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4); } n_regs += 2; } else { fprintf (file, "\tst %s,[%s+%d]\n", reg_names[i], base, offset + 4 * n_regs); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i, real_offset + 4 * n_regs); n_regs += 2; } else if (regs_ever_live[i+1] && ! call_used_regs[i+1]) { fprintf (file, "\tst %s,[%s+%d]\n", reg_names[i+1], base, offset + 4 * n_regs + 4); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4); n_regs += 2; } } } return n_regs; } /* Restore non call used registers from LOW to HIGH at BASE+OFFSET. N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs as it simplifies the code. */ static int restore_regs (file, low, high, base, offset, n_regs) FILE *file; int low, high; char *base; int offset; int n_regs; { int i; if (TARGET_ARCH64 && high <= 32) { for (i = low; i < high; i++) { if (regs_ever_live[i] && ! call_used_regs[i]) fprintf (file, "\tldx [%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; } } else { for (i = low; i < high; i += 2) { if (regs_ever_live[i] && ! call_used_regs[i]) if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tldd [%s+%d], %s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else fprintf (file, "\tld [%s+%d],%s\n", base, offset + 4 * n_regs, reg_names[i]), n_regs += 2; else if (regs_ever_live[i+1] && ! call_used_regs[i+1]) fprintf (file, "\tld [%s+%d],%s\n", base, offset + 4 * n_regs + 4, reg_names[i+1]), n_regs += 2; } } return n_regs; } /* Static variables we want to share between prologue and epilogue. */ /* Number of live general or floating point registers needed to be saved (as 4-byte quantities). This is only done if TARGET_EPILOGUE. */ static int num_gfregs; /* Compute the frame size required by the function. This function is called during the reload pass and also by output_function_prologue(). */ int compute_frame_size (size, leaf_function) int size; int leaf_function; { int n_regs = 0, i; int outgoing_args_size = (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (current_function_decl)); if (TARGET_EPILOGUE) { /* N_REGS is the number of 4-byte regs saved thus far. This applies even to v9 int regs to be consistent with save_regs/restore_regs. */ if (TARGET_ARCH64) { for (i = 0; i < 8; i++) if (regs_ever_live[i] && ! call_used_regs[i]) n_regs += 2; } else { for (i = 0; i < 8; i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; } for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2) if ((regs_ever_live[i] && ! call_used_regs[i]) || (regs_ever_live[i+1] && ! call_used_regs[i+1])) n_regs += 2; } /* Set up values for use in `function_epilogue'. */ num_gfregs = n_regs; if (leaf_function && n_regs == 0 && size == 0 && current_function_outgoing_args_size == 0) { actual_fsize = apparent_fsize = 0; } else { /* We subtract STARTING_FRAME_OFFSET, remember it's negative. The stack bias (if any) is taken out to undo its effects. */ apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8; apparent_fsize += n_regs * 4; actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8); } /* Make sure nothing can clobber our register windows. If a SAVE must be done, or there is a stack-local variable, the register window area must be allocated. ??? For v8 we apparently need an additional 8 bytes of reserved space. */ if (leaf_function == 0 || size > 0) actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8); return SPARC_STACK_ALIGN (actual_fsize); } /* Build a (32 bit) big number in a register. */ /* ??? We may be able to use the set macro here too. */ static void build_big_number (file, num, reg) FILE *file; int num; char *reg; { if (num >= 0 || ! TARGET_ARCH64) { fprintf (file, "\tsethi %%hi(%d),%s\n", num, reg); if ((num & 0x3ff) != 0) fprintf (file, "\tor %s,%%lo(%d),%s\n", reg, num, reg); } else /* num < 0 && TARGET_ARCH64 */ { /* Sethi does not sign extend, so we must use a little trickery to use it for negative numbers. Invert the constant before loading it in, then use xor immediate to invert the loaded bits (along with the upper 32 bits) to the desired constant. This works because the sethi and immediate fields overlap. */ int asize = num; int inv = ~asize; int low = -0x400 + (asize & 0x3FF); fprintf (file, "\tsethi %%hi(%d),%s\n\txor %s,%d,%s\n", inv, reg, reg, low, reg); } } /* Output code for the function prologue. */ void output_function_prologue (file, size, leaf_function) FILE *file; int size; int leaf_function; { /* Need to use actual_fsize, since we are also allocating space for our callee (and our own register save area). */ actual_fsize = compute_frame_size (size, leaf_function); if (leaf_function) { frame_base_name = "%sp"; frame_base_offset = actual_fsize + SPARC_STACK_BIAS; } else { frame_base_name = "%fp"; frame_base_offset = SPARC_STACK_BIAS; } /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); if (actual_fsize == 0) /* do nothing. */ ; else if (! leaf_function && ! TARGET_BROKEN_SAVERESTORE) { if (actual_fsize <= 4096) fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tsave %%sp,-4096,%%sp\n"); fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tsave %%sp,%%g1,%%sp\n"); } } else if (! leaf_function && TARGET_BROKEN_SAVERESTORE) { /* We assume the environment will properly handle or otherwise avoid trouble associated with an interrupt occurring after the `save' or trap occurring during it. */ fprintf (file, "\tsave\n"); if (actual_fsize <= 4096) fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tadd %%fp,-4096,%%sp\n"); fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tadd %%fp,%%g1,%%sp\n"); } } else /* leaf function */ { if (actual_fsize <= 4096) fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize); else if (actual_fsize <= 8192) { fprintf (file, "\tadd %%sp,-4096,%%sp\n"); fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096); } else { build_big_number (file, -actual_fsize, "%g1"); fprintf (file, "\tadd %%sp,%%g1,%%sp\n"); } } if (dwarf2out_do_frame () && actual_fsize) { char *label = dwarf2out_cfi_label (); /* The canonical frame address refers to the top of the frame. */ dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM : FRAME_POINTER_REGNUM), frame_base_offset); if (! leaf_function) { /* Note the register window save. This tells the unwinder that it needs to restore the window registers from the previous frame's window save area at 0(cfa). */ dwarf2out_window_save (label); /* The return address (-8) is now in %i7. */ dwarf2out_return_reg (label, 31); } } /* If doing anything with PIC, do it now. */ if (! flag_pic) fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); /* Call saved registers are saved just above the outgoing argument area. */ if (num_gfregs) { int offset, real_offset, n_regs; char *base; real_offset = -apparent_fsize; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096) { /* ??? This might be optimized a little as %g1 might already have a value close enough that a single add insn will do. */ /* ??? Although, all of this is probably only a temporary fix because if %g1 can hold a function result, then output_function_epilogue will lose (the result will get clobbered). */ build_big_number (file, offset, "%g1"); fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } if (TARGET_EPILOGUE && ! leaf_function) /* ??? Originally saved regs 0-15 here. */ n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset); else if (leaf_function) /* ??? Originally saved regs 0-31 here. */ n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset); if (TARGET_EPILOGUE) save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs, real_offset); } leaf_label = 0; if (leaf_function && actual_fsize != 0) { /* warning ("leaf procedure with frame size %d", actual_fsize); */ if (! TARGET_EPILOGUE) leaf_label = gen_label_rtx (); } } /* Output code for the function epilogue. */ void output_function_epilogue (file, size, leaf_function) FILE *file; int size; int leaf_function; { char *ret; if (leaf_label) { emit_label_after (leaf_label, get_last_insn ()); final_scan_insn (get_last_insn (), file, 0, 0, 1); } #ifdef FUNCTION_BLOCK_PROFILER_EXIT else if (profile_block_flag == 2) { FUNCTION_BLOCK_PROFILER_EXIT(file); } #endif /* Restore any call saved registers. */ if (num_gfregs) { int offset, n_regs; char *base; offset = -apparent_fsize + frame_base_offset; if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/) { build_big_number (file, offset, "%g1"); fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name); base = "%g1"; offset = 0; } else { base = frame_base_name; } if (TARGET_EPILOGUE && ! leaf_function) /* ??? Originally saved regs 0-15 here. */ n_regs = restore_regs (file, 0, 8, base, offset, 0); else if (leaf_function) /* ??? Originally saved regs 0-31 here. */ n_regs = restore_regs (file, 0, 8, base, offset, 0); if (TARGET_EPILOGUE) restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs); } /* Work out how to skip the caller's unimp instruction if required. */ if (leaf_function) ret = (SKIP_CALLERS_UNIMP_P ? "jmp %o7+12" : "retl"); else ret = (SKIP_CALLERS_UNIMP_P ? "jmp %i7+12" : "ret"); if (TARGET_EPILOGUE || leaf_label) { int old_target_epilogue = TARGET_EPILOGUE; target_flags &= ~old_target_epilogue; if (! leaf_function) { /* If we wound up with things in our delay slot, flush them here. */ if (current_function_epilogue_delay_list) { rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode), get_last_insn ()); PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode, gen_rtvec (2, PATTERN (XEXP (current_function_epilogue_delay_list, 0)), PATTERN (insn))); final_scan_insn (insn, file, 1, 0, 1); } else fprintf (file, "\t%s\n\trestore\n", ret); } /* All of the following cases are for leaf functions. */ else if (current_function_epilogue_delay_list) { /* eligible_for_epilogue_delay_slot ensures that if this is a leaf function, then we will only have insn in the delay slot if the frame size is zero, thus no adjust for the stack is needed here. */ if (actual_fsize != 0) abort (); fprintf (file, "\t%s\n", ret); final_scan_insn (XEXP (current_function_epilogue_delay_list, 0), file, 1, 0, 1); } /* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to avoid generating confusing assembly language output. */ else if (actual_fsize == 0) fprintf (file, "\t%s\n\tnop\n", ret); else if (actual_fsize <= 4096) fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize); else if (actual_fsize <= 8192) fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize - 4096); else if ((actual_fsize & 0x3ff) == 0) fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n", actual_fsize, ret); else fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n", actual_fsize, actual_fsize, ret); target_flags |= old_target_epilogue; } } /* Functions for handling argument passing. For v8 the first six args are normally in registers and the rest are pushed. Any arg that starts within the first 6 words is at least partially passed in a register unless its data type forbids. For v9, the argument registers are laid out as an array of 16 elements and arguments are added sequentially. The first 6 int args and up to the first 16 fp args (depending on size) are passed in regs. Slot Stack Integral Float Float in structure Double Long Double ---- ----- -------- ----- ------------------ ------ ----------- 15 [SP+248] %f31 %f30,%f31 %d30 14 [SP+240] %f29 %f28,%f29 %d28 %q28 13 [SP+232] %f27 %f26,%f27 %d26 12 [SP+224] %f25 %f24,%f25 %d24 %q24 11 [SP+216] %f23 %f22,%f23 %d22 10 [SP+208] %f21 %f20,%f21 %d20 %q20 9 [SP+200] %f19 %f18,%f19 %d18 8 [SP+192] %f17 %f16,%f17 %d16 %q16 7 [SP+184] %f15 %f14,%f15 %d14 6 [SP+176] %f13 %f12,%f13 %d12 %q12 5 [SP+168] %o5 %f11 %f10,%f11 %d10 4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8 3 [SP+152] %o3 %f7 %f6,%f7 %d6 2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4 1 [SP+136] %o1 %f3 %f2,%f3 %d2 0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0 Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise. Integral arguments are always passed as 64 bit quantities appropriately extended. Passing of floating point values is handled as follows. If a prototype is in scope: If the value is in a named argument (i.e. not a stdarg function or a value not part of the `...') then the value is passed in the appropriate fp reg. If the value is part of the `...' and is passed in one of the first 6 slots then the value is passed in the appropriate int reg. If the value is part of the `...' and is not passed in one of the first 6 slots then the value is passed in memory. If a prototype is not in scope: If the value is one of the first 6 arguments the value is passed in the appropriate integer reg and the appropriate fp reg. If the value is not one of the first 6 arguments the value is passed in the appropriate fp reg and in memory. */ /* Maximum number of int regs for args. */ #define SPARC_INT_ARG_MAX 6 /* Maximum number of fp regs for args. */ #define SPARC_FP_ARG_MAX 16 #define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) /* Handle the INIT_CUMULATIVE_ARGS macro. Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a function whose data type is FNTYPE. For a library call, FNTYPE is 0. */ void init_cumulative_args (cum, fntype, libname, indirect) CUMULATIVE_ARGS *cum; tree fntype, libname; int indirect; { cum->words = 0; cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype); cum->libcall_p = fntype == 0; } /* Compute the slot number to pass an argument in. Returns the slot number or -1 if passing on the stack. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. *PREGNO records the register number to use if scalar type. *PPADDING records the amount of padding needed in words. */ static int function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; int *pregno; int *ppadding; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno = cum->words; int regno; *ppadding = 0; if (type != 0 && TREE_ADDRESSABLE (type)) return -1; if (TARGET_ARCH32 && type != 0 && mode == BLKmode && TYPE_ALIGN (type) % PARM_BOUNDARY != 0) return -1; switch (mode) { case VOIDmode : /* MODE is VOIDmode when generating the actual call. See emit_call_1. */ return -1; case QImode : case CQImode : case HImode : case CHImode : case SImode : case CSImode : case DImode : case CDImode : if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; break; case SFmode : case SCmode : case DFmode : case DCmode : case TFmode : case TCmode : if (TARGET_ARCH32) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { if ((mode == TFmode || mode == TCmode) && (slotno & 1) != 0) slotno++, *ppadding = 1; if (TARGET_FPU && named) { if (slotno >= SPARC_FP_ARG_MAX) return 0; regno = SPARC_FP_ARG_FIRST + slotno * 2; if (mode == SFmode) regno++; } else { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } } break; case BLKmode : /* For sparc64, objects requiring 16 byte alignment get it. */ if (TARGET_ARCH64) { if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0) slotno++, *ppadding = 1; } if (TARGET_ARCH32 || type && TREE_CODE (type) == UNION_TYPE) { if (slotno >= SPARC_INT_ARG_MAX) return -1; regno = regbase + slotno; } else { tree field; int intregs_p = 0, fpregs_p = 0; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; /* First see what kinds of registers we need. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL) { if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU) fpregs_p = 1; else intregs_p = 1; if (DECL_PACKED (field)) packed_p = 1; } } if (packed_p || !named) fpregs_p = 0, intregs_p = 1; /* If all arg slots are filled, then must pass on stack. */ if (fpregs_p && slotno >= SPARC_FP_ARG_MAX) return -1; /* If there are only int args and all int arg slots are filled, then must pass on stack. */ if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX) return -1; /* Note that even if all int arg slots are filled, fp members may still be passed in regs if such regs are available. *PREGNO isn't set because there may be more than one, it's up to the caller to compute them. */ return slotno; } break; default : abort (); } *pregno = regno; return slotno; } /* Handle the FUNCTION_ARG macro. Determine where to put an argument to a function. Value is zero to push the argument on the stack, or a hard register in which to store the argument. CUM is a variable of type CUMULATIVE_ARGS which gives info about the preceding args and about the function being called. MODE is the argument's machine mode. TYPE is the data type of the argument (as a tree). This is null for libcalls where that information may not be available. NAMED is nonzero if this argument is a named parameter (otherwise it is an extra parameter matching an ellipsis). INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */ rtx function_arg (cum, mode, type, named, incoming_p) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; int incoming_p; { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int slotno, regno, padding; rtx reg; slotno = function_arg_slotno (cum, mode, type, named, incoming_p, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { reg = gen_rtx (REG, mode, regno); return reg; } /* v9 fp args in reg slots beyond the int reg slots get passed in regs but also have the slot allocated for them. If no prototype is in scope fp values in register slots get passed in two places, either fp regs and int regs or fp regs and memory. */ if ((GET_MODE_CLASS (mode) == MODE_FLOAT || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) && SPARC_FP_REG_P (regno)) { reg = gen_rtx (REG, mode, regno); if (cum->prototype_p || cum->libcall_p) { /* "* 2" because fp reg numbers are recorded in 4 byte quantities. */ /* ??? This will cause the value to be passed in the fp reg and in the stack. When a prototype exists we want to pass the value in the reg but reserve space on the stack. That's an optimization, and is deferred [for a bit]. */ if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2) return gen_rtx (PARALLEL, mode, gen_rtvec (2, gen_rtx (EXPR_LIST, VOIDmode, NULL_RTX, const0_rtx), gen_rtx (EXPR_LIST, VOIDmode, reg, const0_rtx))); else return reg; } else { if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2) { int regbase = (incoming_p ? SPARC_INCOMING_INT_ARG_FIRST : SPARC_OUTGOING_INT_ARG_FIRST); int intreg = regbase + (regno - SPARC_FP_ARG_FIRST) / 2; return gen_rtx (PARALLEL, mode, gen_rtvec (2, gen_rtx (EXPR_LIST, VOIDmode, gen_rtx (REG, mode, intreg), const0_rtx), gen_rtx (EXPR_LIST, VOIDmode, reg, const0_rtx))); } else return gen_rtx (PARALLEL, mode, gen_rtvec (2, gen_rtx (EXPR_LIST, VOIDmode, NULL_RTX, const0_rtx), gen_rtx (EXPR_LIST, VOIDmode, reg, const0_rtx))); } } else if (type && TREE_CODE (type) == RECORD_TYPE) { /* Structures up to 16 bytes in size are passed in arg slots on the stack and are promoted to registers where possible. */ tree field; rtx ret; int i; int nregs; /* Starting bit position of a sequence of integer fields, counted from msb of left most byte, -1 if last field wasn't an int. */ /* ??? This isn't entirely necessary, some simplification may be possible. */ int start_int_bitpos; /* Current bitpos in struct, counted from msb of left most byte. */ int bitpos, this_slotno; /* The ABI obviously doesn't specify how packed structures are passed. These are defined to be passed in int regs if possible, otherwise memory. */ int packed_p = 0; if (int_size_in_bytes (type) > 16) abort (); /* shouldn't get here */ /* We need to compute how many registers are needed so we can allocate the PARALLEL but before we can do that we need to know whether there are any packed fields. If there are, int regs are used regardless of whether there are fp values present. */ for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field)) { packed_p = 1; break; } } /* Compute how many registers we need. */ nregs = 0; start_int_bitpos = -1; for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field)); this_slotno = slotno + bitpos / BITS_PER_WORD; if (TREE_CODE (field) == FIELD_DECL) { if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU && ! packed_p && named) { /* There's no need to check this_slotno < SPARC_FP_ARG MAX. If it wasn't true we wouldn't be here. */ nregs++; start_int_bitpos = -1; } else if (this_slotno < SPARC_INT_ARG_MAX) { if (start_int_bitpos == -1) { nregs++; start_int_bitpos = bitpos; } else { if (bitpos % BITS_PER_WORD == 0) nregs++; } } } } if (nregs == 0) abort (); ret = gen_rtx (PARALLEL, BLKmode, rtvec_alloc (nregs + 1)); /* ??? This causes the entire struct to be passed in memory. This isn't necessary, but is left for later. */ XVECEXP (ret, 0, 0) = gen_rtx (EXPR_LIST, VOIDmode, NULL_RTX, const0_rtx); /* Fill in the entries. */ start_int_bitpos = -1; for (i = 1, field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) { bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field)); this_slotno = slotno + bitpos / BITS_PER_WORD; if (TREE_CODE (field) == FIELD_DECL) { if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE && TARGET_FPU && ! packed_p && named) { reg = gen_rtx (REG, DECL_MODE (field), (SPARC_FP_ARG_FIRST + this_slotno * 2 + (DECL_MODE (field) == SFmode && (bitpos & 32) != 0))); XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg, GEN_INT (bitpos / BITS_PER_UNIT)); i++; start_int_bitpos = -1; } else { if (this_slotno < SPARC_INT_ARG_MAX && (start_int_bitpos == -1 || bitpos % BITS_PER_WORD == 0)) { enum machine_mode mode; /* If this is the trailing part of a word, only load that much into the register. Otherwise load the whole register. Note that in the latter case we may pick up unwanted bits. It's not a problem at the moment but may wish to revisit. */ if (bitpos % BITS_PER_WORD != 0) mode = mode_for_size (BITS_PER_WORD - bitpos % BITS_PER_WORD, MODE_INT, 0); else mode = word_mode; regno = regbase + this_slotno; reg = gen_rtx (REG, mode, regno); XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg, GEN_INT (bitpos / BITS_PER_UNIT)); i++; if (start_int_bitpos == -1) start_int_bitpos = bitpos; } } } } if (i != nregs + 1) abort (); return ret; } else if (type && TREE_CODE (type) == UNION_TYPE) { enum machine_mode mode; int bytes = int_size_in_bytes (type); if (bytes > 16) abort (); mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0); reg = gen_rtx (REG, mode, regno); } else { /* Scalar or complex int. */ reg = gen_rtx (REG, mode, regno); } return reg; } /* Handle the FUNCTION_ARG_PARTIAL_NREGS macro. For an arg passed partly in registers and partly in memory, this is the number of registers used. For args passed entirely in registers or entirely in memory, zero. Any arg that starts in the first 6 regs but won't entirely fit in them needs partial registers on v8. On v9, structures with integer values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp values that begin in the last fp reg [where "last fp reg" varies with the mode] will be split between that reg and memory. */ int function_arg_partial_nregs (cum, mode, type, named) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); if (slotno == -1) return 0; if (TARGET_ARCH32) { if ((slotno + (mode == BLKmode ? ROUND_ADVANCE (int_size_in_bytes (type)) : ROUND_ADVANCE (GET_MODE_SIZE (mode)))) > NPARM_REGS (SImode)) return NPARM_REGS (SImode) - slotno; return 0; } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); int align = TYPE_ALIGN (type); if (align == 16) slotno += slotno & 1; if (size > 8 && size <= 16 && slotno == SPARC_INT_ARG_MAX - 1) return 1; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT || (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT && ! TARGET_FPU)) { if (GET_MODE_ALIGNMENT (mode) == 128) { slotno += slotno & 1; if (slotno == SPARC_INT_ARG_MAX - 2) return 1; } else { if (slotno == SPARC_INT_ARG_MAX - 1) return 1; } } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { if (GET_MODE_ALIGNMENT (mode) == 128) slotno += slotno & 1; if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD) > SPARC_FP_ARG_MAX) return 1; } return 0; } } /* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro. !v9: The SPARC ABI stipulates passing struct arguments (of any size) and quad-precision floats by invisible reference. v9: aggregates greater than 16 bytes are passed by reference. For Pascal, also pass arrays by reference. */ int function_arg_pass_by_reference (cum, mode, type, named) const CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { if (TARGET_ARCH32) { return (type && AGGREGATE_TYPE_P (type) || mode == TFmode || mode == TCmode); } else { return ((type && TREE_CODE (type) == ARRAY_TYPE) || (type && AGGREGATE_TYPE_P (type) && int_size_in_bytes (type) > 16)); } } /* Handle the FUNCTION_ARG_ADVANCE macro. Update the data in CUM to advance over an argument of mode MODE and data type TYPE. TYPE is null for libcalls where that information may not be available. */ void function_arg_advance (cum, mode, type, named) CUMULATIVE_ARGS *cum; enum machine_mode mode; tree type; int named; { int slotno, regno, padding; /* We pass 0 for incoming_p here, it doesn't matter. */ slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding); /* If register required leading padding, add it. */ if (slotno != -1) cum->words += padding; if (TARGET_ARCH32) { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } else { if (type && AGGREGATE_TYPE_P (type)) { int size = int_size_in_bytes (type); if (size <= 8) ++cum->words; else if (size <= 16) cum->words += 2; else /* passed by reference */ ++cum->words; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT) { cum->words += 2; } else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT) { cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD; } else { cum->words += (mode != BLKmode ? ROUND_ADVANCE (GET_MODE_SIZE (mode)) : ROUND_ADVANCE (int_size_in_bytes (type))); } } } /* Handle the FUNCTION_ARG_PADDING macro. For the 64 bit ABI structs are always stored left shifted in their argument slot. */ enum direction function_arg_padding (mode, type) enum machine_mode mode; tree type; { if (TARGET_ARCH64 && type && TREE_CODE (type) == RECORD_TYPE) { return upward; } /* This is the default definition. */ return (! BYTES_BIG_ENDIAN ? upward : ((mode == BLKmode ? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST && int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT)) : GET_MODE_BITSIZE (mode) < PARM_BOUNDARY) ? downward : upward)); } /* Do what is necessary for `va_start'. The argument is ignored. We look at the current function to determine if stdarg or varargs is used and return the address of the first unnamed parameter. */ rtx sparc_builtin_saveregs (arglist) tree arglist; { tree fntype = TREE_TYPE (current_function_decl); int stdarg = (TYPE_ARG_TYPES (fntype) != 0 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype))) != void_type_node)); int first_reg = current_function_args_info.words; rtx address; int regno; for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++) emit_move_insn (gen_rtx (MEM, word_mode, gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (STACK_POINTER_OFFSET + UNITS_PER_WORD * regno))), gen_rtx (REG, word_mode, BASE_INCOMING_ARG_REG (word_mode) + regno)); address = gen_rtx (PLUS, Pmode, frame_pointer_rtx, GEN_INT (STACK_POINTER_OFFSET + UNITS_PER_WORD * first_reg)); if (flag_check_memory_usage && first_reg < NPARM_REGS (word_mode)) emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3, address, ptr_mode, GEN_INT (UNITS_PER_WORD * (NPARM_REGS (word_mode) - first_reg)), TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW), TYPE_MODE (integer_type_node)); return address; } /* Return the string to output a conditional branch to LABEL, which is the operand number of the label. OP is the conditional expression. XEXP (OP, 0) is assumed to be a condition code register (integer or floating point) and its mode specifies what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. */ char * output_cbranch (op, label, reversed, annul, noop) rtx op; int label; int reversed, annul, noop; { static char string[20]; enum rtx_code code = GET_CODE (op); rtx cc_reg = XEXP (op, 0); enum machine_mode mode = GET_MODE (cc_reg); static char v8_labelno[] = " %lX"; static char v9_icc_labelno[] = " %%icc,%lX"; static char v9_xcc_labelno[] = " %%xcc,%lX"; static char v9_fcc_labelno[] = " %%fccX,%lY"; char *labelno; int labeloff; /* ??? !v9: FP branches cannot be preceded by another floating point insn. Because there is currently no concept of pre-delay slots, we can fix this only by always emitting a nop before a floating point branch. */ if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9) strcpy (string, "nop\n\t"); else string[0] = '\0'; /* If not floating-point or if EQ or NE, we can just reverse the code. */ if (reversed && ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE)) code = reverse_condition (code), reversed = 0; /* Start by writing the branch condition. */ switch (code) { case NE: if (mode == CCFPmode || mode == CCFPEmode) strcat (string, "fbne"); else strcpy (string, "bne"); break; case EQ: if (mode == CCFPmode || mode == CCFPEmode) strcat (string, "fbe"); else strcpy (string, "be"); break; case GE: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbul"); else strcat (string, "fbge"); } else if (mode == CC_NOOVmode) strcpy (string, "bpos"); else strcpy (string, "bge"); break; case GT: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbule"); else strcat (string, "fbg"); } else strcpy (string, "bg"); break; case LE: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbug"); else strcat (string, "fble"); } else strcpy (string, "ble"); break; case LT: if (mode == CCFPmode || mode == CCFPEmode) { if (reversed) strcat (string, "fbuge"); else strcat (string, "fbl"); } else if (mode == CC_NOOVmode) strcpy (string, "bneg"); else strcpy (string, "bl"); break; case GEU: strcpy (string, "bgeu"); break; case GTU: strcpy (string, "bgu"); break; case LEU: strcpy (string, "bleu"); break; case LTU: strcpy (string, "blu"); break; } /* Now add the annulling, the label, and a possible noop. */ if (annul) strcat (string, ",a"); /* ??? If v9, optional prediction bit ",pt" or ",pf" goes here. */ if (! TARGET_V9) { labeloff = 3; labelno = v8_labelno; } else { labeloff = 9; if (mode == CCFPmode || mode == CCFPEmode) { labeloff = 10; labelno = v9_fcc_labelno; /* Set the char indicating the number of the fcc reg to use. */ labelno[6] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0'; } else if (mode == CCXmode || mode == CCX_NOOVmode) labelno = v9_xcc_labelno; else labelno = v9_icc_labelno; } /* Set the char indicating the number of the operand containing the label_ref. */ labelno[labeloff] = label + '0'; strcat (string, labelno); if (noop) strcat (string, "\n\tnop"); return string; } /* Return the string to output a conditional branch to LABEL, testing register REG. LABEL is the operand number of the label; REG is the operand number of the reg. OP is the conditional expression. The mode of REG says what kind of comparison we made. REVERSED is non-zero if we should reverse the sense of the comparison. ANNUL is non-zero if we should generate an annulling branch. NOOP is non-zero if we have to follow this branch by a noop. */ char * output_v9branch (op, reg, label, reversed, annul, noop) rtx op; int reg, label; int reversed, annul, noop; { static char string[20]; enum rtx_code code = GET_CODE (op); enum machine_mode mode = GET_MODE (XEXP (op, 0)); static char labelno[] = " %X,%lX"; /* If not floating-point or if EQ or NE, we can just reverse the code. */ if (reversed) code = reverse_condition (code), reversed = 0; /* Only 64 bit versions of these instructions exist. */ if (mode != DImode) abort (); /* Start by writing the branch condition. */ switch (code) { case NE: strcpy (string, "brnz"); break; case EQ: strcpy (string, "brz"); break; case GE: strcpy (string, "brgez"); break; case LT: strcpy (string, "brlz"); break; case LE: strcpy (string, "brlez"); break; case GT: strcpy (string, "brgz"); break; default: abort (); } /* Now add the annulling, reg, label, and nop. */ if (annul) strcat (string, ",a"); /* ??? Optional prediction bit ",pt" or ",pf" goes here. */ labelno[2] = reg + '0'; labelno[6] = label + '0'; strcat (string, labelno); if (noop) strcat (string, "\n\tnop"); return string; } /* Output assembler code to return from a function. */ /* ??? v9: Update to use the new `return' instruction. Also, add patterns to md file for the `return' instruction. */ char * output_return (operands) rtx *operands; { if (leaf_label) { operands[0] = leaf_label; return "b,a %l0"; } else if (leaf_function) { /* If we didn't allocate a frame pointer for the current function, the stack pointer might have been adjusted. Output code to restore it now. */ operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize); /* Use sub of negated value in first two cases instead of add to allow actual_fsize == 4096. */ if (actual_fsize <= 4096) { if (SKIP_CALLERS_UNIMP_P) return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp"; else return "retl\n\tsub %%sp,-%0,%%sp"; } else if (actual_fsize <= 8192) { operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize - 4096); if (SKIP_CALLERS_UNIMP_P) return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp"; else return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp"; } else if (SKIP_CALLERS_UNIMP_P) { if ((actual_fsize & 0x3ff) != 0) return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp"; else return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp"; } else { if ((actual_fsize & 0x3ff) != 0) return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp"; else return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp"; } } else { if (SKIP_CALLERS_UNIMP_P) return "jmp %%i7+12\n\trestore"; else return "ret\n\trestore"; } } /* Leaf functions and non-leaf functions have different needs. */ static int reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER; static int reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER; static int *reg_alloc_orders[] = { reg_leaf_alloc_order, reg_nonleaf_alloc_order}; void order_regs_for_local_alloc () { static int last_order_nonleaf = 1; if (regs_ever_live[15] != last_order_nonleaf) { last_order_nonleaf = !last_order_nonleaf; bcopy ((char *) reg_alloc_orders[last_order_nonleaf], (char *) reg_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int)); } } /* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1. This makes them candidates for using ldd and std insns. Note reg1 and reg2 *must* be hard registers. To be sure we will abort if we are passed pseudo registers. */ int registers_ok_for_ldd_peep (reg1, reg2) rtx reg1, reg2; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG) return 0; if (REGNO (reg1) % 2 != 0) return 0; return (REGNO (reg1) == REGNO (reg2) - 1); } /* Return 1 if addr1 and addr2 are suitable for use in an ldd or std insn. This can only happen when addr1 and addr2 are consecutive memory locations (addr1 + 4 == addr2). addr1 must also be aligned on a 64 bit boundary (addr1 % 8 == 0). We know %sp and %fp are kept aligned on a 64 bit boundary. Other registers are assumed to *never* be properly aligned and are rejected. Knowing %sp and %fp are kept aligned on a 64 bit boundary, we need only check that the offset for addr1 % 8 == 0. */ int addrs_ok_for_ldd_peep (addr1, addr2) rtx addr1, addr2; { int reg1, offset1; /* Extract a register number and offset (if used) from the first addr. */ if (GET_CODE (addr1) == PLUS) { /* If not a REG, return zero. */ if (GET_CODE (XEXP (addr1, 0)) != REG) return 0; else { reg1 = REGNO (XEXP (addr1, 0)); /* The offset must be constant! */ if (GET_CODE (XEXP (addr1, 1)) != CONST_INT) return 0; offset1 = INTVAL (XEXP (addr1, 1)); } } else if (GET_CODE (addr1) != REG) return 0; else { reg1 = REGNO (addr1); /* This was a simple (mem (reg)) expression. Offset is 0. */ offset1 = 0; } /* Make sure the second address is a (mem (plus (reg) (const_int). */ if (GET_CODE (addr2) != PLUS) return 0; if (GET_CODE (XEXP (addr2, 0)) != REG || GET_CODE (XEXP (addr2, 1)) != CONST_INT) return 0; /* Only %fp and %sp are allowed. Additionally both addresses must use the same register. */ if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM) return 0; if (reg1 != REGNO (XEXP (addr2, 0))) return 0; /* The first offset must be evenly divisible by 8 to ensure the address is 64 bit aligned. */ if (offset1 % 8 != 0) return 0; /* The offset for the second addr must be 4 more than the first addr. */ if (INTVAL (XEXP (addr2, 1)) != offset1 + 4) return 0; /* All the tests passed. addr1 and addr2 are valid for ldd and std instructions. */ return 1; } /* Return 1 if reg is a pseudo, or is the first register in a hard register pair. This makes it a candidate for use in ldd and std insns. */ int register_ok_for_ldd (reg) rtx reg; { /* We might have been passed a SUBREG. */ if (GET_CODE (reg) != REG) return 0; if (REGNO (reg) < FIRST_PSEUDO_REGISTER) return (REGNO (reg) % 2 == 0); else return 1; } /* Print operand X (an rtx) in assembler syntax to file FILE. CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified. For `%' followed by punctuation, CODE is the punctuation and X is null. */ void print_operand (file, x, code) FILE *file; rtx x; int code; { switch (code) { case '#': /* Output a 'nop' if there's nothing for the delay slot. */ if (dbr_sequence_length () == 0) fputs ("\n\tnop", file); return; case '*': /* Output an annul flag if there's nothing for the delay slot and we are optimizing. This is always used with '(' below. */ /* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch; this is a dbx bug. So, we only do this when optimizing. */ if (dbr_sequence_length () == 0 && optimize) fputs (",a", file); return; case '(': /* Output a 'nop' if there's nothing for the delay slot and we are not optimizing. This is always used with '*' above. */ if (dbr_sequence_length () == 0 && ! optimize) fputs ("\n\tnop", file); return; case '_': /* Output the Embedded Medium/Anywhere code model base register. */ fputs (EMBMEDANY_BASE_REG, file); return; case '@': /* Print out what we are using as the frame pointer. This might be %fp, or might be %sp+offset. */ /* ??? What if offset is too big? Perhaps the caller knows it isn't? */ fprintf (file, "%s+%d", frame_base_name, frame_base_offset); return; case 'Y': /* Adjust the operand to take into account a RESTORE operation. */ if (GET_CODE (x) != REG) output_operand_lossage ("Invalid %%Y operand"); else if (REGNO (x) < 8) fputs (reg_names[REGNO (x)], file); else if (REGNO (x) >= 24 && REGNO (x) < 32) fputs (reg_names[REGNO (x)-16], file); else output_operand_lossage ("Invalid %%Y operand"); return; case 'L': /* Print out the low order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)+1], file); else fputs (reg_names[REGNO (x)], file); return; case 'H': /* Print out the high order register name of a register pair. */ if (WORDS_BIG_ENDIAN) fputs (reg_names[REGNO (x)], file); else fputs (reg_names[REGNO (x)+1], file); return; case 'R': /* Print out the second register name of a register pair or quad. I.e., R (%o0) => %o1. */ fputs (reg_names[REGNO (x)+1], file); return; case 'S': /* Print out the third register name of a register quad. I.e., S (%o0) => %o2. */ fputs (reg_names[REGNO (x)+2], file); return; case 'T': /* Print out the fourth register name of a register quad. I.e., T (%o0) => %o3. */ fputs (reg_names[REGNO (x)+3], file); return; case 'x': /* Print a condition code register. */ if (REGNO (x) == SPARC_ICC_REG) { /* We don't handle CC[X]_NOOVmode because they're not supposed to occur here. */ if (GET_MODE (x) == CCmode) fputs ("%icc", file); else if (GET_MODE (x) == CCXmode) fputs ("%xcc", file); else abort (); } else /* %fccN register */ fputs (reg_names[REGNO (x)], file); return; case 'm': /* Print the operand's address only. */ output_address (XEXP (x, 0)); return; case 'r': /* In this case we need a register. Use %g0 if the operand is const0_rtx. */ if (x == const0_rtx || (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x)))) { fputs ("%g0", file); return; } else break; case 'A': switch (GET_CODE (x)) { case IOR: fputs ("or", file); break; case AND: fputs ("and", file); break; case XOR: fputs ("xor", file); break; default: output_operand_lossage ("Invalid %%A operand"); } return; case 'B': switch (GET_CODE (x)) { case IOR: fputs ("orn", file); break; case AND: fputs ("andn", file); break; case XOR: fputs ("xnor", file); break; default: output_operand_lossage ("Invalid %%B operand"); } return; /* These are used by the conditional move instructions. */ case 'c' : case 'C': { enum rtx_code rc = (code == 'c' ? reverse_condition (GET_CODE (x)) : GET_CODE (x)); switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("ge", file); break; case GT: fputs ("g", file); break; case LE: fputs ("le", file); break; case LT: fputs ("l", file); break; case GEU: fputs ("geu", file); break; case GTU: fputs ("gu", file); break; case LEU: fputs ("leu", file); break; case LTU: fputs ("lu", file); break; default: output_operand_lossage (code == 'c' ? "Invalid %%c operand" : "Invalid %%C operand"); } return; } /* These are used by the movr instruction pattern. */ case 'd': case 'D': { enum rtx_code rc = (code == 'd' ? reverse_condition (GET_CODE (x)) : GET_CODE (x)); switch (rc) { case NE: fputs ("ne", file); break; case EQ: fputs ("e", file); break; case GE: fputs ("gez", file); break; case LT: fputs ("lz", file); break; case LE: fputs ("lez", file); break; case GT: fputs ("gz", file); break; default: output_operand_lossage (code == 'd' ? "Invalid %%d operand" : "Invalid %%D operand"); } return; } case 'b': { /* Print a sign-extended character. */ int i = INTVAL (x) & 0xff; if (i & 0x80) i |= 0xffffff00; fprintf (file, "%d", i); return; } case 'f': /* Operand must be a MEM; write its address. */ if (GET_CODE (x) != MEM) output_operand_lossage ("Invalid %%f operand"); output_address (XEXP (x, 0)); return; case 0: /* Do nothing special. */ break; default: /* Undocumented flag. */ output_operand_lossage ("invalid operand output code"); } if (GET_CODE (x) == REG) fputs (reg_names[REGNO (x)], file); else if (GET_CODE (x) == MEM) { fputc ('[', file); /* Poor Sun assembler doesn't understand absolute addressing. */ if (CONSTANT_P (XEXP (x, 0)) && ! TARGET_LIVE_G0) fputs ("%g0+", file); output_address (XEXP (x, 0)); fputc (']', file); } else if (GET_CODE (x) == HIGH) { fputs ("%hi(", file); output_addr_const (file, XEXP (x, 0)); fputc (')', file); } else if (GET_CODE (x) == LO_SUM) { print_operand (file, XEXP (x, 0), 0); fputs ("+%lo(", file); output_addr_const (file, XEXP (x, 1)); fputc (')', file); } else if (GET_CODE (x) == CONST_DOUBLE && (GET_MODE (x) == VOIDmode || GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)) { if (CONST_DOUBLE_HIGH (x) == 0) fprintf (file, "%u", CONST_DOUBLE_LOW (x)); else if (CONST_DOUBLE_HIGH (x) == -1 && CONST_DOUBLE_LOW (x) < 0) fprintf (file, "%d", CONST_DOUBLE_LOW (x)); else output_operand_lossage ("long long constant not a valid immediate operand"); } else if (GET_CODE (x) == CONST_DOUBLE) output_operand_lossage ("floating point constant not a valid immediate operand"); else { output_addr_const (file, x); } } /* This function outputs assembler code for VALUE to FILE, where VALUE is a 64 bit (DImode) value. */ /* ??? If there is a 64 bit counterpart to .word that the assembler understands, then using that would simply this code greatly. */ /* ??? We only output .xword's for symbols and only then in environments where the assembler can handle them. */ void output_double_int (file, value) FILE *file; rtx value; { if (GET_CODE (value) == CONST_INT) { /* ??? This has endianness issues. */ #if HOST_BITS_PER_WIDE_INT == 64 HOST_WIDE_INT xword = INTVAL (value); HOST_WIDE_INT high, low; high = (xword >> 32) & 0xffffffff; low = xword & 0xffffffff; ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, high)); ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, low)); #else if (INTVAL (value) < 0) ASM_OUTPUT_INT (file, constm1_rtx); else ASM_OUTPUT_INT (file, const0_rtx); ASM_OUTPUT_INT (file, value); #endif } else if (GET_CODE (value) == CONST_DOUBLE) { ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_HIGH (value))); ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, CONST_DOUBLE_LOW (value))); } else if (GET_CODE (value) == SYMBOL_REF || GET_CODE (value) == CONST || GET_CODE (value) == PLUS || (TARGET_ARCH64 && (GET_CODE (value) == LABEL_REF || GET_CODE (value) == CODE_LABEL || GET_CODE (value) == MINUS))) { if (!TARGET_V9 || TARGET_CM_MEDLOW) { ASM_OUTPUT_INT (file, const0_rtx); ASM_OUTPUT_INT (file, value); } else { fprintf (file, "\t%s\t", ASM_LONGLONG); output_addr_const (file, value); fprintf (file, "\n"); } } else abort (); } /* Return the value of a code used in the .proc pseudo-op that says what kind of result this function returns. For non-C types, we pick the closest C type. */ #ifndef CHAR_TYPE_SIZE #define CHAR_TYPE_SIZE BITS_PER_UNIT #endif #ifndef SHORT_TYPE_SIZE #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2) #endif #ifndef INT_TYPE_SIZE #define INT_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_TYPE_SIZE #define LONG_TYPE_SIZE BITS_PER_WORD #endif #ifndef LONG_LONG_TYPE_SIZE #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef FLOAT_TYPE_SIZE #define FLOAT_TYPE_SIZE BITS_PER_WORD #endif #ifndef DOUBLE_TYPE_SIZE #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif #ifndef LONG_DOUBLE_TYPE_SIZE #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2) #endif unsigned long sparc_type_code (type) register tree type; { register unsigned long qualifiers = 0; register unsigned shift = 6; /* Only the first 30 bits of the qualifier are valid. We must refrain from setting more, since some assemblers will give an error for this. Also, we must be careful to avoid shifts of 32 bits or more to avoid getting unpredictable results. */ for (;;) { switch (TREE_CODE (type)) { case ERROR_MARK: return qualifiers; case ARRAY_TYPE: if (shift < 30) qualifiers |= (3 << shift); shift += 2; type = TREE_TYPE (type); break; case FUNCTION_TYPE: case METHOD_TYPE: if (shift < 30) qualifiers |= (2 << shift); shift += 2; type = TREE_TYPE (type); break; case POINTER_TYPE: case REFERENCE_TYPE: case OFFSET_TYPE: if (shift < 30) qualifiers |= (1 << shift); shift += 2; type = TREE_TYPE (type); break; case RECORD_TYPE: return (qualifiers | 8); case UNION_TYPE: case QUAL_UNION_TYPE: return (qualifiers | 9); case ENUMERAL_TYPE: return (qualifiers | 10); case VOID_TYPE: return (qualifiers | 16); case INTEGER_TYPE: /* If this is a range type, consider it to be the underlying type. */ if (TREE_TYPE (type) != 0) { type = TREE_TYPE (type); break; } /* Carefully distinguish all the standard types of C, without messing up if the language is not C. We do this by testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to look at both the names and the above fields, but that's redundant. Any type whose size is between two C types will be considered to be the wider of the two types. Also, we do not have a special code to use for "long long", so anything wider than long is treated the same. Note that we can't distinguish between "int" and "long" in this code if they are the same size, but that's fine, since neither can the assembler. */ if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2)); else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3)); else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE) return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4)); else return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5)); case REAL_TYPE: /* Carefully distinguish all the standard types of C, without messing up if the language is not C. */ if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE) return (qualifiers | 6); else return (qualifiers | 7); case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */ /* ??? We need to distinguish between double and float complex types, but I don't know how yet because I can't reach this code from existing front-ends. */ return (qualifiers | 7); /* Who knows? */ case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */ case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */ case FILE_TYPE: /* GNU Pascal FILE type. */ case SET_TYPE: /* GNU Pascal SET type. */ case LANG_TYPE: /* ? */ return qualifiers; default: abort (); /* Not a type! */ } } } /* Nested function support. */ /* Emit RTL insns to initialize the variable parts of a trampoline. FNADDR is an RTX for the address of the function's pure code. CXT is an RTX for the static chain value for the function. This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi (to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes (to store insns). This is a bit excessive. Perhaps a different mechanism would be better here. Emit enough FLUSH insns to synchronize the data and instruction caches. */ void sparc_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, cxt, size_int (10), 0, 1); rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, fnaddr, size_int (10), 0, 1); rtx low_cxt = expand_and (cxt, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); rtx low_fn = expand_and (fnaddr, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0); rtx g1_sethi = gen_rtx (HIGH, SImode, gen_rtx (CONST_INT, VOIDmode, 0x03000000)); rtx g2_sethi = gen_rtx (HIGH, SImode, gen_rtx (CONST_INT, VOIDmode, 0x05000000)); rtx g1_ori = gen_rtx (HIGH, SImode, gen_rtx (CONST_INT, VOIDmode, 0x82106000)); rtx g2_ori = gen_rtx (HIGH, SImode, gen_rtx (CONST_INT, VOIDmode, 0x8410A000)); rtx tem = gen_reg_rtx (SImode); emit_move_insn (tem, g1_sethi); emit_insn (gen_iorsi3 (high_fn, high_fn, tem)); emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 0)), high_fn); emit_move_insn (tem, g1_ori); emit_insn (gen_iorsi3 (low_fn, low_fn, tem)); emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 4)), low_fn); emit_move_insn (tem, g2_sethi); emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem)); emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 8)), high_cxt); emit_move_insn (tem, g2_ori); emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem)); emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 16)), low_cxt); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode, tramp)))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode, plus_constant (tramp, 8))))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode, plus_constant (tramp, 16))))); } /* The 64 bit version is simpler because it makes more sense to load the values as "immediate" data out of the trampoline. It's also easier since we can read the PC without clobbering a register. */ void sparc64_initialize_trampoline (tramp, fnaddr, cxt) rtx tramp, fnaddr, cxt; { emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 24)), cxt); emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 32)), fnaddr); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, tramp)))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, plus_constant (tramp, 8))))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, plus_constant (tramp, 16))))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, plus_constant (tramp, 24))))); emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, plus_constant (tramp, 32))))); } /* Subroutines to support a flat (single) register window calling convention. */ /* Single-register window sparc stack frames look like: Before call After call +-----------------------+ +-----------------------+ high | | | | mem | caller's temps. | | caller's temps. | | | | | +-----------------------+ +-----------------------+ | | | | | arguments on stack. | | arguments on stack. | | | | | +-----------------------+FP+92->+-----------------------+ | 6 words to save | | 6 words to save | | arguments passed | | arguments passed | | in registers, even | | in registers, even | | if not passed. | | if not passed. | SP+68->+-----------------------+FP+68->+-----------------------+ | 1 word struct addr | | 1 word struct addr | +-----------------------+FP+64->+-----------------------+ | | | | | 16 word reg save area | | 16 word reg save area | | | | | SP->+-----------------------+ FP->+-----------------------+ | 4 word area for | | fp/alu reg moves | FP-16->+-----------------------+ | | | local variables | | | +-----------------------+ | | | fp register save | | | +-----------------------+ | | | gp register save | | | +-----------------------+ | | | alloca allocations | | | +-----------------------+ | | | arguments on stack | | | SP+92->+-----------------------+ | 6 words to save | | arguments passed | | in registers, even | low | if not passed. | memory SP+68->+-----------------------+ | 1 word struct addr | SP+64->+-----------------------+ | | I 16 word reg save area | | | SP->+-----------------------+ */ /* Structure to be filled in by sparc_flat_compute_frame_size with register save masks, and offsets for the current function. */ struct sparc_frame_info { unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # bytes of extra gunk. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset from new sp to store regs. */ int initialized; /* Nonzero if frame size already calculated. */ }; /* Current frame information calculated by sparc_flat_compute_frame_size. */ struct sparc_frame_info current_frame_info; /* Zero structure to initialize current_frame_info. */ struct sparc_frame_info zero_frame_info; /* Tell prologue and epilogue if register REGNO should be saved / restored. */ #define RETURN_ADDR_REGNUM 15 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM)) #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM)) #define MUST_SAVE_REGISTER(regno) \ ((regs_ever_live[regno] && !call_used_regs[regno]) \ || (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \ || (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM])) /* Return the bytes needed to compute the frame pointer from the current stack pointer. */ unsigned long sparc_flat_compute_frame_size (size) int size; /* # of var. bytes allocated. */ { int regno; unsigned long total_size; /* # bytes that the entire frame takes up. */ unsigned long var_size; /* # bytes that variables take up. */ unsigned long args_size; /* # bytes that outgoing arguments take up. */ unsigned long extra_size; /* # extra bytes. */ unsigned int gp_reg_size; /* # bytes needed to store gp regs. */ unsigned int fp_reg_size; /* # bytes needed to store fp regs. */ unsigned long gmask; /* Mask of saved gp registers. */ unsigned long fmask; /* Mask of saved fp registers. */ unsigned long reg_offset; /* Offset to register save area. */ int need_aligned_p; /* 1 if need the save area 8 byte aligned. */ /* This is the size of the 16 word reg save area, 1 word struct addr area, and 4 word fp/alu register copy area. */ extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0); var_size = size; /* Also include the size needed for the 6 parameter registers. */ args_size = current_function_outgoing_args_size + 24; total_size = var_size + args_size + extra_size; gp_reg_size = 0; fp_reg_size = 0; gmask = 0; fmask = 0; reg_offset = 0; need_aligned_p = 0; /* Calculate space needed for gp registers. */ for (regno = 1; regno <= 31; regno++) { if (MUST_SAVE_REGISTER (regno)) { /* If we need to save two regs in a row, ensure there's room to bump up the address to align it to a doubleword boundary. */ if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1)) { if (gp_reg_size % 8 != 0) gp_reg_size += 4; gp_reg_size += 2 * UNITS_PER_WORD; gmask |= 3 << regno; regno++; need_aligned_p = 1; } else { gp_reg_size += UNITS_PER_WORD; gmask |= 1 << regno; } } } /* Calculate space needed for fp registers. */ for (regno = 32; regno <= 63; regno++) { if (regs_ever_live[regno] && !call_used_regs[regno]) { fp_reg_size += UNITS_PER_WORD; fmask |= 1 << (regno - 32); } } if (gmask || fmask) { int n; reg_offset = FIRST_PARM_OFFSET(0) + args_size; /* Ensure save area is 8 byte aligned if we need it. */ n = reg_offset % 8; if (need_aligned_p && n != 0) { total_size += 8 - n; reg_offset += 8 - n; } total_size += gp_reg_size + fp_reg_size; } /* ??? This looks a little suspicious. Clarify. */ if (total_size == extra_size) total_size = extra_size = 0; total_size = SPARC_STACK_ALIGN (total_size); /* Save other computed information. */ current_frame_info.total_size = total_size; current_frame_info.var_size = var_size; current_frame_info.args_size = args_size; current_frame_info.extra_size = extra_size; current_frame_info.gp_reg_size = gp_reg_size; current_frame_info.fp_reg_size = fp_reg_size; current_frame_info.gmask = gmask; current_frame_info.fmask = fmask; current_frame_info.reg_offset = reg_offset; current_frame_info.initialized = reload_completed; /* Ok, we're done. */ return total_size; } /* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset OFFSET. BASE_REG must be 8 byte aligned. This allows us to test OFFSET for appropriate alignment and use DOUBLEWORD_OP when we can. We assume [BASE_REG+OFFSET] will always be a valid address. WORD_OP is either "st" for save, "ld" for restore. DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */ void sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op, doubleword_op, base_offset) FILE *file; char *base_reg; unsigned int offset; unsigned long gmask; unsigned long fmask; char *word_op; char *doubleword_op; unsigned long base_offset; { int regno; if (gmask == 0 && fmask == 0) return; /* Save registers starting from high to low. We've already saved the previous frame pointer and previous return address for the debugger's sake. The debugger allows us to not need a nop in the epilog if at least one register is reloaded in addition to return address. */ if (gmask) { for (regno = 1; regno <= 31; regno++) { if ((gmask & (1L << regno)) != 0) { if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0)) { /* We can save two registers in a row. If we're not at a double word boundary, move to one. sparc_flat_compute_frame_size ensures there's room to do this. */ if (offset % 8 != 0) offset += UNITS_PER_WORD; if (word_op[0] == 's') { fprintf (file, "\t%s %s,[%s+%d]\n", doubleword_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); dwarf2out_reg_save (l, regno, offset + base_offset); dwarf2out_reg_save (l, regno+1, offset+base_offset + UNITS_PER_WORD); } } else fprintf (file, "\t%s [%s+%d],%s\n", doubleword_op, base_reg, offset, reg_names[regno]); offset += 2 * UNITS_PER_WORD; regno++; } else { if (word_op[0] == 's') { fprintf (file, "\t%s %s,[%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s [%s+%d],%s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } if (fmask) { for (regno = 32; regno <= 63; regno++) { if ((fmask & (1L << (regno - 32))) != 0) { if (word_op[0] == 's') { fprintf (file, "\t%s %s,[%s+%d]\n", word_op, reg_names[regno], base_reg, offset); if (dwarf2out_do_frame ()) dwarf2out_reg_save ("", regno, offset + base_offset); } else fprintf (file, "\t%s [%s+%d],%s\n", word_op, base_reg, offset, reg_names[regno]); offset += UNITS_PER_WORD; } } } } /* Set up the stack and frame (if desired) for the function. */ void sparc_flat_output_function_prologue (file, size) FILE *file; int size; { char *sp_str = reg_names[STACK_POINTER_REGNUM]; unsigned long gmask = current_frame_info.gmask; /* This is only for the human reader. */ fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START); fprintf (file, "\t%s# vars= %d, regs= %d/%d, args= %d, extra= %d\n", ASM_COMMENT_START, current_frame_info.var_size, current_frame_info.gp_reg_size / 4, current_frame_info.fp_reg_size / 4, current_function_outgoing_args_size, current_frame_info.extra_size); size = SPARC_STACK_ALIGN (size); size = (! current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); /* These cases shouldn't happen. Catch them now. */ if (size == 0 && (gmask || current_frame_info.fmask)) abort (); /* Allocate our stack frame by decrementing %sp. At present, the only algorithm gdb can use to determine if this is a flat frame is if we always set %i7 if we set %sp. This can be optimized in the future by putting in some sort of debugging information that says this is a `flat' function. However, there is still the case of debugging code without such debugging information (including cases where most fns have such info, but there is one that doesn't). So, always do this now so we don't get a lot of code out there that gdb can't handle. If the frame pointer isn't needn't then that's ok - gdb won't be able to distinguish us from a non-flat function but there won't (and shouldn't) be any differences anyway. The return pc is saved (if necessary) right after %i7 so gdb won't have to look too far to find it. */ if (size > 0) { unsigned int reg_offset = current_frame_info.reg_offset; char *fp_str = reg_names[FRAME_POINTER_REGNUM]; char *t1_str = "%g1"; /* Things get a little tricky if local variables take up more than ~4096 bytes and outgoing arguments take up more than ~4096 bytes. When that happens, the register save area can't be accessed from either end of the frame. Handle this by decrementing %sp to the start of the gp register save area, save the regs, update %i7, and then set %sp to its final value. Given that we only have one scratch register to play with it is the cheapest solution, and it helps gdb out as it won't slow down recognition of flat functions. Don't change the order of insns emitted here without checking with the gdb folk first. */ /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * UNITS_PER_WORD) { if (size <= 4096) { fprintf (file, "\tadd %s,%d,%s\n", sp_str, -size, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst %s,[%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tsub %s,%d,%s\t%s# set up frame pointer\n", sp_str, -size, fp_str, ASM_COMMENT_START); reg_offset += 4; } } else { fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n", size, t1_str, sp_str, t1_str, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst %s,[%s+%d]\n", fp_str, sp_str, reg_offset); fprintf (file, "\tadd %s,%s,%s\t%s# set up frame pointer\n", sp_str, t1_str, fp_str, ASM_COMMENT_START); reg_offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & FRAME_POINTER_MASK) { dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, reg_offset - 4 - size); dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst %s,[%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset); if (dwarf2out_do_frame ()) dwarf2out_return_save ("", reg_offset - size); reg_offset += 4; } sparc_flat_save_restore (file, sp_str, reg_offset, gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size); } else { /* Subtract %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to decrement %sp by, the first time. */ unsigned int size1 = ((size - reg_offset + 64) + 15) & -16; /* Offset to register save area from %sp. */ unsigned int offset = size1 - (size - reg_offset); if (size1 <= 4096) { fprintf (file, "\tadd %s,%d,%s\n", sp_str, -size1, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst %s,[%s+%d]\n\tsub %s,%d,%s\t%s# set up frame pointer\n", fp_str, sp_str, offset, sp_str, -size1, fp_str, ASM_COMMENT_START); offset += 4; } } else { fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n", size1, t1_str, sp_str, t1_str, sp_str); if (gmask & FRAME_POINTER_MASK) { fprintf (file, "\tst %s,[%s+%d]\n\tadd %s,%s,%s\t%s# set up frame pointer\n", fp_str, sp_str, offset, sp_str, t1_str, fp_str, ASM_COMMENT_START); offset += 4; } } if (dwarf2out_do_frame ()) { char *l = dwarf2out_cfi_label (); if (gmask & FRAME_POINTER_MASK) { dwarf2out_reg_save (l, FRAME_POINTER_REGNUM, offset - 4 - size1); dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0); } else dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1); } if (gmask & RETURN_ADDR_MASK) { fprintf (file, "\tst %s,[%s+%d]\n", reg_names[RETURN_ADDR_REGNUM], sp_str, offset); if (dwarf2out_do_frame ()) /* offset - size1 == reg_offset - size if reg_offset were updated above like offset. */ dwarf2out_return_save ("", offset - size1); offset += 4; } sparc_flat_save_restore (file, sp_str, offset, gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "st", "std", -size1); fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n", size - size1, t1_str, sp_str, t1_str, sp_str); if (dwarf2out_do_frame ()) if (! (gmask & FRAME_POINTER_MASK)) dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size); } } fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START); } /* Do any necessary cleanup after a function to restore stack, frame, and regs. */ void sparc_flat_output_function_epilogue (file, size) FILE *file; int size; { rtx epilogue_delay = current_function_epilogue_delay_list; int noepilogue = FALSE; /* This is only for the human reader. */ fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START); /* The epilogue does not depend on any registers, but the stack registers, so we assume that if we have 1 pending nop, it can be ignored, and 2 it must be filled (2 nops occur for integer multiply and divide). */ size = SPARC_STACK_ALIGN (size); size = (!current_frame_info.initialized ? sparc_flat_compute_frame_size (size) : current_frame_info.total_size); if (size == 0 && epilogue_delay == 0) { rtx insn = get_last_insn (); /* If the last insn was a BARRIER, we don't have to write any code because a jump (aka return) was put there. */ if (GET_CODE (insn) == NOTE) insn = prev_nonnote_insn (insn); if (insn && GET_CODE (insn) == BARRIER) noepilogue = TRUE; } if (!noepilogue) { unsigned int reg_offset = current_frame_info.reg_offset; unsigned int size1; char *sp_str = reg_names[STACK_POINTER_REGNUM]; char *fp_str = reg_names[FRAME_POINTER_REGNUM]; char *t1_str = "%g1"; /* In the reload sequence, we don't need to fill the load delay slots for most of the loads, also see if we can fill the final delay slot if not otherwise filled by the reload sequence. */ if (size > 4095) fprintf (file, "\tset %d,%s\n", size, t1_str); if (frame_pointer_needed) { if (size > 4095) fprintf (file,"\tsub %s,%s,%s\t\t%s# sp not trusted here\n", fp_str, t1_str, sp_str, ASM_COMMENT_START); else fprintf (file,"\tsub %s,%d,%s\t\t%s# sp not trusted here\n", fp_str, size, sp_str, ASM_COMMENT_START); } /* Is the entire register save area offsettable from %sp? */ if (reg_offset < 4096 - 64 * UNITS_PER_WORD) { size1 = 0; } else { /* Restore %sp in two steps, but make sure there is always a 64 byte register save area, and %sp is properly aligned. */ /* Amount to increment %sp by, the first time. */ size1 = ((reg_offset - 64 - 16) + 15) & -16; /* Offset to register save area from %sp. */ reg_offset = size1 - reg_offset; fprintf (file, "\tset %d,%s\n\tadd %s,%s,%s\n", size1, t1_str, sp_str, t1_str, sp_str); } /* We must restore the frame pointer and return address reg first because they are treated specially by the prologue output code. */ if (current_frame_info.gmask & FRAME_POINTER_MASK) { fprintf (file, "\tld [%s+%d],%s\n", sp_str, reg_offset, fp_str); reg_offset += 4; } if (current_frame_info.gmask & RETURN_ADDR_MASK) { fprintf (file, "\tld [%s+%d],%s\n", sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]); reg_offset += 4; } /* Restore any remaining saved registers. */ sparc_flat_save_restore (file, sp_str, reg_offset, current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK), current_frame_info.fmask, "ld", "ldd", 0); /* If we had to increment %sp in two steps, record it so the second restoration in the epilogue finishes up. */ if (size1 > 0) { size -= size1; if (size > 4095) fprintf (file, "\tset %d,%s\n", size, t1_str); } if (current_function_returns_struct) fprintf (file, "\tjmp %%o7+12\n"); else fprintf (file, "\tretl\n"); /* If the only register saved is the return address, we need a nop, unless we have an instruction to put into it. Otherwise we don't since reloading multiple registers doesn't reference the register being loaded. */ if (epilogue_delay) { if (size) abort (); final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1); } else if (size > 4095) fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str); else if (size > 0) fprintf (file, "\tadd %s,%d,%s\n", sp_str, size, sp_str); else fprintf (file, "\tnop\n"); } /* Reset state info for each function. */ current_frame_info = zero_frame_info; } /* Define the number of delay slots needed for the function epilogue. On the sparc, we need a slot if either no stack has been allocated, or the only register saved is the return register. */ int sparc_flat_epilogue_delay_slots () { if (!current_frame_info.initialized) (void) sparc_flat_compute_frame_size (get_frame_size ()); if (current_frame_info.total_size == 0) return 1; return 0; } /* Return true is TRIAL is a valid insn for the epilogue delay slot. Any single length instruction which doesn't reference the stack or frame pointer is OK. */ int sparc_flat_eligible_for_epilogue_delay (trial, slot) rtx trial; int slot; { rtx pat = PATTERN (trial); if (get_attr_length (trial) != 1) return 0; /* If %g0 is live, there are lots of things we can't handle. Rather than trying to find them all now, let's punt and only optimize things as necessary. */ if (TARGET_LIVE_G0) return 0; if (! reg_mentioned_p (stack_pointer_rtx, pat) && ! reg_mentioned_p (frame_pointer_rtx, pat)) return 1; return 0; } /* Adjust the cost of a scheduling dependency. Return the new cost of a dependency LINK or INSN on DEP_INSN. COST is the current cost. */ int supersparc_adjust_cost (insn, link, dep_insn, cost) rtx insn; rtx link; rtx dep_insn; int cost; { enum attr_type insn_type; if (! recog_memoized (insn)) return 0; insn_type = get_attr_type (insn); if (REG_NOTE_KIND (link) == 0) { /* Data dependency; DEP_INSN writes a register that INSN reads some cycles later. */ /* if a load, then the dependence must be on the memory address; add an extra 'cycle'. Note that the cost could be two cycles if the reg was written late in an instruction group; we can't tell here. */ if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD) return cost + 3; /* Get the delay only if the address of the store is the dependence. */ if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE) { rtx pat = PATTERN(insn); rtx dep_pat = PATTERN (dep_insn); if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET) return cost; /* This shouldn't happen! */ /* The dependency between the two instructions was on the data that is being stored. Assume that this implies that the address of the store is not dependent. */ if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat))) return cost; return cost + 3; /* An approximation. */ } /* A shift instruction cannot receive its data from an instruction in the same cycle; add a one cycle penalty. */ if (insn_type == TYPE_SHIFT) return cost + 3; /* Split before cascade into shift. */ } else { /* Anti- or output- dependency; DEP_INSN reads/writes a register that INSN writes some cycles later. */ /* These are only significant for the fpu unit; writing a fp reg before the fpu has finished with it stalls the processor. */ /* Reusing an integer register causes no problems. */ if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT) return 0; } return cost; }