mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-09 12:22:38 +01:00
1446 lines
54 KiB
C++
1446 lines
54 KiB
C++
/* Definitions of target machine for GNU compiler. Alliant FX version.
|
||
Copyright (C) 1989, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
|
||
Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
|
||
and Joe Weening (weening@gang-of-four.stanford.edu).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* This file is based on m68k.h, simplified by removing support for
|
||
the Sun FPA and other things not applicable to the Alliant. Some
|
||
remnants of these features remain. */
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dmc68000 -Dalliant -Dunix -Asystem(unix) -Acpu(m68k) -Amachine(m68k)"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fprintf (stderr, " (Alliant)");
|
||
|
||
/* Run-time compilation parameters selecting different hardware
|
||
subsets. The Alliant IP is an mc68020. (Older mc68010-based IPs
|
||
are no longer supported.) The Alliant CE is 68020-compatible, and
|
||
also has floating point, vector and concurrency instructions.
|
||
|
||
Although the IP doesn't have floating point, it emulates it in the
|
||
operating system. Using this generally is faster than running code
|
||
compiled with -msoft-float, because the soft-float code still uses
|
||
(simulated) FP registers and ends up emulating several fmove{s,d}
|
||
instructions per call. So I don't recommend using soft-float for
|
||
any Alliant code. -- JSW
|
||
*/
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Compile for a 68020 (not a 68000 or 68010). */
|
||
#define TARGET_68020 (target_flags & 1)
|
||
/* Compile CE insns for floating point (not library calls). */
|
||
#define TARGET_CE (target_flags & 2)
|
||
/* Compile using 68020 bitfield insns. */
|
||
#define TARGET_BITFIELD (target_flags & 4)
|
||
/* Compile with 16-bit `int'. */
|
||
#define TARGET_SHORT (target_flags & 040)
|
||
|
||
/* Default 3 means compile 68020 and CE instructions. We don't use
|
||
bitfield instructions because there appears to be a bug in the
|
||
implementation of bfins on the CE. */
|
||
|
||
#define TARGET_DEFAULT 3
|
||
|
||
/* Define __HAVE_CE__ in preprocessor according to the -m flags.
|
||
This will control the use of inline FP insns in certain macros.
|
||
Also inform the program which CPU this is for. */
|
||
|
||
#if TARGET_DEFAULT & 02
|
||
|
||
/* -mce is the default */
|
||
#define CPP_SPEC \
|
||
"%{!msoft-float:-D__HAVE_CE__ }\
|
||
%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
|
||
|
||
#else
|
||
|
||
/* -msoft-float is the default */
|
||
#define CPP_SPEC \
|
||
"%{mce:-D__HAVE_CE__ }\
|
||
%{m68000:-Dmc68010}%{mc68000:-Dmc68010}%{!mc68000:%{!m68000:-Dmc68020}}"
|
||
|
||
#endif
|
||
|
||
/* Link with libg.a when debugging, for dbx's sake. */
|
||
|
||
#define LIB_SPEC "%{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p} "
|
||
|
||
/* Make the linker remove temporary labels, since the Alliant assembler
|
||
doesn't. */
|
||
|
||
#define LINK_SPEC "-X"
|
||
|
||
/* Every structure or union's size must be a multiple of 2 bytes. */
|
||
|
||
#define STRUCTURE_SIZE_BOUNDARY 16
|
||
|
||
/* This is BSD, so it wants DBX format. */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "68020", 5}, \
|
||
{ "c68020", 5}, \
|
||
{ "bitfield", 4}, \
|
||
{ "68000", -7}, \
|
||
{ "c68000", -7}, \
|
||
{ "soft-float", -2}, \
|
||
{ "nobitfield", -4}, \
|
||
{ "short", 040}, \
|
||
{ "noshort", -040}, \
|
||
{ "", TARGET_DEFAULT}}
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
This is true for 68020 insns such as bfins and bfexts.
|
||
We make it true always by avoiding using the single-bit insns
|
||
except in special cases with constant bit numbers. */
|
||
#define BITS_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the 68000. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* For 68000 we can decide arbitrarily
|
||
since there are no machine instructions for them. */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY (TARGET_SHORT ? 16 : 32)
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 16
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 16
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 16
|
||
|
||
/* Set this non-zero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define number of bits in most basic integer type.
|
||
(If undefined, default is BITS_PER_WORD). */
|
||
|
||
#define INT_TYPE_SIZE (TARGET_SHORT ? 16 : 32)
|
||
|
||
/* Define these to avoid dependence on meaning of `int'.
|
||
Note that WCHAR_TYPE_SIZE is used in cexp.y,
|
||
where TARGET_SHORT is not available. */
|
||
|
||
#define WCHAR_TYPE "long int"
|
||
#define WCHAR_TYPE_SIZE 32
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers.
|
||
For the Alliant, we give the data registers numbers 0-7,
|
||
the address registers numbers 010-017,
|
||
and the floating point registers numbers 020-027. */
|
||
#define FIRST_PSEUDO_REGISTER 24
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the Alliant, these are a0 (argument pointer),
|
||
a6 (frame pointer) and a7 (stack pointer). */
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 0, 0, 0, \
|
||
1, 0, 0, 0, 0, 0, 1, 1, \
|
||
0, 0, 0, 0, 0, 0, 0, 0 }
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like.
|
||
The Alliant calling sequence allows a function to use any register,
|
||
so we include them all here. */
|
||
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1, \
|
||
1, 1, 1, 1, 1, 1, 1, 1 }
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
|
||
On the Alliant, ordinary registers hold 32 bits worth;
|
||
for the FP registers, a single register is always enough for
|
||
any floating-point value. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((REGNO) >= 16 ? GET_MODE_NUNITS (MODE) \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On the Alliant, the cpu registers can hold any mode but the FP registers
|
||
can hold only floating point. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
||
((REGNO) < 16 || GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
||
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
||
(((MODE1) == SFmode || (MODE1) == DFmode \
|
||
|| (MODE1) == SCmode || (MODE1) == DCmode) \
|
||
== ((MODE2) == SFmode || (MODE2) == DFmode \
|
||
|| (MODE2) == SCmode || (MODE2) == DCmode))
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* m68000 pc isn't overloaded on a register. */
|
||
/* #define PC_REGNUM */
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 15
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 14
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
/* Set for now on Alliant until we find a way to make this work with
|
||
their calling sequence. */
|
||
#define FRAME_POINTER_REQUIRED 1
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 8
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM 10
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 9
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The Alliant has three kinds of registers, so eight classes would be
|
||
a complete set. One of them is not needed. */
|
||
|
||
enum reg_class { NO_REGS, FP_REGS, DATA_REGS, DATA_OR_FP_REGS,
|
||
ADDR_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "FP_REGS", "DATA_REGS", "DATA_OR_FP_REGS", \
|
||
"ADDR_REGS", "GENERAL_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
0, /* NO_REGS */ \
|
||
0x00ff0000, /* FP_REGS */ \
|
||
0x000000ff, /* DATA_REGS */ \
|
||
0x00ff00ff, /* DATA_OR_FP_REGS */ \
|
||
0x0000ff00, /* ADDR_REGS */ \
|
||
0x0000ffff, /* GENERAL_REGS */ \
|
||
0x00ffffff /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
extern enum reg_class regno_reg_class[];
|
||
#define REGNO_REG_CLASS(REGNO) (regno_reg_class[(REGNO)>>3])
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS GENERAL_REGS
|
||
#define BASE_REG_CLASS ADDR_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'a' ? ADDR_REGS : \
|
||
((C) == 'd' ? DATA_REGS : \
|
||
((C) == 'f' ? FP_REGS : \
|
||
NO_REGS)))
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
For the 68000, `I' is used for the range 1 to 8
|
||
allowed as immediate shift counts and in addq.
|
||
`J' is used for the range of signed numbers that fit in 16 bits.
|
||
`K' is for numbers that moveq can't handle.
|
||
`L' is for range -8 to -1, range of values that can be added with subq. */
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? (VALUE) > 0 && (VALUE) <= 8 : \
|
||
(C) == 'J' ? (VALUE) >= -0x8000 && (VALUE) <= 0x7FFF : \
|
||
(C) == 'K' ? (VALUE) < -0x80 || (VALUE) >= 0x80 : \
|
||
(C) == 'L' ? (VALUE) < 0 && (VALUE) >= -8 : 0)
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class.
|
||
On the 68000 series, use a data reg if possible when the
|
||
value is a constant in the range where moveq could be used
|
||
and we ensure that QImodes are reloaded into data regs. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
|
||
((GET_CODE (X) == CONST_INT \
|
||
&& (unsigned) (INTVAL (X) + 0x80) < 0x100 \
|
||
&& (CLASS) != ADDR_REGS) \
|
||
? DATA_REGS \
|
||
: GET_MODE (X) == QImode \
|
||
? DATA_REGS \
|
||
: (CLASS))
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the 68000, this is the size of MODE in words,
|
||
except in the FP regs, where a single reg is always enough. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((CLASS) == FP_REGS ? 1 \
|
||
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
||
|
||
/* Moves between fp regs and other regs are two insns. */
|
||
#define REGISTER_MOVE_COST(CLASS1, CLASS2) \
|
||
((((CLASS1) == FP_REGS && (CLASS2) != FP_REGS) \
|
||
|| ((CLASS2) == FP_REGS && (CLASS1) != FP_REGS)) \
|
||
? 4 : 2)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* The Alliant uses -fcaller-saves by default. */
|
||
#define DEFAULT_CALLER_SAVES
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET -4
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the 68000, sp@- in a byte insn really pushes a word. */
|
||
#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the Alliant we define this as SIZE and make the calling sequence
|
||
(in alliant.md) pop the args. This wouldn't be necessary if we
|
||
could add to the pending stack adjustment the size of the argument
|
||
descriptors that are pushed after the arguments. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the Alliant the return value is in FP0 if real, else D0. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
(TREE_CODE (VALTYPE) == REAL_TYPE \
|
||
? gen_rtx (REG, TYPE_MODE (VALTYPE), 16) \
|
||
: gen_rtx (REG, TYPE_MODE (VALTYPE), 0))
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On the Alliant the return value is in FP0 if real, else D0. The
|
||
Alliant library functions for floating-point emulation return their
|
||
values both in FP0 and in D0/D1. But since not all libgcc functions
|
||
return the results of these directly, we cannot assume that D0/D1
|
||
contain the values we expect on return from a libgcc function. */
|
||
|
||
#define LIBCALL_VALUE(MODE) \
|
||
(((MODE) == DFmode || (MODE) == SFmode) \
|
||
? gen_rtx (REG, MODE, 16) \
|
||
: gen_rtx (REG, MODE, 0))
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the Alliant, D0 and FP0 are the only registers thus used.
|
||
(No need to mention D1 when used as a pair with D0.) */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) (((N) & ~16) == 0)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
#define PCC_STATIC_STRUCT_RETURN
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the Alliant, no registers are used in this way. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the Alliant, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the Alliant, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the Alliant all args are pushed. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used.
|
||
The Alliant uses caller-saves, so this macro is very simple. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ int fsize = ((SIZE) - STARTING_FRAME_OFFSET + 3) & -4; \
|
||
if (frame_pointer_needed) \
|
||
{ \
|
||
if (fsize < 0x8000) \
|
||
fprintf(FILE,"\tlinkw a6,#%d\n", -fsize); \
|
||
else if (TARGET_68020) \
|
||
fprintf(FILE,"\tlinkl a6,#%d\n", -fsize); \
|
||
else \
|
||
fprintf(FILE,"\tlinkw a6,#0\n\tsubl #%d,sp\n", fsize); \
|
||
fprintf(FILE, "\tmovl a0,a6@(-4)\n" ); }}
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tjbsr __mcount_\n")
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer!
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
{ if (frame_pointer_needed) \
|
||
fprintf (FILE, "\tunlk a6\n"); \
|
||
fprintf (FILE, "\trts\n"); }
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved. */
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
|
||
{ \
|
||
int regno; \
|
||
int offset = -4; \
|
||
for (regno = 16; regno < FIRST_PSEUDO_REGISTER; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 12; \
|
||
for (regno = 0; regno < 16; regno++) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
offset += 4; \
|
||
(DEPTH) = offset - ((get_frame_size () + 3) & -4); \
|
||
}
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define HAVE_POST_INCREMENT
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
#define HAVE_PRE_DECREMENT
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
||
((REGNO) < 16 || (unsigned) reg_renumber[REGNO] < 16)
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
(((REGNO) ^ 010) < 8 || (unsigned) (reg_renumber[REGNO] ^ 010) < 8)
|
||
#define REGNO_OK_FOR_DATA_P(REGNO) \
|
||
((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
|
||
#define REGNO_OK_FOR_FP_P(REGNO) \
|
||
(((REGNO) ^ 020) < 8 || (unsigned) (reg_renumber[REGNO] ^ 020) < 8)
|
||
|
||
/* Now macros that check whether X is a register and also,
|
||
strictly, whether it is in a specified class.
|
||
|
||
These macros are specific to the 68000, and may be used only
|
||
in code for printing assembler insns and in conditions for
|
||
define_optimization. */
|
||
|
||
/* 1 if X is a data register. */
|
||
|
||
#define DATA_REG_P(X) (REG_P (X) && REGNO_OK_FOR_DATA_P (REGNO (X)))
|
||
|
||
/* 1 if X is an fp register. */
|
||
|
||
#define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
|
||
|
||
/* 1 if X is an address register */
|
||
|
||
#define ADDRESS_REG_P(X) (REG_P (X) && REGNO_OK_FOR_BASE_P (REGNO (X)))
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == HIGH)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
/* Alliant FP instructions don't take immediate operands, so this
|
||
forces them into memory. */
|
||
#define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) ((REGNO (X) ^ 020) >= 8)
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) ((REGNO (X) & ~027) != 0)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS. */
|
||
|
||
#define INDIRECTABLE_1_ADDRESS_P(X) \
|
||
(CONSTANT_ADDRESS_P (X) \
|
||
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
|
||
&& REG_P (XEXP (X, 0)) \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& REG_P (XEXP (X, 0)) && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& ((unsigned) INTVAL (XEXP (X, 1)) + 0x8000) < 0x10000))
|
||
|
||
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
|
||
{ if (INDIRECTABLE_1_ADDRESS_P (X)) goto ADDR; }
|
||
|
||
#define GO_IF_INDEXABLE_BASE(X, ADDR) \
|
||
{ if (GET_CODE (X) == LABEL_REF) goto ADDR; \
|
||
if (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) goto ADDR; }
|
||
|
||
#define GO_IF_INDEXING(X, ADDR) \
|
||
{ if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 0))) \
|
||
{ GO_IF_INDEXABLE_BASE (XEXP (X, 1), ADDR); } \
|
||
if (GET_CODE (X) == PLUS && LEGITIMATE_INDEX_P (XEXP (X, 1))) \
|
||
{ GO_IF_INDEXABLE_BASE (XEXP (X, 0), ADDR); } }
|
||
|
||
#define GO_IF_INDEXED_ADDRESS(X, ADDR) \
|
||
{ GO_IF_INDEXING (X, ADDR); \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ if (GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (unsigned) INTVAL (XEXP (X, 1)) + 0x80 < 0x100) \
|
||
{ rtx go_temp = XEXP (X, 0); GO_IF_INDEXING (go_temp, ADDR); } \
|
||
if (GET_CODE (XEXP (X, 0)) == CONST_INT \
|
||
&& (unsigned) INTVAL (XEXP (X, 0)) + 0x80 < 0x100) \
|
||
{ rtx go_temp = XEXP (X, 1); GO_IF_INDEXING (go_temp, ADDR); } } }
|
||
|
||
#define LEGITIMATE_INDEX_REG_P(X) \
|
||
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|
||
|| (GET_CODE (X) == SIGN_EXTEND \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& GET_MODE (XEXP (X, 0)) == HImode \
|
||
&& REG_OK_FOR_INDEX_P (XEXP (X, 0))))
|
||
|
||
#define LEGITIMATE_INDEX_P(X) \
|
||
(LEGITIMATE_INDEX_REG_P (X) \
|
||
|| (TARGET_68020 && GET_CODE (X) == MULT \
|
||
&& LEGITIMATE_INDEX_REG_P (XEXP (X, 0)) \
|
||
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
||
&& (INTVAL (XEXP (X, 1)) == 2 \
|
||
|| INTVAL (XEXP (X, 1)) == 4 \
|
||
|| INTVAL (XEXP (X, 1)) == 8)))
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
|
||
GO_IF_INDEXED_ADDRESS (X, ADDR); }
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the 68000, we handle X+REG by loading X into a register R and
|
||
using R+REG. R will go in an address reg and indexing will be used.
|
||
However, if REG is a broken-out memory address or multiplication,
|
||
nothing needs to be done because REG can certainly go in an address reg. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
||
{ register int ch = (X) != (OLDX); \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ if (GET_CODE (XEXP (X, 0)) == MULT) \
|
||
ch = 1, XEXP (X, 0) = force_operand (XEXP (X, 0), 0); \
|
||
if (GET_CODE (XEXP (X, 1)) == MULT) \
|
||
ch = 1, XEXP (X, 1) = force_operand (XEXP (X, 1), 0); \
|
||
if (ch && GET_CODE (XEXP (X, 1)) == REG \
|
||
&& GET_CODE (XEXP (X, 0)) == REG) \
|
||
goto WIN; \
|
||
if (ch) { GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); } \
|
||
if (GET_CODE (XEXP (X, 0)) == REG \
|
||
|| (GET_CODE (XEXP (X, 0)) == SIGN_EXTEND \
|
||
&& GET_CODE (XEXP (XEXP (X, 0), 0)) == REG \
|
||
&& GET_MODE (XEXP (XEXP (X, 0), 0)) == HImode)) \
|
||
{ register rtx temp = gen_reg_rtx (Pmode); \
|
||
register rtx val = force_operand (XEXP (X, 1), 0); \
|
||
emit_move_insn (temp, val); \
|
||
XEXP (X, 1) = temp; \
|
||
goto WIN; } \
|
||
else if (GET_CODE (XEXP (X, 1)) == REG \
|
||
|| (GET_CODE (XEXP (X, 1)) == SIGN_EXTEND \
|
||
&& GET_CODE (XEXP (XEXP (X, 1), 0)) == REG \
|
||
&& GET_MODE (XEXP (XEXP (X, 1), 0)) == HImode)) \
|
||
{ register rtx temp = gen_reg_rtx (Pmode); \
|
||
register rtx val = force_operand (XEXP (X, 0), 0); \
|
||
emit_move_insn (temp, val); \
|
||
XEXP (X, 0) = temp; \
|
||
goto WIN; }}}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the 68000, only predecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand). */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE HImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
#define SLOW_ZERO_EXTEND
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits. */
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE -1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
/* Constant zero is super cheap due to clr instruction. */ \
|
||
if (RTX == const0_rtx) return 0; \
|
||
if ((unsigned) INTVAL (RTX) < 077) return 1; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 3; \
|
||
case CONST_DOUBLE: \
|
||
return 5;
|
||
|
||
/* Check a `double' value for validity for a particular machine mode.
|
||
This is defined to avoid crashes outputting certain constants. */
|
||
|
||
#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
|
||
if (OVERFLOW) \
|
||
(D) = 3.4028234663852890e+38; \
|
||
else if ((MODE) == SFmode) \
|
||
{ \
|
||
if ((d) > 3.4028234663852890e+38) \
|
||
(OVERFLOW) = 1, (D) = 3.4028234663852890e+38; \
|
||
else if ((D) < -3.4028234663852890e+38) \
|
||
(OVERFLOW) = 1, (D) = -3.4028234663852890e+38; \
|
||
else if (((D) > 0) && ((D) < 1.1754943508222873e-38)) \
|
||
(OVERFLOW) = 1, (D) = 0.0; \
|
||
else if (((d) < 0) && ((d) > -1.1754943508222873e-38)) \
|
||
(OVERFLOW) = 1, (D) = 0.0; \
|
||
}
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
/* On the Alliant, floating-point instructions do not modify the
|
||
ordinary CC register. Only fcmp and ftest instructions modify the
|
||
floating-point CC register. We should actually keep track of what
|
||
both kinds of CC registers contain, but for now we only consider
|
||
the most recent instruction that has set either register. */
|
||
|
||
/* Set if the cc value came from a floating point test, so a floating
|
||
point conditional branch must be output. */
|
||
#define CC_IN_FP 04000
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
/* On the 68000, all the insns to store in an address register
|
||
fail to set the cc's. However, in some cases these instructions
|
||
can make it possibly invalid to use the saved cc's. In those
|
||
cases we clear out some or all of the saved cc's so they won't be used. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
{ \
|
||
if (GET_CODE (EXP) == SET) \
|
||
{ if (ADDRESS_REG_P (SET_DEST (EXP)) || FP_REG_P (SET_DEST (EXP))) \
|
||
{ if (cc_status.value1 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value1)) \
|
||
cc_status.value1 = 0; \
|
||
if (cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (SET_DEST (EXP), cc_status.value2)) \
|
||
cc_status.value2 = 0; } \
|
||
else if (GET_CODE (SET_SRC (EXP)) == MOD \
|
||
|| GET_CODE (SET_SRC (EXP)) == UMOD \
|
||
|| (GET_CODE (SET_SRC (EXP)) == TRUNCATE \
|
||
&& (GET_CODE (XEXP (SET_SRC (EXP))) == MOD \
|
||
|| GET_CODE (XEXP (SET_SRC (EXP))) == UMOD))) \
|
||
/* The swap insn produces cc's that don't correspond to the \
|
||
result. */ \
|
||
CC_STATUS_INIT; \
|
||
else if (SET_DEST (EXP) != cc0_rtx \
|
||
&& (FP_REG_P (SET_SRC (EXP)) \
|
||
|| GET_CODE (SET_SRC (EXP)) == FIX \
|
||
|| GET_CODE (SET_SRC (EXP)) == FLOAT_TRUNCATE \
|
||
|| GET_CODE (SET_SRC (EXP)) == FLOAT_EXTEND)) \
|
||
{ CC_STATUS_INIT; } \
|
||
/* A pair of move insns doesn't produce a useful overall cc. */ \
|
||
else if (!FP_REG_P (SET_DEST (EXP)) \
|
||
&& !FP_REG_P (SET_SRC (EXP)) \
|
||
&& GET_MODE_SIZE (GET_MODE (SET_SRC (EXP))) > 4 \
|
||
&& (GET_CODE (SET_SRC (EXP)) == REG \
|
||
|| GET_CODE (SET_SRC (EXP)) == MEM \
|
||
|| GET_CODE (SET_SRC (EXP)) == CONST_DOUBLE))\
|
||
{ CC_STATUS_INIT; } \
|
||
else if (GET_CODE (SET_SRC (EXP)) == CALL) \
|
||
{ CC_STATUS_INIT; } \
|
||
else if (XEXP (EXP, 0) != pc_rtx) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = XEXP (EXP, 0); \
|
||
cc_status.value2 = XEXP (EXP, 1); } } \
|
||
else if (GET_CODE (EXP) == PARALLEL \
|
||
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
|
||
{ \
|
||
if (ADDRESS_REG_P (XEXP (XVECEXP (EXP, 0, 0), 0))) \
|
||
CC_STATUS_INIT; \
|
||
else if (XEXP (XVECEXP (EXP, 0, 0), 0) != pc_rtx) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = XEXP (XVECEXP (EXP, 0, 0), 0); \
|
||
cc_status.value2 = XEXP (XVECEXP (EXP, 0, 0), 1); } } \
|
||
else CC_STATUS_INIT; \
|
||
if (cc_status.value2 != 0 \
|
||
&& ADDRESS_REG_P (cc_status.value2) \
|
||
&& GET_MODE (cc_status.value2) == QImode) \
|
||
CC_STATUS_INIT; \
|
||
if (cc_status.value2 != 0) \
|
||
switch (GET_CODE (cc_status.value2)) \
|
||
{ case PLUS: case MINUS: case MULT: \
|
||
case DIV: case UDIV: case MOD: case UMOD: case NEG: \
|
||
case ASHIFT: case ASHIFTRT: case LSHIFTRT: \
|
||
case ROTATE: case ROTATERT: \
|
||
if (GET_MODE (cc_status.value2) != VOIDmode) \
|
||
cc_status.flags |= CC_NO_OVERFLOW; \
|
||
break; \
|
||
case ZERO_EXTEND: \
|
||
/* (SET r1 (ZERO_EXTEND r2)) on this machine
|
||
ends with a move insn moving r2 in r2's mode.
|
||
Thus, the cc's are set for r2.
|
||
This can set N bit spuriously. */ \
|
||
cc_status.flags |= CC_NOT_NEGATIVE; } \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
|
||
&& cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
|
||
cc_status.value2 = 0; \
|
||
if ((cc_status.value1 && FP_REG_P (cc_status.value1)) \
|
||
|| (cc_status.value2 && FP_REG_P (cc_status.value2))) \
|
||
cc_status.flags = CC_IN_FP; }
|
||
|
||
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
|
||
{ if (cc_prev_status.flags & CC_IN_FP) \
|
||
return FLOAT; \
|
||
if (cc_prev_status.flags & CC_NO_OVERFLOW) \
|
||
return NO_OV; \
|
||
return NORMAL; }
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(FILE) \
|
||
fprintf (FILE, "#NO_APP\n");
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON "#APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF "#NO_APP\n"
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", \
|
||
"a0", "a1", "a2", "a3", "a4", "a5", "a6", "sp", \
|
||
"fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7" }
|
||
|
||
/* How to renumber registers for dbx and gdb.
|
||
On the Sun-3, the floating point registers have numbers
|
||
18 to 25, not 16 to 23 as they do in the compiler. */
|
||
/* (On the Alliant, dbx isn't working yet at all. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) ((REGNO) < 16 ? (REGNO) : (REGNO) + 2)
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs ("\t.globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX "_"
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
do { union { double d; long v[2];} tem; \
|
||
tem.d = (VALUE); \
|
||
fprintf (FILE, "\t.long 0x%x,0x%x\n", tem.v[0], tem.v[1]); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
do { union { float f; long l;} tem; \
|
||
tem.f = (VALUE); \
|
||
fprintf (FILE, "\t.long 0x%x\n", tem.l); \
|
||
} while (0)
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.long "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.word "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.byte "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE,PTR,SIZE) \
|
||
do { int i; unsigned char *pp = (unsigned char *) (PTR); \
|
||
fprintf((FILE), "\t.byte %d", (unsigned int)*pp++); \
|
||
for (i = 1; i < (SIZE); ++i, ++pp) { \
|
||
if ((i % 8) == 0) \
|
||
fprintf((FILE), "\n\t.byte %d", (unsigned int) *pp); \
|
||
else \
|
||
fprintf((FILE), ",%d", (unsigned int) *pp); } \
|
||
fprintf ((FILE), "\n"); } while (0)
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tmovl %s,sp@-\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tmovl sp@+,%s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
(The 68000 does not use such vectors,
|
||
but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t.long L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if ((LOG) == 1) \
|
||
fprintf (FILE, "\t.even\n"); \
|
||
else if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %dn", (LOG));
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t. = . + %u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.comm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs ("\t.lcomm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null.
|
||
|
||
On the Alliant, we use several CODE characters:
|
||
'.' for dot needed in Motorola-style opcode names.
|
||
'-' for an operand pushing on the stack:
|
||
sp@-, -(sp) or -(%sp) depending on the style of syntax.
|
||
'+' for an operand pushing on the stack:
|
||
sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
|
||
'@' for a reference to the top word on the stack:
|
||
sp@, (sp) or (%sp) depending on the style of syntax.
|
||
'#' for an immediate operand prefix (# in MIT and Motorola syntax
|
||
but & in SGS syntax).
|
||
'!' for the cc register (used in an `and to cc' insn).
|
||
|
||
'b' for byte insn (no effect, on the Sun; this is for the ISI).
|
||
'd' to force memory addressing to be absolute, not relative.
|
||
'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
|
||
'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
|
||
or print pair of registers as rx:ry. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '.' || (CODE) == '#' || (CODE) == '-' \
|
||
|| (CODE) == '+' || (CODE) == '@' || (CODE) == '!')
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ int i; \
|
||
if (CODE == '.') ; \
|
||
else if (CODE == '#') fprintf (FILE, "#"); \
|
||
else if (CODE == '-') fprintf (FILE, "sp@-"); \
|
||
else if (CODE == '+') fprintf (FILE, "sp@+"); \
|
||
else if (CODE == '@') fprintf (FILE, "sp@"); \
|
||
else if (CODE == '!') fprintf (FILE, "cc"); \
|
||
else if ((X) == 0 ) ; \
|
||
else if (GET_CODE (X) == REG) \
|
||
{ if (REGNO (X) < 16 && (CODE == 'y' || CODE == 'x') && GET_MODE (X) == DFmode) \
|
||
fprintf (FILE, "%s,%s", reg_names[REGNO (X)], reg_names[REGNO (X)+1]); \
|
||
else \
|
||
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
|
||
} \
|
||
else if (GET_CODE (X) == MEM) \
|
||
{ \
|
||
output_address (XEXP (X, 0)); \
|
||
if (CODE == 'd' && ! TARGET_68020 \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 0)) \
|
||
&& !(GET_CODE (XEXP (X, 0)) == CONST_INT \
|
||
&& INTVAL (XEXP (X, 0)) < 0x8000 \
|
||
&& INTVAL (XEXP (X, 0)) >= -0x8000)) \
|
||
fprintf (FILE, ":l"); \
|
||
} \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
|
||
{ union { double d; int i[2]; } u; \
|
||
union { float f; int i; } u1; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
u1.f = u.d; \
|
||
if (CODE == 'f') \
|
||
fprintf (FILE, "#0r%.9g", u1.f); \
|
||
else \
|
||
fprintf (FILE, "#0x%x", u1.i); } \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) \
|
||
{ union { double d; int i[2]; } u; \
|
||
u.i[0] = CONST_DOUBLE_LOW (X); u.i[1] = CONST_DOUBLE_HIGH (X); \
|
||
fprintf (FILE, "#0r%.20g", u.d); } \
|
||
else { putc ('#', FILE); output_addr_const (FILE, X); }}
|
||
|
||
/* Note that this contains a kludge that knows that the only reason
|
||
we have an address (plus (label_ref...) (reg...))
|
||
is in the insn before a tablejump, and we know that m68k.md
|
||
generates a label LInnn: on such an insn. */
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ register rtx reg1, reg2, breg, ireg; \
|
||
register rtx addr = ADDR; \
|
||
static char *sz = ".BW.L...D"; \
|
||
rtx offset; \
|
||
switch (GET_CODE (addr)) \
|
||
{ \
|
||
case REG: \
|
||
fprintf (FILE, "%s@", reg_names[REGNO (addr)]); \
|
||
break; \
|
||
case PRE_DEC: \
|
||
fprintf (FILE, "%s@-", reg_names[REGNO (XEXP (addr, 0))]); \
|
||
break; \
|
||
case POST_INC: \
|
||
fprintf (FILE, "%s@+", reg_names[REGNO (XEXP (addr, 0))]); \
|
||
break; \
|
||
case PLUS: \
|
||
reg1 = 0; reg2 = 0; \
|
||
ireg = 0; breg = 0; \
|
||
offset = 0; \
|
||
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))) \
|
||
{ \
|
||
offset = XEXP (addr, 0); \
|
||
addr = XEXP (addr, 1); \
|
||
} \
|
||
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))) \
|
||
{ \
|
||
offset = XEXP (addr, 1); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
if (GET_CODE (addr) != PLUS) ; \
|
||
else if (GET_CODE (XEXP (addr, 0)) == SIGN_EXTEND) \
|
||
{ \
|
||
reg1 = XEXP (addr, 0); \
|
||
addr = XEXP (addr, 1); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 1)) == SIGN_EXTEND) \
|
||
{ \
|
||
reg1 = XEXP (addr, 1); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 0)) == MULT) \
|
||
{ \
|
||
reg1 = XEXP (addr, 0); \
|
||
addr = XEXP (addr, 1); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 1)) == MULT) \
|
||
{ \
|
||
reg1 = XEXP (addr, 1); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 0)) == REG) \
|
||
{ \
|
||
reg1 = XEXP (addr, 0); \
|
||
addr = XEXP (addr, 1); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG) \
|
||
{ \
|
||
reg1 = XEXP (addr, 1); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT \
|
||
|| GET_CODE (addr) == SIGN_EXTEND) \
|
||
{ if (reg1 == 0) reg1 = addr; else reg2 = addr; addr = 0; } \
|
||
/* for OLD_INDEXING \
|
||
else if (GET_CODE (addr) == PLUS) \
|
||
{ \
|
||
if (GET_CODE (XEXP (addr, 0)) == REG) \
|
||
{ \
|
||
reg2 = XEXP (addr, 0); \
|
||
addr = XEXP (addr, 1); \
|
||
} \
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG) \
|
||
{ \
|
||
reg2 = XEXP (addr, 1); \
|
||
addr = XEXP (addr, 0); \
|
||
} \
|
||
} \
|
||
*/ \
|
||
if (offset != 0) { if (addr != 0) abort (); addr = offset; } \
|
||
if ((reg1 && (GET_CODE (reg1) == SIGN_EXTEND \
|
||
|| GET_CODE (reg1) == MULT)) \
|
||
|| (reg2 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg2)))) \
|
||
{ breg = reg2; ireg = reg1; } \
|
||
else if (reg1 != 0 && REGNO_OK_FOR_BASE_P (REGNO (reg1))) \
|
||
{ breg = reg1; ireg = reg2; } \
|
||
if (ireg != 0 && breg == 0 && GET_CODE (addr) == LABEL_REF) \
|
||
{ int scale = 1; \
|
||
if (GET_CODE (ireg) == MULT) \
|
||
{ scale = INTVAL (XEXP (ireg, 1)); \
|
||
ireg = XEXP (ireg, 0); } \
|
||
if (GET_CODE (ireg) == SIGN_EXTEND) \
|
||
fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:W", \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
reg_names[REGNO (XEXP (ireg, 0))]); \
|
||
else \
|
||
fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L", \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
reg_names[REGNO (ireg)]); \
|
||
fprintf (FILE, ":%c", sz[scale]); \
|
||
putc (']', FILE); \
|
||
break; } \
|
||
if (breg != 0 && ireg == 0 && GET_CODE (addr) == LABEL_REF) \
|
||
{ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
reg_names[REGNO (breg)]); \
|
||
break; } \
|
||
if (ireg != 0 || breg != 0) \
|
||
{ int scale = 1; \
|
||
if (breg == 0) \
|
||
abort (); \
|
||
if (addr && GET_CODE (addr) == LABEL_REF) abort (); \
|
||
fprintf (FILE, "%s@", reg_names[REGNO (breg)]); \
|
||
if (addr != 0) { \
|
||
putc( '(', FILE ); \
|
||
output_addr_const (FILE, addr); \
|
||
if (ireg != 0) { \
|
||
if (GET_CODE(addr) == CONST_INT) { \
|
||
int size_of = 1, val = INTVAL(addr); \
|
||
if (val < -0x8000 || val >= 0x8000) \
|
||
size_of = 4; \
|
||
else if (val < -0x80 || val >= 0x80) \
|
||
size_of = 2; \
|
||
fprintf(FILE, ":%c", sz[size_of]); \
|
||
} \
|
||
else \
|
||
fprintf(FILE, ":L"); } \
|
||
putc( ')', FILE ); } \
|
||
if (ireg != 0) { \
|
||
putc ('[', FILE); \
|
||
if (ireg != 0 && GET_CODE (ireg) == MULT) \
|
||
{ scale = INTVAL (XEXP (ireg, 1)); \
|
||
ireg = XEXP (ireg, 0); } \
|
||
if (ireg != 0 && GET_CODE (ireg) == SIGN_EXTEND) \
|
||
fprintf (FILE, "%s:W", reg_names[REGNO (XEXP (ireg, 0))]); \
|
||
else if (ireg != 0) \
|
||
fprintf (FILE, "%s:L", reg_names[REGNO (ireg)]); \
|
||
fprintf (FILE, ":%c", sz[scale]); \
|
||
putc (']', FILE); \
|
||
} \
|
||
break; \
|
||
} \
|
||
else if (reg1 != 0 && GET_CODE (addr) == LABEL_REF) \
|
||
{ fprintf (FILE, "pc@(L%d-LI%d-2:B)[%s:L:B]", \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
CODE_LABEL_NUMBER (XEXP (addr, 0)), \
|
||
reg_names[REGNO (reg1)]); \
|
||
break; } \
|
||
default: \
|
||
if (GET_CODE (addr) == CONST_INT \
|
||
&& INTVAL (addr) < 0x8000 \
|
||
&& INTVAL (addr) >= -0x8000) \
|
||
fprintf (FILE, "%d:W", INTVAL (addr)); \
|
||
else \
|
||
output_addr_const (FILE, addr); \
|
||
}}
|
||
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|
||
|