gcc-papermario/gcc.info-4
2020-09-20 21:06:00 -04:00

1188 lines
49 KiB
Plaintext
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This is Info file gcc.info, produced by Makeinfo version 1.67 from the
input file gcc.texi.
This file documents the use and the internals of the GNU compiler.
Published by the Free Software Foundation 59 Temple Place - Suite 330
Boston, MA 02111-1307 USA
Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the sections entitled "GNU General Public License," "Funding for
Free Software," and "Protect Your Freedom--Fight `Look And Feel'" are
included exactly as in the original, and provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that the sections entitled "GNU General Public
License," "Funding for Free Software," and "Protect Your Freedom--Fight
`Look And Feel'", and this permission notice, may be included in
translations approved by the Free Software Foundation instead of in the
original English.

File: gcc.info, Node: M88K Options, Next: RS/6000 and PowerPC Options, Prev: M32R/D Options, Up: Submodel Options
M88K Options
------------
These `-m' options are defined for Motorola 88k architectures:
`-m88000'
Generate code that works well on both the m88100 and the m88110.
`-m88100'
Generate code that works best for the m88100, but that also runs
on the m88110.
`-m88110'
Generate code that works best for the m88110, and may not run on
the m88100.
`-mbig-pic'
Obsolete option to be removed from the next revision. Use `-fPIC'.
`-midentify-revision'
Include an `ident' directive in the assembler output recording the
source file name, compiler name and version, timestamp, and
compilation flags used.
`-mno-underscores'
In assembler output, emit symbol names without adding an underscore
character at the beginning of each name. The default is to use an
underscore as prefix on each name.
`-mocs-debug-info'
`-mno-ocs-debug-info'
Include (or omit) additional debugging information (about
registers used in each stack frame) as specified in the 88open
Object Compatibility Standard, "OCS". This extra information
allows debugging of code that has had the frame pointer
eliminated. The default for DG/UX, SVr4, and Delta 88 SVr3.2 is
to include this information; other 88k configurations omit this
information by default.
`-mocs-frame-position'
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the
canonical frame address, which is the stack pointer (register 31)
on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and
BCS configurations use `-mocs-frame-position'; other 88k
configurations have the default `-mno-ocs-frame-position'.
`-mno-ocs-frame-position'
When emitting COFF debugging information for automatic variables
and parameters stored on the stack, use the offset from the frame
pointer register (register 30). When this option is in effect,
the frame pointer is not eliminated when debugging information is
selected by the -g switch.
`-moptimize-arg-area'
`-mno-optimize-arg-area'
Control how function arguments are stored in stack frames.
`-moptimize-arg-area' saves space by optimizing them, but this
conflicts with the 88open specifications. The opposite
alternative, `-mno-optimize-arg-area', agrees with 88open
standards. By default GNU CC does not optimize the argument area.
`-mshort-data-NUM'
Generate smaller data references by making them relative to `r0',
which allows loading a value using a single instruction (rather
than the usual two). You control which data references are
affected by specifying NUM with this option. For example, if you
specify `-mshort-data-512', then the data references affected are
those involving displacements of less than 512 bytes.
`-mshort-data-NUM' is not effective for NUM greater than 64k.
`-mserialize-volatile'
`-mno-serialize-volatile'
Do, or don't, generate code to guarantee sequential consistency of
volatile memory references. By default, consistency is guaranteed.
The order of memory references made by the MC88110 processor does
not always match the order of the instructions requesting those
references. In particular, a load instruction may execute before
a preceding store instruction. Such reordering violates
sequential consistency of volatile memory references, when there
are multiple processors. When consistency must be guaranteed,
GNU C generates special instructions, as needed, to force
execution in the proper order.
The MC88100 processor does not reorder memory references and so
always provides sequential consistency. However, by default, GNU
C generates the special instructions to guarantee consistency even
when you use `-m88100', so that the code may be run on an MC88110
processor. If you intend to run your code only on the MC88100
processor, you may use `-mno-serialize-volatile'.
The extra code generated to guarantee consistency may affect the
performance of your application. If you know that you can safely
forgo this guarantee, you may use `-mno-serialize-volatile'.
`-msvr4'
`-msvr3'
Turn on (`-msvr4') or off (`-msvr3') compiler extensions related
to System V release 4 (SVr4). This controls the following:
1. Which variant of the assembler syntax to emit.
2. `-msvr4' makes the C preprocessor recognize `#pragma weak'
that is used on System V release 4.
3. `-msvr4' makes GNU CC issue additional declaration directives
used in SVr4.
`-msvr4' is the default for the m88k-motorola-sysv4 and
m88k-dg-dgux m88k configurations. `-msvr3' is the default for all
other m88k configurations.
`-mversion-03.00'
This option is obsolete, and is ignored.
`-mno-check-zero-division'
`-mcheck-zero-division'
Do, or don't, generate code to guarantee that integer division by
zero will be detected. By default, detection is guaranteed.
Some models of the MC88100 processor fail to trap upon integer
division by zero under certain conditions. By default, when
compiling code that might be run on such a processor, GNU C
generates code that explicitly checks for zero-valued divisors and
traps with exception number 503 when one is detected. Use of
mno-check-zero-division suppresses such checking for code
generated to run on an MC88100 processor.
GNU C assumes that the MC88110 processor correctly detects all
instances of integer division by zero. When `-m88110' is
specified, both `-mcheck-zero-division' and
`-mno-check-zero-division' are ignored, and no explicit checks for
zero-valued divisors are generated.
`-muse-div-instruction'
Use the div instruction for signed integer division on the MC88100
processor. By default, the div instruction is not used.
On the MC88100 processor the signed integer division instruction
div) traps to the operating system on a negative operand. The
operating system transparently completes the operation, but at a
large cost in execution time. By default, when compiling code
that might be run on an MC88100 processor, GNU C emulates signed
integer division using the unsigned integer division instruction
divu), thereby avoiding the large penalty of a trap to the
operating system. Such emulation has its own, smaller, execution
cost in both time and space. To the extent that your code's
important signed integer division operations are performed on two
nonnegative operands, it may be desirable to use the div
instruction directly.
On the MC88110 processor the div instruction (also known as the
divs instruction) processes negative operands without trapping to
the operating system. When `-m88110' is specified,
`-muse-div-instruction' is ignored, and the div instruction is used
for signed integer division.
Note that the result of dividing INT_MIN by -1 is undefined. In
particular, the behavior of such a division with and without
`-muse-div-instruction' may differ.
`-mtrap-large-shift'
`-mhandle-large-shift'
Include code to detect bit-shifts of more than 31 bits;
respectively, trap such shifts or emit code to handle them
properly. By default GNU CC makes no special provision for large
bit shifts.
`-mwarn-passed-structs'
Warn when a function passes a struct as an argument or result.
Structure-passing conventions have changed during the evolution of
the C language, and are often the source of portability problems.
By default, GNU CC issues no such warning.

File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RT Options, Prev: M88K Options, Up: Submodel Options
IBM RS/6000 and PowerPC Options
-------------------------------
These `-m' options are defined for the IBM RS/6000 and PowerPC:
`-mpower'
`-mno-power'
`-mpower2'
`-mno-power2'
`-mpowerpc'
`-mno-powerpc'
`-mpowerpc-gpopt'
`-mno-powerpc-gpopt'
`-mpowerpc-gfxopt'
`-mno-powerpc-gfxopt'
GNU CC supports two related instruction set architectures for the
RS/6000 and PowerPC. The "POWER" instruction set are those
instructions supported by the `rios' chip set used in the original
RS/6000 systems and the "PowerPC" instruction set is the
architecture of the Motorola MPC5xx, MPC6xx, MPC8xx
microprocessors, and the IBM 4xx microprocessors.
Neither architecture is a subset of the other. However there is a
large common subset of instructions supported by both. An MQ
register is included in processors supporting the POWER
architecture.
You use these options to specify which instructions are available
on the processor you are using. The default value of these
options is determined when configuring GNU CC. Specifying the
`-mcpu=CPU_TYPE' overrides the specification of these options. We
recommend you use the `-mcpu=CPU_TYPE' option rather than the
options listed above.
The `-mpower' option allows GNU CC to generate instructions that
are found only in the POWER architecture and to use the MQ
register. Specifying `-mpower2' implies `-power' and also allows
GNU CC to generate instructions that are present in the POWER2
architecture but not the original POWER architecture.
The `-mpowerpc' option allows GNU CC to generate instructions that
are found only in the 32-bit subset of the PowerPC architecture.
Specifying `-mpowerpc-gpopt' implies `-mpowerpc' and also allows
GNU CC to use the optional PowerPC architecture instructions in the
General Purpose group, including floating-point square root.
Specifying `-mpowerpc-gfxopt' implies `-mpowerpc' and also allows
GNU CC to use the optional PowerPC architecture instructions in
the Graphics group, including floating-point select.
If you specify both `-mno-power' and `-mno-powerpc', GNU CC will
use only the instructions in the common subset of both
architectures plus some special AIX common-mode calls, and will
not use the MQ register. Specifying both `-mpower' and `-mpowerpc'
permits GNU CC to use any instruction from either architecture and
to allow use of the MQ register; specify this for the Motorola
MPC601.
`-mnew-mnemonics'
`-mold-mnemonics'
Select which mnemonics to use in the generated assembler code.
`-mnew-mnemonics' requests output that uses the assembler mnemonics
defined for the PowerPC architecture, while `-mold-mnemonics'
requests the assembler mnemonics defined for the POWER
architecture. Instructions defined in only one architecture have
only one mnemonic; GNU CC uses that mnemonic irrespective of which
of these options is specified.
PowerPC assemblers support both the old and new mnemonics, as will
later POWER assemblers. Current POWER assemblers only support the
old mnemonics. Specify `-mnew-mnemonics' if you have an assembler
that supports them, otherwise specify `-mold-mnemonics'.
The default value of these options depends on how GNU CC was
configured. Specifying `-mcpu=CPU_TYPE' sometimes overrides the
value of these option. Unless you are building a cross-compiler,
you should normally not specify either `-mnew-mnemonics' or
`-mold-mnemonics', but should instead accept the default.
`-mcpu=CPU_TYPE'
Set architecture type, register usage, choice of mnemonics, and
instruction scheduling parameters for machine type CPU_TYPE.
Supported values for CPU_TYPE are `rs6000', `rios1', `rios2',
`rsc', `601', `602', `603', `603e', `604', `604e', `620', `power',
`power2', `powerpc', `403', `505', `801', `821', `823', and `860'
and `common'. `-mcpu=power', `-mcpu=power2', and `-mcpu=powerpc'
specify generic POWER, POWER2 and pure PowerPC (i.e., not MPC601)
architecture machine types, with an appropriate, generic processor
model assumed for scheduling purposes.
Specifying any of the following options: `-mcpu=rios1',
`-mcpu=rios2', `-mcpu=rsc', `-mcpu=power', or `-mcpu=power2'
enables the `-mpower' option and disables the `-mpowerpc' option;
`-mcpu=601' enables both the `-mpower' and `-mpowerpc' options.
All of `-mcpu=602', `-mcpu=603', `-mcpu=603e', `-mcpu=604',
`-mcpu=620', enable the `-mpowerpc' option and disable the
`-mpower' option. Exactly similarly, all of `-mcpu=403',
`-mcpu=505', `-mcpu=821', `-mcpu=860' and `-mcpu=powerpc' enable
the `-mpowerpc' option and disable the `-mpower' option.
`-mcpu=common' disables both the `-mpower' and `-mpowerpc' options.
AIX versions 4 or greater selects `-mcpu=common' by default, so
that code will operate on all members of the RS/6000 and PowerPC
families. In that case, GNU CC will use only the instructions in
the common subset of both architectures plus some special AIX
common-mode calls, and will not use the MQ register. GNU CC
assumes a generic processor model for scheduling purposes.
Specifying any of the options `-mcpu=rios1', `-mcpu=rios2',
`-mcpu=rsc', `-mcpu=power', or `-mcpu=power2' also disables the
`new-mnemonics' option. Specifying `-mcpu=601', `-mcpu=602',
`-mcpu=603', `-mcpu=603e', `-mcpu=604', `620', `403', or
`-mcpu=powerpc' also enables the `new-mnemonics' option.
Specifying `-mcpu=403', `-mcpu=821', or `-mcpu=860' also enables
the `-msoft-float' option.
`-mtune=CPU_TYPE'
Set the instruction scheduling parameters for machine type
CPU_TYPE, but do not set the architecture type, register usage,
choice of mnemonics like `-mcpu='CPU_TYPE would. The same values
for CPU_TYPE are used for `-mtune='CPU_TYPE as for
`-mcpu='CPU_TYPE. The `-mtune='CPU_TYPE option overrides the
`-mcpu='CPU_TYPE option in terms of instruction scheduling
parameters.
`-mfull-toc'
`-mno-fp-in-toc'
`-mno-sum-in-toc'
`-mminimal-toc'
Modify generation of the TOC (Table Of Contents), which is created
for every executable file. The `-mfull-toc' option is selected by
default. In that case, GNU CC will allocate at least one TOC
entry for each unique non-automatic variable reference in your
program. GNU CC will also place floating-point constants in the
TOC. However, only 16,384 entries are available in the TOC.
If you receive a linker error message that saying you have
overflowed the available TOC space, you can reduce the amount of
TOC space used with the `-mno-fp-in-toc' and `-mno-sum-in-toc'
options. `-mno-fp-in-toc' prevents GNU CC from putting
floating-point constants in the TOC and `-mno-sum-in-toc' forces
GNU CC to generate code to calculate the sum of an address and a
constant at run-time instead of putting that sum into the TOC.
You may specify one or both of these options. Each causes GNU CC
to produce very slightly slower and larger code at the expense of
conserving TOC space.
If you still run out of space in the TOC even when you specify
both of these options, specify `-mminimal-toc' instead. This
option causes GNU CC to make only one TOC entry for every file.
When you specify this option, GNU CC will produce code that is
slower and larger but which uses extremely little TOC space. You
may wish to use this option only on files that contain less
frequently executed code.
`-mxl-call'
`-mno-xl-call'
On AIX, pass floating-point arguments to prototyped functions
beyond the register save area (RSA) on the stack in addition to
argument FPRs. The AIX calling convention was extended but not
initially documented to handle an obscure K&R C case of calling a
function that takes the address of its arguments with fewer
arguments than declared. AIX XL compilers assume that floating
point arguments which do not fit in the RSA are on the stack when
they compile a subroutine without optimization. Because always
storing floating-point arguments on the stack is inefficient and
rarely needed, this option is not enabled by default and only is
necessary when calling subroutines compiled by AIX XL compilers
without optimization.
`-mthreads'
Support "AIX Threads". Link an application written to use
"pthreads" with special libraries and startup code to enable the
application to run.
`-mpe'
Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an
application written to use message passing with special startup
code to enable the application to run. The system must have PE
installed in the standard location (`/usr/lpp/ppe.poe/'), or the
`specs' file must be overridden with the `-specs=' option to
specify the appropriate directory location. The Parallel
Environment does not support threads, so the `-mpe' option and the
`-mthreads' option are incompatible.
`-msoft-float'
`-mhard-float'
Generate code that does not use (uses) the floating-point register
set. Software floating point emulation is provided if you use the
`-msoft-float' option, and pass the option to GNU CC when linking.
`-mmultiple'
`-mno-multiple'
Generate code that uses (does not use) the load multiple word
instructions and the store multiple word instructions. These
instructions are generated by default on POWER systems, and not
generated on PowerPC systems. Do not use `-mmultiple' on little
endian PowerPC systems, since those instructions do not work when
the processor is in little endian mode.
`-mstring'
`-mno-string'
Generate code that uses (does not use) the load string
instructions and the store string word instructions to save
multiple registers and do small block moves. These instructions
are generated by default on POWER systems, and not generated on
PowerPC systems. Do not use `-mstring' on little endian PowerPC
systems, since those instructions do not work when the processor
is in little endian mode.
`-mupdate'
`-mno-update'
Generate code that uses (does not use) the load or store
instructions that update the base register to the address of the
calculated memory location. These instructions are generated by
default. If you use `-mno-update', there is a small window
between the time that the stack pointer is updated and the address
of the previous frame is stored, which means code that walks the
stack frame across interrupts or signals may get corrupted data.
`-mfused-madd'
`-mno-fused-madd'
Generate code that uses (does not use) the floating point multiply
and accumulate instructions. These instructions are generated by
default if hardware floating is used.
`-mno-bit-align'
`-mbit-align'
On System V.4 and embedded PowerPC systems do not (do) force
structures and unions that contain bit fields to be aligned to the
base type of the bit field.
For example, by default a structure containing nothing but 8
`unsigned' bitfields of length 1 would be aligned to a 4 byte
boundary and have a size of 4 bytes. By using `-mno-bit-align',
the structure would be aligned to a 1 byte boundary and be one
byte in size.
`-mno-strict-align'
`-mstrict-align'
On System V.4 and embedded PowerPC systems do not (do) assume that
unaligned memory references will be handled by the system.
`-mrelocatable'
`-mno-relocatable'
On embedded PowerPC systems generate code that allows (does not
allow) the program to be relocated to a different address at
runtime. If you use `-mrelocatable' on any module, all objects
linked together must be compiled with `-mrelocatable' or
`-mrelocatable-lib'.
`-mrelocatable-lib'
`-mno-relocatable-lib'
On embedded PowerPC systems generate code that allows (does not
allow) the program to be relocated to a different address at
runtime. Modules compiled with `-mrelocatable-lib' can be linked
with either modules compiled without `-mrelocatable' and
`-mrelocatable-lib' or with modules compiled with the
`-mrelocatable' options.
`-mno-toc'
`-mtoc'
On System V.4 and embedded PowerPC systems do not (do) assume that
register 2 contains a pointer to a global area pointing to the
addresses used in the program.
`-mno-traceback'
`-mtraceback'
On embedded PowerPC systems do not (do) generate a traceback tag
before the start of the function. This tag can be used by the
debugger to identify where the start of a function is.
`-mlittle'
`-mlittle-endian'
On System V.4 and embedded PowerPC systems compile code for the
processor in little endian mode. The `-mlittle-endian' option is
the same as `-mlittle'.
`-mbig'
`-mbig-endian'
On System V.4 and embedded PowerPC systems compile code for the
processor in big endian mode. The `-mbig-endian' option is the
same as `-mbig'.
`-mcall-sysv'
On System V.4 and embedded PowerPC systems compile code using
calling conventions that adheres to the March 1995 draft of the
System V Application Binary Interface, PowerPC processor
supplement. This is the default unless you configured GCC using
`powerpc-*-eabiaix'.
`-mcall-sysv-eabi'
Specify both `-mcall-sysv' and `-meabi' options.
`-mcall-sysv-noeabi'
Specify both `-mcall-sysv' and `-mno-eabi' options.
`-mcall-aix'
On System V.4 and embedded PowerPC systems compile code using
calling conventions that are similar to those used on AIX. This
is the default if you configured GCC using `powerpc-*-eabiaix'.
`-mcall-solaris'
On System V.4 and embedded PowerPC systems compile code for the
Solaris operating system.
`-mcall-linux'
On System V.4 and embedded PowerPC systems compile code for the
Linux-based GNU system.
`-mprototype'
`-mno-prototype'
On System V.4 and embedded PowerPC systems assume that all calls to
variable argument functions are properly prototyped. Otherwise,
the compiler must insert an instruction before every non
prototyped call to set or clear bit 6 of the condition code
register (CR) to indicate whether floating point values were
passed in the floating point registers in case the function takes
a variable arguments. With `-mprototype', only calls to
prototyped variable argument functions will set or clear the bit.
`-msim'
On embedded PowerPC systems, assume that the startup module is
called `sim-crt0.o' and that the standard C libraries are
`libsim.a' and `libc.a'. This is the default for
`powerpc-*-eabisim'. configurations.
`-mmvme'
On embedded PowerPC systems, assume that the startup module is
called `crt0.o' and the standard C libraries are `libmvme.a' and
`libc.a'.
`-mads'
On embedded PowerPC systems, assume that the startup module is
called `crt0.o' and the standard C libraries are `libads.a' and
`libc.a'.
`-myellowknife'
On embedded PowerPC systems, assume that the startup module is
called `crt0.o' and the standard C libraries are `libyk.a' and
`libc.a'.
`-memb'
On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags
header to indicate that `eabi' extended relocations are used.
`-meabi'
`-mno-eabi'
On System V.4 and embedded PowerPC systems do (do not) adhere to
the Embedded Applications Binary Interface (eabi) which is a set of
modifications to the System V.4 specifications. Selecting `-meabi'
means that the stack is aligned to an 8 byte boundary, a function
`__eabi' is called to from `main' to set up the eabi environment,
and the `-msdata' option can use both `r2' and `r13' to point to
two separate small data areas. Selecting `-mno-eabi' means that
the stack is aligned to a 16 byte boundary, do not call an
initialization function from `main', and the `-msdata' option will
only use `r13' to point to a single small data area. The `-meabi'
option is on by default if you configured GCC using one of the
`powerpc*-*-eabi*' options.
`-msdata=eabi'
On System V.4 and embedded PowerPC systems, put small initialized
`const' global and static data in the `.sdata2' section, which is
pointed to by register `r2'. Put small initialized non-`const'
global and static data in the `.sdata' section, which is pointed
to by register `r13'. Put small uninitialized global and static
data in the `.sbss' section, which is adjacent to the `.sdata'
section. The `-msdata=eabi' option is incompatible with the
`-mrelocatable' option. The `-msdata=eabi' option also sets the
`-memb' option.
`-msdata=sysv'
On System V.4 and embedded PowerPC systems, put small global and
static data in the `.sdata' section, which is pointed to by
register `r13'. Put small uninitialized global and static data in
the `.sbss' section, which is adjacent to the `.sdata' section.
The `-msdata=sysv' option is incompatible with the `-mrelocatable'
option.
`-msdata=default'
`-msdata'
On System V.4 and embedded PowerPC systems, if `-meabi' is used,
compile code the same as `-msdata=eabi', otherwise compile code the
same as `-msdata=sysv'.
`-msdata-data'
On System V.4 and embedded PowerPC systems, put small global and
static data in the `.sdata' section. Put small uninitialized
global and static data in the `.sbss' section. Do not use
register `r13' to address small data however. This is the default
behavior unless other `-msdata' options are used.
`-msdata=none'
`-mno-sdata'
On embedded PowerPC systems, put all initialized global and static
data in the `.data' section, and all uninitialized data in the
`.bss' section.
`-G NUM'
On embedded PowerPC systems, put global and static items less than
or equal to NUM bytes into the small data or bss sections instead
of the normal data or bss section. By default, NUM is 8. The `-G
NUM' switch is also passed to the linker. All modules should be
compiled with the same `-G NUM' value.
`-mregnames'
`-mno-regnames'
On System V.4 and embedded PowerPC systems do (do not) emit
register names in the assembly language output using symbolic
forms.

File: gcc.info, Node: RT Options, Next: MIPS Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options
IBM RT Options
--------------
These `-m' options are defined for the IBM RT PC:
`-min-line-mul'
Use an in-line code sequence for integer multiplies. This is the
default.
`-mcall-lib-mul'
Call `lmul$$' for integer multiples.
`-mfull-fp-blocks'
Generate full-size floating point data blocks, including the
minimum amount of scratch space recommended by IBM. This is the
default.
`-mminimum-fp-blocks'
Do not include extra scratch space in floating point data blocks.
This results in smaller code, but slower execution, since scratch
space must be allocated dynamically.
`-mfp-arg-in-fpregs'
Use a calling sequence incompatible with the IBM calling
convention in which floating point arguments are passed in
floating point registers. Note that `varargs.h' and `stdargs.h'
will not work with floating point operands if this option is
specified.
`-mfp-arg-in-gregs'
Use the normal calling convention for floating point arguments.
This is the default.
`-mhc-struct-return'
Return structures of more than one word in memory, rather than in a
register. This provides compatibility with the MetaWare HighC (hc)
compiler. Use the option `-fpcc-struct-return' for compatibility
with the Portable C Compiler (pcc).
`-mnohc-struct-return'
Return some structures of more than one word in registers, when
convenient. This is the default. For compatibility with the
IBM-supplied compilers, use the option `-fpcc-struct-return' or the
option `-mhc-struct-return'.

File: gcc.info, Node: MIPS Options, Next: i386 Options, Prev: RT Options, Up: Submodel Options
MIPS Options
------------
These `-m' options are defined for the MIPS family of computers:
`-mcpu=CPU TYPE'
Assume the defaults for the machine type CPU TYPE when scheduling
instructions. The choices for CPU TYPE are `r2000', `r3000',
`r4000', `r4400', `r4600', and `r6000'. While picking a specific
CPU TYPE will schedule things appropriately for that particular
chip, the compiler will not generate any code that does not meet
level 1 of the MIPS ISA (instruction set architecture) without the
`-mips2' or `-mips3' switches being used.
`-mips1'
Issue instructions from level 1 of the MIPS ISA. This is the
default. `r3000' is the default CPU TYPE at this ISA level.
`-mips2'
Issue instructions from level 2 of the MIPS ISA (branch likely,
square root instructions). `r6000' is the default CPU TYPE at this
ISA level.
`-mips3'
Issue instructions from level 3 of the MIPS ISA (64 bit
instructions). `r4000' is the default CPU TYPE at this ISA level.
This option does not change the sizes of any of the C data types.
`-mfp32'
Assume that 32 32-bit floating point registers are available.
This is the default.
`-mfp64'
Assume that 32 64-bit floating point registers are available.
This is the default when the `-mips3' option is used.
`-mgp32'
Assume that 32 32-bit general purpose registers are available.
This is the default.
`-mgp64'
Assume that 32 64-bit general purpose registers are available.
This is the default when the `-mips3' option is used.
`-mint64'
Types long, int, and pointer are 64 bits. This works only if
`-mips3' is also specified.
`-mlong64'
Types long and pointer are 64 bits, and type int is 32 bits. This
works only if `-mips3' is also specified.
`-mmips-as'
Generate code for the MIPS assembler, and invoke `mips-tfile' to
add normal debug information. This is the default for all
platforms except for the OSF/1 reference platform, using the
OSF/rose object format. If the either of the `-gstabs' or
`-gstabs+' switches are used, the `mips-tfile' program will
encapsulate the stabs within MIPS ECOFF.
`-mgas'
Generate code for the GNU assembler. This is the default on the
OSF/1 reference platform, using the OSF/rose object format. Also,
this is the default if the configure option `--with-gnu-as' is
used.
`-msplit-addresses'
`-mno-split-addresses'
Generate code to load the high and low parts of address constants
separately. This allows `gcc' to optimize away redundant loads of
the high order bits of addresses. This optimization requires GNU
as and GNU ld. This optimization is enabled by default for some
embedded targets where GNU as and GNU ld are standard.
`-mrnames'
`-mno-rnames'
The `-mrnames' switch says to output code using the MIPS software
names for the registers, instead of the hardware names (ie, A0
instead of $4). The only known assembler that supports this option
is the Algorithmics assembler.
`-mgpopt'
`-mno-gpopt'
The `-mgpopt' switch says to write all of the data declarations
before the instructions in the text section, this allows the MIPS
assembler to generate one word memory references instead of using
two words for short global or static data items. This is on by
default if optimization is selected.
`-mstats'
`-mno-stats'
For each non-inline function processed, the `-mstats' switch
causes the compiler to emit one line to the standard error file to
print statistics about the program (number of registers saved,
stack size, etc.).
`-mmemcpy'
`-mno-memcpy'
The `-mmemcpy' switch makes all block moves call the appropriate
string function (`memcpy' or `bcopy') instead of possibly
generating inline code.
`-mmips-tfile'
`-mno-mips-tfile'
The `-mno-mips-tfile' switch causes the compiler not postprocess
the object file with the `mips-tfile' program, after the MIPS
assembler has generated it to add debug support. If `mips-tfile'
is not run, then no local variables will be available to the
debugger. In addition, `stage2' and `stage3' objects will have
the temporary file names passed to the assembler embedded in the
object file, which means the objects will not compare the same.
The `-mno-mips-tfile' switch should only be used when there are
bugs in the `mips-tfile' program that prevents compilation.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not part of GNU CC.
Normally the facilities of the machine's usual C compiler are
used, but this can't be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
`-mhard-float'
Generate output containing floating point instructions. This is
the default if you use the unmodified sources.
`-mabicalls'
`-mno-abicalls'
Emit (or do not emit) the pseudo operations `.abicalls',
`.cpload', and `.cprestore' that some System V.4 ports use for
position independent code.
`-mlong-calls'
`-mno-long-calls'
Do all calls with the `JALR' instruction, which requires loading
up a function's address into a register before the call. You need
to use this switch, if you call outside of the current 512
megabyte segment to functions that are not through pointers.
`-mhalf-pic'
`-mno-half-pic'
Put pointers to extern references into the data section and load
them up, rather than put the references in the text section.
`-membedded-pic'
`-mno-embedded-pic'
Generate PIC code suitable for some embedded systems. All calls
are made using PC relative address, and all data is addressed
using the $gp register. This requires GNU as and GNU ld which do
most of the work.
`-membedded-data'
`-mno-embedded-data'
Allocate variables to the read-only data section first if
possible, then next in the small data section if possible,
otherwise in data. This gives slightly slower code than the
default, but reduces the amount of RAM required when executing,
and thus may be preferred for some embedded systems.
`-msingle-float'
`-mdouble-float'
The `-msingle-float' switch tells gcc to assume that the floating
point coprocessor only supports single precision operations, as on
the `r4650' chip. The `-mdouble-float' switch permits gcc to use
double precision operations. This is the default.
`-mmad'
`-mno-mad'
Permit use of the `mad', `madu' and `mul' instructions, as on the
`r4650' chip.
`-m4650'
Turns on `-msingle-float', `-mmad', and, at least for now,
`-mcpu=r4650'.
`-EL'
Compile code for the processor in little endian mode. The
requisite libraries are assumed to exist.
`-EB'
Compile code for the processor in big endian mode. The requisite
libraries are assumed to exist.
`-G NUM'
Put global and static items less than or equal to NUM bytes into
the small data or bss sections instead of the normal data or bss
section. This allows the assembler to emit one word memory
reference instructions based on the global pointer (GP or $28),
instead of the normal two words used. By default, NUM is 8 when
the MIPS assembler is used, and 0 when the GNU assembler is used.
The `-G NUM' switch is also passed to the assembler and linker.
All modules should be compiled with the same `-G NUM' value.
`-nocpp'
Tell the MIPS assembler to not run it's preprocessor over user
assembler files (with a `.s' suffix) when assembling them.
These options are defined by the macro `TARGET_SWITCHES' in the
machine description. The default for the options is also defined by
that macro, which enables you to change the defaults.

File: gcc.info, Node: i386 Options, Next: HPPA Options, Prev: MIPS Options, Up: Submodel Options
Intel 386 Options
-----------------
These `-m' options are defined for the i386 family of computers:
`-mcpu=CPU TYPE'
Assume the defaults for the machine type CPU TYPE when scheduling
instructions. The choices for CPU TYPE are: `i386', `i486',
`i586' (`pentium'), `pentium', `i686' (`pentiumpro') and
`pentiumpro'. While picking a specific CPU TYPE will schedule
things appropriately for that particular chip, the compiler will
not generate any code that does not run on the i386 without the
`-march=CPU TYPE' option being used.
`-march=CPU TYPE'
Generate instructions for the machine type CPU TYPE. The choices
for CPU TYPE are: `i386', `i486', `pentium', and `pentiumpro'.
Specifying `-march=CPU TYPE' implies `-mcpu=CPU TYPE'.
`-m386'
`-m486'
`-mpentium'
`-mpentiumpro'
Synonyms for -mcpu=i386, -mcpu=i486, -mcpu=pentium, and
-mcpu=pentiumpro respectively.
`-mieee-fp'
`-mno-ieee-fp'
Control whether or not the compiler uses IEEE floating point
comparisons. These handle correctly the case where the result of a
comparison is unordered.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not part of GNU CC.
Normally the facilities of the machine's usual C compiler are
used, but this can't be done directly in cross-compilation. You
must make your own arrangements to provide suitable library
functions for cross-compilation.
On machines where a function returns floating point results in the
80387 register stack, some floating point opcodes may be emitted
even if `-msoft-float' is used.
`-mno-fp-ret-in-387'
Do not use the FPU registers for return values of functions.
The usual calling convention has functions return values of types
`float' and `double' in an FPU register, even if there is no FPU.
The idea is that the operating system should emulate an FPU.
The option `-mno-fp-ret-in-387' causes such values to be returned
in ordinary CPU registers instead.
`-mno-fancy-math-387'
Some 387 emulators do not support the `sin', `cos' and `sqrt'
instructions for the 387. Specify this option to avoid generating
those instructions. This option is the default on FreeBSD. As of
revision 2.6.1, these instructions are not generated unless you
also use the `-ffast-math' switch.
`-malign-double'
`-mno-align-double'
Control whether GNU CC aligns `double', `long double', and `long
long' variables on a two word boundary or a one word boundary.
Aligning `double' variables on a two word boundary will produce
code that runs somewhat faster on a `Pentium' at the expense of
more memory.
*Warning:* if you use the `-malign-double' switch, structures
containing the above types will be aligned differently than the
published application binary interface specifications for the 386.
`-msvr3-shlib'
`-mno-svr3-shlib'
Control whether GNU CC places uninitialized locals into `bss' or
`data'. `-msvr3-shlib' places these locals into `bss'. These
options are meaningful only on System V Release 3.
`-mno-wide-multiply'
`-mwide-multiply'
Control whether GNU CC uses the `mul' and `imul' that produce 64
bit results in `eax:edx' from 32 bit operands to do `long long'
multiplies and 32-bit division by constants.
`-mrtd'
Use a different function-calling convention, in which functions
that take a fixed number of arguments return with the `ret' NUM
instruction, which pops their arguments while returning. This
saves one instruction in the caller since there is no need to pop
the arguments there.
You can specify that an individual function is called with this
calling sequence with the function attribute `stdcall'. You can
also override the `-mrtd' option by using the function attribute
`cdecl'. *Note Function Attributes::
*Warning:* this calling convention is incompatible with the one
normally used on Unix, so you cannot use it if you need to call
libraries compiled with the Unix compiler.
Also, you must provide function prototypes for all functions that
take variable numbers of arguments (including `printf'); otherwise
incorrect code will be generated for calls to those functions.
In addition, seriously incorrect code will result if you call a
function with too many arguments. (Normally, extra arguments are
harmlessly ignored.)
`-mreg-alloc=REGS'
Control the default allocation order of integer registers. The
string REGS is a series of letters specifying a register. The
supported letters are: `a' allocate EAX; `b' allocate EBX; `c'
allocate ECX; `d' allocate EDX; `S' allocate ESI; `D' allocate
EDI; `B' allocate EBP.
`-mregparm=NUM'
Control how many registers are used to pass integer arguments. By
default, no registers are used to pass arguments, and at most 3
registers can be used. You can control this behavior for a
specific function by using the function attribute `regparm'.
*Note Function Attributes::
*Warning:* if you use this switch, and NUM is nonzero, then you
must build all modules with the same value, including any
libraries. This includes the system libraries and startup modules.
`-malign-loops=NUM'
Align loops to a 2 raised to a NUM byte boundary. If
`-malign-loops' is not specified, the default is 2.
`-malign-jumps=NUM'
Align instructions that are only jumped to to a 2 raised to a NUM
byte boundary. If `-malign-jumps' is not specified, the default is
2 if optimizing for a 386, and 4 if optimizing for a 486.
`-malign-functions=NUM'
Align the start of functions to a 2 raised to NUM byte boundary.
If `-malign-functions' is not specified, the default is 2 if
optimizing for a 386, and 4 if optimizing for a 486.

File: gcc.info, Node: HPPA Options, Next: Intel 960 Options, Prev: i386 Options, Up: Submodel Options
HPPA Options
------------
These `-m' options are defined for the HPPA family of computers:
`-mpa-risc-1-0'
Generate code for a PA 1.0 processor.
`-mpa-risc-1-1'
Generate code for a PA 1.1 processor.
`-mbig-switch'
Generate code suitable for big switch tables. Use this option
only if the assembler/linker complain about out of range branches
within a switch table.
`-mjump-in-delay'
Fill delay slots of function calls with unconditional jump
instructions by modifying the return pointer for the function call
to be the target of the conditional jump.
`-mdisable-fpregs'
Prevent floating point registers from being used in any manner.
This is necessary for compiling kernels which perform lazy context
switching of floating point registers. If you use this option and
attempt to perform floating point operations, the compiler will
abort.
`-mdisable-indexing'
Prevent the compiler from using indexing address modes. This
avoids some rather obscure problems when compiling MIG generated
code under MACH.
`-mno-space-regs'
Generate code that assumes the target has no space registers.
This allows GCC to generate faster indirect calls and use unscaled
index address modes.
Such code is suitable for level 0 PA systems and kernels.
`-mfast-indirect-calls'
Generate code that assumes calls never cross space boundaries.
This allows GCC to emit code which performs faster indirect calls.
This option will not work in the presense of shared libraries or
nested functions.
`-mspace'
Optimize for space rather than execution time. Currently this only
enables out of line function prologues and epilogues. This option
is incompatible with PIC code generation and profiling.
`-mlong-load-store'
Generate 3-instruction load and store sequences as sometimes
required by the HP-UX 10 linker. This is equivalent to the `+k'
option to the HP compilers.
`-mportable-runtime'
Use the portable calling conventions proposed by HP for ELF
systems.
`-mgas'
Enable the use of assembler directives only GAS understands.
`-mschedule=CPU TYPE'
Schedule code according to the constraints for the machine type
CPU TYPE. The choices for CPU TYPE are `700' for 7N0 machines,
`7100' for 7N5 machines, and `7100' for 7N2 machines. `7100' is
the default for CPU TYPE.
Note the `7100LC' scheduling information is incomplete and using
`7100LC' often leads to bad schedules. For now it's probably best
to use `7100' instead of `7100LC' for the 7N2 machines.
`-mlinker-opt'
Enable the optimization pass in the HPUX linker. Note this makes
symbolic debugging impossible. It also triggers a bug in the HPUX
8 and HPUX 9 linkers in which they give bogus error messages when
linking some programs.
`-msoft-float'
Generate output containing library calls for floating point.
*Warning:* the requisite libraries are not available for all HPPA
targets. Normally the facilities of the machine's usual C
compiler are used, but this cannot be done directly in
cross-compilation. You must make your own arrangements to provide
suitable library functions for cross-compilation. The embedded
target `hppa1.1-*-pro' does provide software floating point
support.
`-msoft-float' changes the calling convention in the output file;
therefore, it is only useful if you compile *all* of a program with
this option. In particular, you need to compile `libgcc.a', the
library that comes with GNU CC, with `-msoft-float' in order for
this to work.

File: gcc.info, Node: Intel 960 Options, Next: DEC Alpha Options, Prev: HPPA Options, Up: Submodel Options
Intel 960 Options
-----------------
These `-m' options are defined for the Intel 960 implementations:
`-mCPU TYPE'
Assume the defaults for the machine type CPU TYPE for some of the
other options, including instruction scheduling, floating point
support, and addressing modes. The choices for CPU TYPE are `ka',
`kb', `mc', `ca', `cf', `sa', and `sb'. The default is `kb'.
`-mnumerics'
`-msoft-float'
The `-mnumerics' option indicates that the processor does support
floating-point instructions. The `-msoft-float' option indicates
that floating-point support should not be assumed.
`-mleaf-procedures'
`-mno-leaf-procedures'
Do (or do not) attempt to alter leaf procedures to be callable
with the `bal' instruction as well as `call'. This will result in
more efficient code for explicit calls when the `bal' instruction
can be substituted by the assembler or linker, but less efficient
code in other cases, such as calls via function pointers, or using
a linker that doesn't support this optimization.
`-mtail-call'
`-mno-tail-call'
Do (or do not) make additional attempts (beyond those of the
machine-independent portions of the compiler) to optimize
tail-recursive calls into branches. You may not want to do this
because the detection of cases where this is not valid is not
totally complete. The default is `-mno-tail-call'.
`-mcomplex-addr'
`-mno-complex-addr'
Assume (or do not assume) that the use of a complex addressing
mode is a win on this implementation of the i960. Complex
addressing modes may not be worthwhile on the K-series, but they
definitely are on the C-series. The default is currently
`-mcomplex-addr' for all processors except the CB and CC.
`-mcode-align'
`-mno-code-align'
Align code to 8-byte boundaries for faster fetching (or don't
bother). Currently turned on by default for C-series
implementations only.
`-mic-compat'
`-mic2.0-compat'
`-mic3.0-compat'
Enable compatibility with iC960 v2.0 or v3.0.
`-masm-compat'
`-mintel-asm'
Enable compatibility with the iC960 assembler.
`-mstrict-align'
`-mno-strict-align'
Do not permit (do permit) unaligned accesses.
`-mold-align'
Enable structure-alignment compatibility with Intel's gcc release
version 1.3 (based on gcc 1.37). This option implies
`-mstrict-align'.