mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-09 12:22:38 +01:00
1422 lines
34 KiB
C
1422 lines
34 KiB
C
/* Subroutines for gcc2 for pdp11.
|
||
Copyright (C) 1994, 1995, 1996, 1997 Free Software Foundation, Inc.
|
||
Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include <stdio.h>
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
|
||
/*
|
||
#define FPU_REG_P(X) ((X)>=8 && (X)<14)
|
||
#define CPU_REG_P(X) ((X)>=0 && (X)<8)
|
||
*/
|
||
|
||
/* this is the current value returned by the macro FIRST_PARM_OFFSET
|
||
defined in tm.h */
|
||
int current_first_parm_offset;
|
||
|
||
/* This is where the condition code register lives. */
|
||
/* rtx cc0_reg_rtx; - no longer needed? */
|
||
|
||
static rtx find_addr_reg ();
|
||
|
||
/* Nonzero if OP is a valid second operand for an arithmetic insn. */
|
||
|
||
int
|
||
arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode) || GET_CODE (op) == CONST_INT);
|
||
}
|
||
|
||
int
|
||
const_immediate_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT);
|
||
}
|
||
|
||
int
|
||
immediate15_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT && ((INTVAL (op) & 0x8000) == 0x0000));
|
||
}
|
||
|
||
int
|
||
expand_shift_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& abs (INTVAL(op)) > 1
|
||
&& abs (INTVAL(op)) <= 4);
|
||
}
|
||
|
||
/*
|
||
stream is a stdio stream to output the code to.
|
||
size is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used.
|
||
*/
|
||
|
||
void
|
||
output_function_prologue(stream, size)
|
||
FILE *stream;
|
||
int size;
|
||
{
|
||
int fsize = ((size) + 1) & ~1;
|
||
int regno, nregs, i;
|
||
int offset = 0;
|
||
|
||
int via_ac = -1;
|
||
|
||
fprintf (stream, "\n\t; /* function prologue %s*/\n", current_function_name);
|
||
|
||
/* if we are outputting code for main,
|
||
the switch FPU to right mode if TARGET_FPU */
|
||
if ( (strcmp ("main", current_function_name) == 0)
|
||
&& TARGET_FPU)
|
||
{
|
||
fprintf(stream, "\t;/* switch cpu to double float, single integer */\n");
|
||
fprintf(stream, "\tsetd\n");
|
||
fprintf(stream, "\tseti\n\n");
|
||
}
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
fprintf(stream, "\tmov fp, -(sp)\n");
|
||
fprintf(stream, "\tmov sp, fp\n");
|
||
}
|
||
else
|
||
{
|
||
/* DON'T SAVE FP */
|
||
}
|
||
|
||
/* make frame */
|
||
if (fsize)
|
||
fprintf (stream, "\tsub $%d, sp\n", fsize);
|
||
|
||
/* save CPU registers */
|
||
for (regno = 0; regno < 8; regno++)
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno])
|
||
if (! ((regno == FRAME_POINTER_REGNUM)
|
||
&& frame_pointer_needed))
|
||
fprintf (stream, "\tmov %s, -(sp)\n", reg_names[regno]);
|
||
/* fpu regs saving */
|
||
|
||
/* via_ac specifies the ac to use for saving ac4, ac5 */
|
||
via_ac = -1;
|
||
|
||
for (regno = 8; regno < FIRST_PSEUDO_REGISTER ; regno++)
|
||
{
|
||
/* ac0 - ac3 */
|
||
if (LOAD_FPU_REG_P(regno)
|
||
&& regs_ever_live[regno]
|
||
&& ! call_used_regs[regno])
|
||
{
|
||
fprintf (stream, "\tfstd %s, -(sp)\n", reg_names[regno]);
|
||
via_ac = regno;
|
||
}
|
||
|
||
/* maybe make ac4, ac5 call used regs?? */
|
||
/* ac4 - ac5 */
|
||
if (NO_LOAD_FPU_REG_P(regno)
|
||
&& regs_ever_live[regno]
|
||
&& ! call_used_regs[regno])
|
||
{
|
||
if (via_ac == -1)
|
||
abort();
|
||
|
||
fprintf (stream, "\tfldd %s, %s\n", reg_names[regno], reg_names[via_ac]);
|
||
fprintf (stream, "\tfstd %s, -(sp)\n", reg_names[via_ac]);
|
||
}
|
||
}
|
||
|
||
fprintf (stream, "\t;/* end of prologue */\n\n");
|
||
}
|
||
|
||
/*
|
||
The function epilogue should not depend on the current stack pointer!
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
/* maybe we can make leaf functions faster by switching to the
|
||
second register file - this way we don't have to save regs!
|
||
leaf functions are ~ 50% of all functions (dynamically!)
|
||
|
||
set/clear bit 11 (dec. 2048) of status word for switching register files -
|
||
but how can we do this? the pdp11/45 manual says bit may only
|
||
be set (p.24), but not cleared!
|
||
|
||
switching to kernel is probably more expensive, so we'll leave it
|
||
like this and not use the second set of registers...
|
||
|
||
maybe as option if you want to generate code for kernel mode? */
|
||
|
||
|
||
void
|
||
output_function_epilogue(stream, size)
|
||
FILE *stream;
|
||
int size;
|
||
{
|
||
extern int may_call_alloca;
|
||
|
||
int fsize = ((size) + 1) & ~1;
|
||
int nregs, regno, i, j, k, adjust_fp;
|
||
|
||
int via_ac;
|
||
|
||
fprintf (stream, "\n\t; /*function epilogue */\n");
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
/* hope this is safe - m68k does it also .... */
|
||
regs_ever_live[FRAME_POINTER_REGNUM] = 0;
|
||
|
||
for (i =7, j = 0 ; i >= 0 ; i--)
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
j++;
|
||
|
||
/* remember # of pushed bytes for CPU regs */
|
||
k = 2*j;
|
||
|
||
for (i =7 ; i >= 0 ; i--)
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
fprintf(stream, "\tmov %d(fp), %s\n",-fsize-2*j--, reg_names[i]);
|
||
|
||
/* get ACs */
|
||
via_ac = FIRST_PSEUDO_REGISTER -1;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
{
|
||
via_ac = i;
|
||
k += 8;
|
||
}
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
|
||
{
|
||
if (LOAD_FPU_REG_P(i)
|
||
&& regs_ever_live[i]
|
||
&& ! call_used_regs[i])
|
||
{
|
||
fprintf(stream, "\tfldd %d(fp), %s\n", -fsize-k, reg_names[i]);
|
||
k -= 8;
|
||
}
|
||
|
||
if (NO_LOAD_FPU_REG_P(i)
|
||
&& regs_ever_live[i]
|
||
&& ! call_used_regs[i])
|
||
{
|
||
if (! LOAD_FPU_REG_P(via_ac))
|
||
abort();
|
||
|
||
fprintf(stream, "\tfldd %d(fp), %s\n", -fsize-k, reg_names[via_ac]);
|
||
fprintf(stream, "\tfstd %s, %s\n", reg_names[via_ac], reg_names[i]);
|
||
k -= 8;
|
||
}
|
||
}
|
||
|
||
fprintf(stream, "\tmov fp, sp\n");
|
||
fprintf (stream, "\tmov (sp)+, fp\n");
|
||
}
|
||
else
|
||
{
|
||
via_ac = FIRST_PSEUDO_REGISTER -1;
|
||
|
||
/* get ACs */
|
||
for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
|
||
if (regs_ever_live[i] && call_used_regs[i])
|
||
via_ac = i;
|
||
|
||
for (i = FIRST_PSEUDO_REGISTER; i > 7; i--)
|
||
{
|
||
if (LOAD_FPU_REG_P(i)
|
||
&& regs_ever_live[i]
|
||
&& ! call_used_regs[i])
|
||
fprintf(stream, "\tfldd (sp)+, %s\n", reg_names[i]);
|
||
|
||
if (NO_LOAD_FPU_REG_P(i)
|
||
&& regs_ever_live[i]
|
||
&& ! call_used_regs[i])
|
||
{
|
||
if (! LOAD_FPU_REG_P(via_ac))
|
||
abort();
|
||
|
||
fprintf(stream, "\tfldd (sp)+, %s\n", reg_names[via_ac]);
|
||
fprintf(stream, "\tfstd %s, %s\n", reg_names[via_ac], reg_names[i]);
|
||
}
|
||
}
|
||
|
||
for (i=7; i >= 0; i--)
|
||
if (regs_ever_live[i] && !call_used_regs[i])
|
||
fprintf(stream, "\tmov (sp)+, %s\n", reg_names[i]);
|
||
|
||
if (fsize)
|
||
fprintf((stream), "\tadd $%d, sp\n", fsize);
|
||
}
|
||
|
||
fprintf (stream, "\trts pc\n");
|
||
fprintf (stream, "\t;/* end of epilogue*/\n\n\n");
|
||
}
|
||
|
||
/* Return the best assembler insn template
|
||
for moving operands[1] into operands[0] as a fullword. */
|
||
static char *
|
||
singlemove_string (operands)
|
||
rtx *operands;
|
||
{
|
||
if (operands[1] != const0_rtx)
|
||
return "mov %1,%0";
|
||
|
||
return "clr %0";
|
||
}
|
||
|
||
|
||
/* Output assembler code to perform a doubleword move insn
|
||
with operands OPERANDS. */
|
||
|
||
char *
|
||
output_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
|
||
rtx latehalf[2];
|
||
rtx addreg0 = 0, addreg1 = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (operands[0]))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (operands[0]))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
|
||
optype0 = POPOP;
|
||
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
|
||
optype0 = PUSHOP;
|
||
else if (GET_CODE (operands[0]) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (operands[1]))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (operands[1]))
|
||
#if 0
|
||
|| GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
#endif
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (operands[1]))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
|
||
optype1 = POPOP;
|
||
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
|
||
optype1 = PUSHOP;
|
||
else if (GET_CODE (operands[1]) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP)
|
||
abort ();
|
||
|
||
/* If one operand is decrementing and one is incrementing
|
||
decrement the former register explicitly
|
||
and change that operand into ordinary indexing. */
|
||
|
||
if (optype0 == PUSHOP && optype1 == POPOP)
|
||
{
|
||
operands[0] = XEXP (XEXP (operands[0], 0), 0);
|
||
output_asm_insn ("sub $4,%0", operands);
|
||
operands[0] = gen_rtx (MEM, SImode, operands[0]);
|
||
optype0 = OFFSOP;
|
||
}
|
||
if (optype0 == POPOP && optype1 == PUSHOP)
|
||
{
|
||
operands[1] = XEXP (XEXP (operands[1], 0), 0);
|
||
output_asm_insn ("sub $4,%1", operands);
|
||
operands[1] = gen_rtx (MEM, SImode, operands[1]);
|
||
optype1 = OFFSOP;
|
||
}
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the second word. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (operands[0], 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (operands[1], 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Normally we do the low-numbered word first,
|
||
but if either operand is autodecrementing then we
|
||
do the high-numbered word first.
|
||
|
||
In either case, set up in LATEHALF the operands to use
|
||
for the high-numbered word and in some cases alter the
|
||
operands in OPERANDS to be suitable for the low-numbered word. */
|
||
|
||
if (optype0 == REGOP)
|
||
latehalf[0] = gen_rtx (REG, HImode, REGNO (operands[0]) + 1);
|
||
else if (optype0 == OFFSOP)
|
||
latehalf[0] = adj_offsettable_operand (operands[0], 2);
|
||
else
|
||
latehalf[0] = operands[0];
|
||
|
||
if (optype1 == REGOP)
|
||
latehalf[1] = gen_rtx (REG, HImode, REGNO (operands[1]) + 1);
|
||
else if (optype1 == OFFSOP)
|
||
latehalf[1] = adj_offsettable_operand (operands[1], 2);
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
if (CONSTANT_P (operands[1]))
|
||
{
|
||
/* now the mess begins, high word is in lower word???
|
||
|
||
that's what ashc makes me think, but I don't remember :-( */
|
||
latehalf[1] = gen_rtx(CONST_INT, VOIDmode,
|
||
INTVAL(operands[1])>>16);
|
||
operands[1] = gen_rtx(CONST_INT, VOIDmode,
|
||
INTVAL(operands[1])&0xff);
|
||
}
|
||
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
/* immediate 32 bit values not allowed */
|
||
abort();
|
||
}
|
||
}
|
||
else
|
||
latehalf[1] = operands[1];
|
||
|
||
/* If insn is effectively movd N(sp),-(sp) then we will do the
|
||
high word first. We should use the adjusted operand 1 (which is N+4(sp))
|
||
for the low word as well, to compensate for the first decrement of sp. */
|
||
if (optype0 == PUSHOP
|
||
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
|
||
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
|
||
operands[1] = latehalf[1];
|
||
|
||
/* If one or both operands autodecrementing,
|
||
do the two words, high-numbered first. */
|
||
|
||
/* Likewise, the first move would clobber the source of the second one,
|
||
do them in the other order. This happens only for registers;
|
||
such overlap can't happen in memory unless the user explicitly
|
||
sets it up, and that is an undefined circumstance. */
|
||
|
||
if (optype0 == PUSHOP || optype1 == PUSHOP
|
||
|| (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (operands[0]) == REGNO (latehalf[1])))
|
||
{
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add $2,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add $2,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("sub $2,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("sub $2,%0", &addreg1);
|
||
|
||
/* Do low-numbered word. */
|
||
return singlemove_string (operands);
|
||
}
|
||
|
||
/* Normal case: do the two words, low-numbered first. */
|
||
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add $2,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add $2,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("sub $2,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("sub $2,%0", &addreg1);
|
||
|
||
return "";
|
||
}
|
||
/* Output assembler code to perform a quadword move insn
|
||
with operands OPERANDS. */
|
||
|
||
char *
|
||
output_move_quad (operands)
|
||
rtx *operands;
|
||
{
|
||
enum { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP } optype0, optype1;
|
||
rtx latehalf[2];
|
||
rtx addreg0 = 0, addreg1 = 0;
|
||
|
||
output_asm_insn(";; movdi/df: %1 -> %0", operands);
|
||
|
||
if (REG_P (operands[0]))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (operands[0]))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
|
||
optype0 = POPOP;
|
||
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
|
||
optype0 = PUSHOP;
|
||
else if (GET_CODE (operands[0]) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (operands[1]))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (operands[1])
|
||
|| GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (operands[1]))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
|
||
optype1 = POPOP;
|
||
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
|
||
optype1 = PUSHOP;
|
||
else if (GET_CODE (operands[1]) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP)
|
||
abort ();
|
||
|
||
/* check if we move a CPU reg to an FPU reg, or vice versa! */
|
||
if (optype0 == REGOP && optype1 == REGOP)
|
||
/* bogus - 64 bit cannot reside in CPU! */
|
||
if (CPU_REG_P(REGNO(operands[0]))
|
||
|| CPU_REG_P (REGNO(operands[1])))
|
||
abort();
|
||
|
||
if (optype0 == REGOP || optype1 == REGOP)
|
||
{
|
||
/* check for use of clrd????
|
||
if you ever allow ac4 and ac5 (now we require secondary load)
|
||
you must check whether
|
||
you want to load into them or store from them -
|
||
then dump ac0 into $help$ movce ac4/5 to ac0, do the
|
||
store from ac0, and restore ac0 - if you can find
|
||
an unused ac[0-3], use that and you save a store and a load!*/
|
||
|
||
if (FPU_REG_P(REGNO(operands[0])))
|
||
{
|
||
if (GET_CODE(operands[1]) == CONST_DOUBLE)
|
||
{
|
||
union { double d; int i[2]; } u;
|
||
u.i[0] = CONST_DOUBLE_LOW (operands[1]);
|
||
u.i[1] = CONST_DOUBLE_HIGH (operands[1]);
|
||
|
||
if (u.d == 0.0)
|
||
return "clrd %0";
|
||
}
|
||
|
||
return "ldd %1, %0";
|
||
}
|
||
|
||
if (FPU_REG_P(REGNO(operands[1])))
|
||
return "std %1, %0";
|
||
}
|
||
|
||
/* If one operand is decrementing and one is incrementing
|
||
decrement the former register explicitly
|
||
and change that operand into ordinary indexing. */
|
||
|
||
if (optype0 == PUSHOP && optype1 == POPOP)
|
||
{
|
||
operands[0] = XEXP (XEXP (operands[0], 0), 0);
|
||
output_asm_insn ("sub $8,%0", operands);
|
||
operands[0] = gen_rtx (MEM, DImode, operands[0]);
|
||
optype0 = OFFSOP;
|
||
}
|
||
if (optype0 == POPOP && optype1 == PUSHOP)
|
||
{
|
||
operands[1] = XEXP (XEXP (operands[1], 0), 0);
|
||
output_asm_insn ("sub $8,%1", operands);
|
||
operands[1] = gen_rtx (MEM, SImode, operands[1]);
|
||
optype1 = OFFSOP;
|
||
}
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the second word. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (operands[0], 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (operands[1], 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Normally we do the low-numbered word first,
|
||
but if either operand is autodecrementing then we
|
||
do the high-numbered word first.
|
||
|
||
In either case, set up in LATEHALF the operands to use
|
||
for the high-numbered word and in some cases alter the
|
||
operands in OPERANDS to be suitable for the low-numbered word. */
|
||
|
||
if (optype0 == REGOP)
|
||
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 2);
|
||
else if (optype0 == OFFSOP)
|
||
latehalf[0] = adj_offsettable_operand (operands[0], 4);
|
||
else
|
||
latehalf[0] = operands[0];
|
||
|
||
if (optype1 == REGOP)
|
||
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 2);
|
||
else if (optype1 == OFFSOP)
|
||
latehalf[1] = adj_offsettable_operand (operands[1], 4);
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
/* floats only. not yet supported!
|
||
|
||
-- compute it into PDP float format, - internally,
|
||
just use IEEE and ignore possible problems ;-)
|
||
|
||
we might get away with it !!!! */
|
||
|
||
abort();
|
||
|
||
#ifndef HOST_WORDS_BIG_ENDIAN
|
||
latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_LOW (operands[1]));
|
||
operands[1] = gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_HIGH (operands[1]));
|
||
#else /* HOST_WORDS_BIG_ENDIAN */
|
||
latehalf[1] = gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_HIGH (operands[1]));
|
||
operands[1] = gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_LOW (operands[1]));
|
||
#endif /* HOST_WORDS_BIG_ENDIAN */
|
||
}
|
||
else if (GET_CODE(operands[1]) == CONST_INT)
|
||
{
|
||
latehalf[1] = gen_rtx (CONST_INT, VOIDmode, 0);
|
||
}
|
||
else
|
||
abort();
|
||
|
||
}
|
||
else
|
||
latehalf[1] = operands[1];
|
||
|
||
/* If insn is effectively movd N(sp),-(sp) then we will do the
|
||
high word first. We should use the adjusted operand 1 (which is N+4(sp))
|
||
for the low word as well, to compensate for the first decrement of sp. */
|
||
if (optype0 == PUSHOP
|
||
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
|
||
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
|
||
operands[1] = latehalf[1];
|
||
|
||
/* If one or both operands autodecrementing,
|
||
do the two words, high-numbered first. */
|
||
|
||
/* Likewise, the first move would clobber the source of the second one,
|
||
do them in the other order. This happens only for registers;
|
||
such overlap can't happen in memory unless the user explicitly
|
||
sets it up, and that is an undefined circumstance. */
|
||
|
||
if (optype0 == PUSHOP || optype1 == PUSHOP
|
||
|| (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (operands[0]) == REGNO (latehalf[1])))
|
||
{
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add $4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add $4,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn(output_move_double(latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("sub $4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("sub $4,%0", &addreg1);
|
||
|
||
/* Do low-numbered word. */
|
||
return output_move_double (operands);
|
||
}
|
||
|
||
/* Normal case: do the two words, low-numbered first. */
|
||
|
||
output_asm_insn (output_move_double (operands), operands);
|
||
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add $4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add $4,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (output_move_double (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("sub $4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("sub $4,%0", &addreg1);
|
||
|
||
return "";
|
||
}
|
||
|
||
|
||
/* Return a REG that occurs in ADDR with coefficient 1.
|
||
ADDR can be effectively incremented by incrementing REG. */
|
||
|
||
static rtx
|
||
find_addr_reg (addr)
|
||
rtx addr;
|
||
{
|
||
while (GET_CODE (addr) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
addr = XEXP (addr, 0);
|
||
if (GET_CODE (XEXP (addr, 1)) == REG)
|
||
addr = XEXP (addr, 1);
|
||
if (CONSTANT_P (XEXP (addr, 0)))
|
||
addr = XEXP (addr, 1);
|
||
if (CONSTANT_P (XEXP (addr, 1)))
|
||
addr = XEXP (addr, 0);
|
||
}
|
||
if (GET_CODE (addr) == REG)
|
||
return addr;
|
||
return 0;
|
||
}
|
||
|
||
/* Output an ascii string. */
|
||
output_ascii (file, p, size)
|
||
FILE *file;
|
||
char *p;
|
||
int size;
|
||
{
|
||
int i;
|
||
|
||
fprintf (file, "\t.byte \"");
|
||
|
||
for (i = 0; i < size; i++)
|
||
{
|
||
register int c = p[i];
|
||
if (c == '\"' || c == '\\')
|
||
putc ('\\', file);
|
||
if (c >= ' ' && c < 0177)
|
||
putc (c, file);
|
||
else
|
||
{
|
||
fprintf (file, "\\%03o", c);
|
||
/* After an octal-escape, if a digit follows,
|
||
terminate one string constant and start another.
|
||
The Vax assembler fails to stop reading the escape
|
||
after three digits, so this is the only way we
|
||
can get it to parse the data properly. */
|
||
if (i < size - 1 && p[i + 1] >= '0' && p[i + 1] <= '9')
|
||
fprintf (file, "\"\n\tstring \"");
|
||
}
|
||
}
|
||
fprintf (file, "\"\n");
|
||
}
|
||
|
||
|
||
/* --- stole from out-vax, needs changes */
|
||
|
||
print_operand_address (file, addr)
|
||
FILE *file;
|
||
register rtx addr;
|
||
{
|
||
register rtx reg1, reg2, breg, ireg;
|
||
rtx offset;
|
||
|
||
retry:
|
||
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case MEM:
|
||
fprintf (file, "@");
|
||
addr = XEXP (addr, 0);
|
||
goto retry;
|
||
|
||
case REG:
|
||
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
|
||
break;
|
||
|
||
case PRE_DEC:
|
||
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case POST_INC:
|
||
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case PLUS:
|
||
reg1 = 0; reg2 = 0;
|
||
ireg = 0; breg = 0;
|
||
offset = 0;
|
||
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|
||
|| GET_CODE (XEXP (addr, 0)) == MEM)
|
||
{
|
||
offset = XEXP (addr, 0);
|
||
addr = XEXP (addr, 1);
|
||
}
|
||
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|
||
|| GET_CODE (XEXP (addr, 1)) == MEM)
|
||
{
|
||
offset = XEXP (addr, 1);
|
||
addr = XEXP (addr, 0);
|
||
}
|
||
if (GET_CODE (addr) != PLUS)
|
||
;
|
||
else if (GET_CODE (XEXP (addr, 0)) == MULT)
|
||
{
|
||
reg1 = XEXP (addr, 0);
|
||
addr = XEXP (addr, 1);
|
||
}
|
||
else if (GET_CODE (XEXP (addr, 1)) == MULT)
|
||
{
|
||
reg1 = XEXP (addr, 1);
|
||
addr = XEXP (addr, 0);
|
||
}
|
||
else if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
{
|
||
reg1 = XEXP (addr, 0);
|
||
addr = XEXP (addr, 1);
|
||
}
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG)
|
||
{
|
||
reg1 = XEXP (addr, 1);
|
||
addr = XEXP (addr, 0);
|
||
}
|
||
if (GET_CODE (addr) == REG || GET_CODE (addr) == MULT)
|
||
{
|
||
if (reg1 == 0)
|
||
reg1 = addr;
|
||
else
|
||
reg2 = addr;
|
||
addr = 0;
|
||
}
|
||
if (offset != 0)
|
||
{
|
||
if (addr != 0) abort ();
|
||
addr = offset;
|
||
}
|
||
if (reg1 != 0 && GET_CODE (reg1) == MULT)
|
||
{
|
||
breg = reg2;
|
||
ireg = reg1;
|
||
}
|
||
else if (reg2 != 0 && GET_CODE (reg2) == MULT)
|
||
{
|
||
breg = reg1;
|
||
ireg = reg2;
|
||
}
|
||
else if (reg2 != 0 || GET_CODE (addr) == MEM)
|
||
{
|
||
breg = reg2;
|
||
ireg = reg1;
|
||
}
|
||
else
|
||
{
|
||
breg = reg1;
|
||
ireg = reg2;
|
||
}
|
||
if (addr != 0)
|
||
output_address (addr);
|
||
if (breg != 0)
|
||
{
|
||
if (GET_CODE (breg) != REG)
|
||
abort ();
|
||
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
|
||
}
|
||
if (ireg != 0)
|
||
{
|
||
if (GET_CODE (ireg) == MULT)
|
||
ireg = XEXP (ireg, 0);
|
||
if (GET_CODE (ireg) != REG)
|
||
abort ();
|
||
abort();
|
||
fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
output_addr_const (file, addr);
|
||
}
|
||
}
|
||
|
||
/* register move costs, indexed by regs */
|
||
|
||
static int move_costs[N_REG_CLASSES][N_REG_CLASSES] =
|
||
{
|
||
/* NO MUL GEN LFPU NLFPU FPU ALL */
|
||
|
||
/* NO */ { 0, 0, 0, 0, 0, 0, 0},
|
||
/* MUL */ { 0, 2, 2, 10, 22, 22, 22},
|
||
/* GEN */ { 0, 2, 2, 10, 22, 22, 22},
|
||
/* LFPU */ { 0, 10, 10, 2, 2, 2, 10},
|
||
/* NLFPU */ { 0, 22, 22, 2, 2, 2, 22},
|
||
/* FPU */ { 0, 22, 22, 2, 2, 2, 22},
|
||
/* ALL */ { 0, 22, 22, 10, 22, 22, 22}
|
||
} ;
|
||
|
||
|
||
/* -- note that some moves are tremendously expensive,
|
||
because they require lots of tricks! do we have to
|
||
charge the costs incurred by secondary reload class
|
||
-- as we do here with 22 -- or not ? */
|
||
|
||
int
|
||
register_move_cost(c1, c2)
|
||
enum reg_class c1, c2;
|
||
{
|
||
return move_costs[(int)c1][(int)c2];
|
||
}
|
||
|
||
char *
|
||
output_jump(pos, neg, length)
|
||
int length;
|
||
char *pos, *neg;
|
||
{
|
||
static int x = 0;
|
||
|
||
static char buf[1000];
|
||
|
||
#if 0
|
||
/* currently we don't need this, because the tstdf and cmpdf
|
||
copy the condition code immediately, and other float operations are not
|
||
yet recognized as changing the FCC - if so, then the length-cost of all
|
||
jump insns increases by one, because we have to potentially copy the
|
||
FCC! */
|
||
if (cc_status.flags & CC_IN_FPU)
|
||
output_asm_insn("cfcc", NULL);
|
||
#endif
|
||
|
||
switch (length)
|
||
{
|
||
case 1:
|
||
|
||
strcpy(buf, pos);
|
||
strcat(buf, " %l0");
|
||
|
||
return buf;
|
||
|
||
case 3:
|
||
|
||
sprintf(buf, "%s JMP_%d\n\tjmp %%l0\nJMP_%d:", neg, x, x);
|
||
|
||
x++;
|
||
|
||
return buf;
|
||
|
||
default:
|
||
|
||
abort();
|
||
}
|
||
|
||
}
|
||
|
||
void
|
||
notice_update_cc_on_set(exp, insn)
|
||
rtx exp;
|
||
rtx insn;
|
||
{
|
||
if (GET_CODE (SET_DEST (exp)) == CC0)
|
||
{
|
||
cc_status.flags = 0;
|
||
cc_status.value1 = SET_DEST (exp);
|
||
cc_status.value2 = SET_SRC (exp);
|
||
|
||
/*
|
||
if (GET_MODE(SET_SRC(exp)) == DFmode)
|
||
cc_status.flags |= CC_IN_FPU;
|
||
*/
|
||
}
|
||
else if ((GET_CODE (SET_DEST (exp)) == REG
|
||
|| GET_CODE (SET_DEST (exp)) == MEM)
|
||
&& GET_CODE (SET_SRC (exp)) != PC
|
||
&& (GET_MODE (SET_DEST(exp)) == HImode
|
||
|| GET_MODE (SET_DEST(exp)) == QImode)
|
||
&& (GET_CODE (SET_SRC(exp)) == PLUS
|
||
|| GET_CODE (SET_SRC(exp)) == MINUS
|
||
|| GET_CODE (SET_SRC(exp)) == AND
|
||
|| GET_CODE (SET_SRC(exp)) == IOR
|
||
|| GET_CODE (SET_SRC(exp)) == XOR
|
||
|| GET_CODE (SET_SRC(exp)) == NOT
|
||
|| GET_CODE (SET_SRC(exp)) == NEG
|
||
|| GET_CODE (SET_SRC(exp)) == REG
|
||
|| GET_CODE (SET_SRC(exp)) == MEM))
|
||
{
|
||
cc_status.flags = 0;
|
||
cc_status.value1 = SET_SRC (exp);
|
||
cc_status.value2 = SET_DEST (exp);
|
||
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
|
||
&& cc_status.value2
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
|
||
cc_status.value2 = 0;
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
|
||
&& cc_status.value2
|
||
&& GET_CODE (cc_status.value2) == MEM)
|
||
cc_status.value2 = 0;
|
||
}
|
||
else if (GET_CODE (SET_SRC (exp)) == CALL)
|
||
{
|
||
CC_STATUS_INIT;
|
||
}
|
||
else if (GET_CODE (SET_DEST (exp)) == REG)
|
||
/* what's this ? */
|
||
{
|
||
if ((cc_status.value1
|
||
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value1)))
|
||
cc_status.value1 = 0;
|
||
if ((cc_status.value2
|
||
&& reg_overlap_mentioned_p (SET_DEST (exp), cc_status.value2)))
|
||
cc_status.value2 = 0;
|
||
}
|
||
else if (SET_DEST(exp) == pc_rtx)
|
||
{
|
||
/* jump */
|
||
}
|
||
else /* if (GET_CODE (SET_DEST (exp)) == MEM) */
|
||
{
|
||
/* the last else is a bit paranoiac, but since nearly all instructions
|
||
play with condition codes, it's reasonable! */
|
||
|
||
CC_STATUS_INIT; /* paranoia*/
|
||
}
|
||
}
|
||
|
||
|
||
int simple_memory_operand(op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
rtx addr, plus0, plus1;
|
||
int offset = 0;
|
||
|
||
/* Eliminate non-memory operations */
|
||
if (GET_CODE (op) != MEM)
|
||
return FALSE;
|
||
|
||
#if 0
|
||
/* dword operations really put out 2 instructions, so eliminate them. */
|
||
if (GET_MODE_SIZE (GET_MODE (op)) > (HAVE_64BIT_P () ? 8 : 4))
|
||
return FALSE;
|
||
#endif
|
||
|
||
/* Decode the address now. */
|
||
|
||
indirection:
|
||
|
||
addr = XEXP (op, 0);
|
||
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case REG:
|
||
/* (R0) - no extra cost */
|
||
return 1;
|
||
|
||
case PRE_DEC:
|
||
case POST_INC:
|
||
/* -(R0), (R0)+ - cheap! */
|
||
return 0;
|
||
|
||
case MEM:
|
||
/* cheap - is encoded in addressing mode info!
|
||
|
||
-- except for @(R0), which has to be @0(R0) !!! */
|
||
|
||
if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
return 0;
|
||
|
||
op=addr;
|
||
goto indirection;
|
||
|
||
case CONST_INT:
|
||
case LABEL_REF:
|
||
case CONST:
|
||
case SYMBOL_REF:
|
||
/* @#address - extra cost */
|
||
return 0;
|
||
|
||
case PLUS:
|
||
/* X(R0) - extra cost */
|
||
return 0;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
|
||
/*
|
||
* output a block move:
|
||
*
|
||
* operands[0] ... to
|
||
* operands[1] ... from
|
||
* operands[2] ... length
|
||
* operands[3] ... alignment
|
||
* operands[4] ... scratch register
|
||
*/
|
||
|
||
|
||
char *
|
||
output_block_move(operands)
|
||
rtx *operands;
|
||
{
|
||
static int count = 0;
|
||
char buf[200];
|
||
|
||
if (GET_CODE(operands[2]) == CONST_INT
|
||
&& TARGET_TIME)
|
||
{
|
||
if (INTVAL(operands[2]) < 16
|
||
&& INTVAL(operands[3]) == 1)
|
||
{
|
||
register int i;
|
||
|
||
for (i = 1; i <= INTVAL(operands[2]); i++)
|
||
output_asm_insn("movb (%1)+, (%0)+", operands);
|
||
|
||
return "";
|
||
}
|
||
else if (INTVAL(operands[2]) < 32)
|
||
{
|
||
register int i;
|
||
|
||
for (i = 1; i <= INTVAL(operands[2])/2; i++)
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
|
||
/* may I assume that moved quantity is
|
||
multiple of alignment ???
|
||
|
||
I HOPE SO !
|
||
*/
|
||
|
||
return "";
|
||
}
|
||
|
||
|
||
/* can do other clever things, maybe... */
|
||
}
|
||
|
||
if (CONSTANT_P(operands[2]) )
|
||
{
|
||
/* just move count to scratch */
|
||
output_asm_insn("mov %2, %4", operands);
|
||
}
|
||
else
|
||
{
|
||
/* just clobber the register */
|
||
operands[4] = operands[2];
|
||
}
|
||
|
||
|
||
/* switch over alignment */
|
||
switch (INTVAL(operands[3]))
|
||
{
|
||
case 1:
|
||
|
||
/*
|
||
x:
|
||
movb (%1)+, (%0)+
|
||
|
||
if (TARGET_45)
|
||
sob %4,x
|
||
else
|
||
dec %4
|
||
bgt x
|
||
|
||
*/
|
||
|
||
sprintf(buf, "\nmovestrhi%d:", count);
|
||
output_asm_insn(buf, NULL);
|
||
|
||
output_asm_insn("movb (%1)+, (%0)+", operands);
|
||
|
||
if (TARGET_45)
|
||
{
|
||
sprintf(buf, "sob %%4, movestrhi%d", count);
|
||
output_asm_insn(buf, operands);
|
||
}
|
||
else
|
||
{
|
||
output_asm_insn("dec %4", operands);
|
||
|
||
sprintf(buf, "bgt movestrhi%d", count);
|
||
output_asm_insn(buf, NULL);
|
||
}
|
||
|
||
count ++;
|
||
break;
|
||
|
||
case 2:
|
||
|
||
/*
|
||
asr %4
|
||
|
||
x:
|
||
|
||
mov (%1)+, (%0)+
|
||
|
||
if (TARGET_45)
|
||
sob %4, x
|
||
else
|
||
dec %4
|
||
bgt x
|
||
*/
|
||
|
||
generate_compact_code:
|
||
|
||
output_asm_insn("asr %4", operands);
|
||
|
||
sprintf(buf, "\nmovestrhi%d:", count);
|
||
output_asm_insn(buf, NULL);
|
||
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
|
||
if (TARGET_45)
|
||
{
|
||
sprintf(buf, "sob %%4, movestrhi%d", count);
|
||
output_asm_insn(buf, operands);
|
||
}
|
||
else
|
||
{
|
||
output_asm_insn("dec %4", operands);
|
||
|
||
sprintf(buf, "bgt movestrhi%d", count);
|
||
output_asm_insn(buf, NULL);
|
||
}
|
||
|
||
count ++;
|
||
break;
|
||
|
||
case 4:
|
||
|
||
/*
|
||
|
||
asr %4
|
||
asr %4
|
||
|
||
x:
|
||
|
||
mov (%1)+, (%0)+
|
||
mov (%1)+, (%0)+
|
||
|
||
if (TARGET_45)
|
||
sob %4, x
|
||
else
|
||
dec %4
|
||
bgt x
|
||
*/
|
||
|
||
if (TARGET_SPACE)
|
||
goto generate_compact_code;
|
||
|
||
output_asm_insn("asr %4", operands);
|
||
output_asm_insn("asr %4", operands);
|
||
|
||
sprintf(buf, "\nmovestrhi%d:", count);
|
||
output_asm_insn(buf, NULL);
|
||
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
|
||
if (TARGET_45)
|
||
{
|
||
sprintf(buf, "sob %%4, movestrhi%d", count);
|
||
output_asm_insn(buf, operands);
|
||
}
|
||
else
|
||
{
|
||
output_asm_insn("dec %4", operands);
|
||
|
||
sprintf(buf, "bgt movestrhi%d", count);
|
||
output_asm_insn(buf, NULL);
|
||
}
|
||
|
||
count ++;
|
||
break;
|
||
|
||
default:
|
||
|
||
/*
|
||
|
||
asr %4
|
||
asr %4
|
||
asr %4
|
||
|
||
x:
|
||
|
||
mov (%1)+, (%0)+
|
||
mov (%1)+, (%0)+
|
||
mov (%1)+, (%0)+
|
||
mov (%1)+, (%0)+
|
||
|
||
if (TARGET_45)
|
||
sob %4, x
|
||
else
|
||
dec %4
|
||
bgt x
|
||
*/
|
||
|
||
|
||
if (TARGET_SPACE)
|
||
goto generate_compact_code;
|
||
|
||
output_asm_insn("asr %4", operands);
|
||
output_asm_insn("asr %4", operands);
|
||
output_asm_insn("asr %4", operands);
|
||
|
||
sprintf(buf, "\nmovestrhi%d:", count);
|
||
output_asm_insn(buf, NULL);
|
||
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
output_asm_insn("mov (%1)+, (%0)+", operands);
|
||
|
||
if (TARGET_45)
|
||
{
|
||
sprintf(buf, "sob %%4, movestrhi%d", count);
|
||
output_asm_insn(buf, operands);
|
||
}
|
||
else
|
||
{
|
||
output_asm_insn("dec %4", operands);
|
||
|
||
sprintf(buf, "bgt movestrhi%d", count);
|
||
output_asm_insn(buf, NULL);
|
||
}
|
||
|
||
count ++;
|
||
break;
|
||
|
||
;
|
||
|
||
}
|
||
|
||
return "";
|
||
}
|
||
|
||
/* for future use */
|
||
int
|
||
comparison_operator_index(op)
|
||
rtx op;
|
||
{
|
||
switch (GET_CODE(op))
|
||
{
|
||
case NE:
|
||
return 0;
|
||
|
||
case EQ:
|
||
return 1;
|
||
|
||
case GE:
|
||
return 2;
|
||
|
||
case GT:
|
||
return 3;
|
||
|
||
case LE:
|
||
return 4;
|
||
|
||
case LT:
|
||
return 5;
|
||
|
||
case GEU:
|
||
return 6;
|
||
|
||
case GTU:
|
||
return 7;
|
||
|
||
case LEU:
|
||
return 8;
|
||
|
||
case LTU:
|
||
return 9;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* tests whether the rtx is a comparison operator */
|
||
int
|
||
comp_operator (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return comparison_operator_index(op) >= 0;
|
||
}
|
||
|
||
|
||
int
|
||
legitimate_address_p (mode, address)
|
||
enum machine_mode mode;
|
||
rtx address;
|
||
{
|
||
/* #define REG_OK_STRICT */
|
||
GO_IF_LEGITIMATE_ADDRESS(mode, address, win);
|
||
|
||
return 0;
|
||
|
||
win:
|
||
return 1;
|
||
|
||
/* #undef REG_OK_STRICT */
|
||
}
|