mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-08 20:02:47 +01:00
1313 lines
48 KiB
C++
1313 lines
48 KiB
C++
/* Definitions of target machine for GNU compiler. Vax version.
|
||
Copyright (C) 1987, 88, 91, 93-96, 1997 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dvax -D__vax__ -Dunix -Asystem(unix) -Asystem(bsd) -Acpu(vax) -Amachine(vax)"
|
||
|
||
/* If using g-format floating point, alter math.h. */
|
||
|
||
#define CPP_SPEC "%{mg:-DGFLOAT}"
|
||
|
||
/* Choose proper libraries depending on float format.
|
||
Note that there are no profiling libraries for g-format.
|
||
Also use -lg for the sake of dbx. */
|
||
|
||
#define LIB_SPEC "%{g:-lg}\
|
||
%{mg:%{lm:-lmg} -lcg \
|
||
%{p:%eprofiling not supported with -mg\n}\
|
||
%{pg:%eprofiling not supported with -mg\n}}\
|
||
%{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
|
||
#define TARGET_NAME "vax"
|
||
#endif
|
||
#define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Nonzero if compiling code that Unix assembler can assemble. */
|
||
#define TARGET_UNIX_ASM (target_flags & 1)
|
||
|
||
/* Nonzero if compiling with VAX-11 "C" style structure alignment */
|
||
#define TARGET_VAXC_ALIGNMENT (target_flags & 2)
|
||
|
||
/* Nonzero if compiling with `G'-format floating point */
|
||
#define TARGET_G_FLOAT (target_flags & 4)
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ {"unix", 1}, \
|
||
{"gnu", -1}, \
|
||
{"vaxc-alignment", 2}, \
|
||
{"g", 4}, \
|
||
{"g-float", 4}, \
|
||
{"d", -4}, \
|
||
{"d-float", -4}, \
|
||
{ "", TARGET_DEFAULT}}
|
||
|
||
/* Default target_flags if no switches specified. */
|
||
|
||
#ifndef TARGET_DEFAULT
|
||
#define TARGET_DEFAULT 1
|
||
#endif
|
||
|
||
/* Target machine storage layout */
|
||
|
||
/* Define for software floating point emulation of VAX format
|
||
when cross compiling from a non-VAX host. */
|
||
/* #define REAL_ARITHMETIC */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields.
|
||
This is not true on the vax. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is not true on the vax. */
|
||
#define BYTES_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant word of a multiword number is the lowest
|
||
numbered. */
|
||
/* This is not true on the vax. */
|
||
#define WORDS_BIG_ENDIAN 0
|
||
|
||
/* Number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a 68000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 16
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 8
|
||
|
||
/* A bitfield declared as `int' forces `int' alignment for the struct. */
|
||
#define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* No structure field wants to be aligned rounder than this. */
|
||
#define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
|
||
|
||
/* Set this nonzero if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 0
|
||
|
||
/* Let's keep the stack somewhat aligned. */
|
||
#define STACK_BOUNDARY 32
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers. */
|
||
#define FIRST_PSEUDO_REGISTER 16
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator.
|
||
On the vax, these are the AP, FP, SP and PC. */
|
||
#define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers.
|
||
On the vax, all registers are one word long. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
||
On the vax, all registers can hold all modes. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) 1
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* Vax pc is overloaded on a register. */
|
||
#define PC_REGNUM 15
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 14
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 13
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 1
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 12
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM 0
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 1
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
/* The vax has only one kind of registers, so NO_REGS and ALL_REGS
|
||
are the only classes. */
|
||
|
||
enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Since GENERAL_REGS is the same class as ALL_REGS,
|
||
don't give it a different class number; just make it an alias. */
|
||
|
||
#define GENERAL_REGS ALL_REGS
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{"NO_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS {0, 0xffff}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) ALL_REGS
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS ALL_REGS
|
||
#define BASE_REG_CLASS ALL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) NO_REGS
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C.
|
||
|
||
`I' is the constant zero. */
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'I' ? (VALUE) == 0 \
|
||
: 0)
|
||
|
||
/* Similar, but for floating constants, and defining letters G and H.
|
||
Here VALUE is the CONST_DOUBLE rtx itself.
|
||
|
||
`G' is a floating-point zero. */
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
||
((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
|
||
|| (VALUE) == CONST0_RTX (SFmode)) \
|
||
: 0)
|
||
|
||
/* Optional extra constraints for this machine.
|
||
|
||
For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
|
||
address. */
|
||
|
||
#define EXTRA_CONSTRAINT(OP, C) \
|
||
((C) == 'Q' \
|
||
? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
|
||
: 0)
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
/* On the vax, this is always the size of MODE in words,
|
||
since all registers are the same size. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
#define STACK_GROWS_DOWNWARD
|
||
|
||
/* Define this if longjmp restores from saved registers
|
||
rather than from what setjmp saved. */
|
||
#define LONGJMP_RESTORE_FROM_STACK
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
#define FRAME_GROWS_DOWNWARD
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* Given an rtx for the address of a frame,
|
||
return an rtx for the address of the word in the frame
|
||
that holds the dynamic chain--the previous frame's address. */
|
||
#define DYNAMIC_CHAIN_ADDRESS(frame) \
|
||
gen_rtx (PLUS, Pmode, frame, gen_rtx (CONST_INT, VOIDmode, 12))
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by.
|
||
On the vax, -(sp) pushes only the bytes of the operands. */
|
||
#define PUSH_ROUNDING(BYTES) (BYTES)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 4
|
||
|
||
/* Value is the number of bytes of arguments automatically
|
||
popped when returning from a subroutine call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name.
|
||
SIZE is the number of bytes of arguments passed on the stack.
|
||
|
||
On the Vax, the RET insn always pops all the args for any function. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the Vax the return value is in R0 regardless. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On the Vax the return value is in R0 regardless. */
|
||
|
||
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
#define PCC_STATIC_STRUCT_RETURN
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the Vax, R0 is the only register thus used. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the Vax, no registers are used in this way. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the vax, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the vax, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the vax all args are pushed. */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate,
|
||
adjusted by STARTING_FRAME_OFFSET to accommodate vms.h.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ register int regno; \
|
||
register int mask = 0; \
|
||
register int size = SIZE - STARTING_FRAME_OFFSET; \
|
||
extern char call_used_regs[]; \
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
|
||
if (regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
mask |= 1 << regno; \
|
||
fprintf (FILE, "\t.word 0x%x\n", mask); \
|
||
MAYBE_VMS_FUNCTION_PROLOGUE(FILE) \
|
||
if ((size) >= 64) fprintf (FILE, "\tmovab %d(sp),sp\n", -size);\
|
||
else if (size) fprintf (FILE, "\tsubl2 $%d,sp\n", (size)); }
|
||
|
||
/* vms.h redefines this. */
|
||
#define MAYBE_VMS_FUNCTION_PROLOGUE(FILE)
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
|
||
|
||
/* Output assembler code to FILE to initialize this source file's
|
||
basic block profiling info, if that has not already been done. */
|
||
|
||
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
|
||
LABELNO, LABELNO);
|
||
|
||
/* Output assembler code to FILE to increment the entry-count for
|
||
the BLOCKNO'th basic block in this source file. This is a real pain in the
|
||
sphincter on a VAX, since we do not want to change any of the bits in the
|
||
processor status word. The way it is done here, it is pushed onto the stack
|
||
before any flags have changed, and then the stack is fixed up to account for
|
||
the fact that the instruction to restore the flags only reads a word.
|
||
It may seem a bit clumsy, but at least it works.
|
||
*/
|
||
|
||
#define BLOCK_PROFILER(FILE, BLOCKNO) \
|
||
fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
|
||
4 * BLOCKNO)
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 1
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE. */
|
||
|
||
/* #define FUNCTION_EPILOGUE(FILE, SIZE) */
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved.
|
||
|
||
On the Vax, FRAME_POINTER_REQUIRED is always 1, so the definition of this
|
||
macro doesn't matter. But it must be defined. */
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the vax, the trampoline contains an entry mask and two instructions:
|
||
.word NN
|
||
movl $STATIC,r0 (store the functions static chain)
|
||
jmp *$FUNCTION (jump to function code at address FUNCTION) */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x8fd0)); \
|
||
ASM_OUTPUT_INT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_BYTE (FILE, 0x50+STATIC_CHAIN_REGNUM); \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x9f17)); \
|
||
ASM_OUTPUT_INT (FILE, const0_rtx); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE 15
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
/* We copy the register-mask from the function's pure code
|
||
to the start of the trampoline. */
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_insn (gen_rtx (ASM_INPUT, VOIDmode, \
|
||
"movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
|
||
emit_move_insn (gen_rtx (MEM, HImode, TRAMP), \
|
||
gen_rtx (MEM, HImode, FNADDR)); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), CXT);\
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 11)), \
|
||
plus_constant (FNADDR, 2)); \
|
||
}
|
||
|
||
/* Byte offset of return address in a stack frame. The "saved PC" field
|
||
is in element [4] when treating the frame as an array of longwords. */
|
||
|
||
#define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
|
||
|
||
/* A C expression whose value is RTL representing the value of the return
|
||
address for the frame COUNT steps up from the current frame.
|
||
FRAMEADDR is already the frame pointer of the COUNT frame, so we
|
||
can ignore COUNT. */
|
||
|
||
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
||
((COUNT == 0) \
|
||
? gen_rtx (MEM, Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
|
||
: (rtx) 0)
|
||
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
#define HAVE_POST_INCREMENT
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
#define HAVE_PRE_DECREMENT
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(regno) \
|
||
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
|
||
#define REGNO_OK_FOR_BASE_P(regno) \
|
||
((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 2
|
||
|
||
/* 1 if X is an rtx for a constant that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == HIGH)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) 1
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) 1
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) 1
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address.
|
||
|
||
The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
|
||
except for CONSTANT_ADDRESS_P which is actually machine-independent. */
|
||
|
||
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
|
||
|
||
/* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
|
||
symbol in the SYMBOL_REF is an external symbol. */
|
||
|
||
#define INDIRECTABLE_CONSTANT_P(X) \
|
||
(! (GET_CODE ((X)) == CONST \
|
||
&& GET_CODE (XEXP ((X), 0)) == PLUS \
|
||
&& GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
|
||
&& SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
|
||
|
||
/* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
|
||
are no SYMBOL_REFs for external symbols present. */
|
||
|
||
#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF \
|
||
|| (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
|
||
|| (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
|
||
|| GET_CODE (X) == CONST_INT)
|
||
|
||
|
||
/* Non-zero if X is an address which can be indirected. External symbols
|
||
could be in a sharable image library, so we disallow those. */
|
||
|
||
#define INDIRECTABLE_ADDRESS_P(X) \
|
||
(INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
|
||
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
|
||
|
||
#else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
|
||
|
||
#define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
|
||
|
||
/* Non-zero if X is an address which can be indirected. */
|
||
#define INDIRECTABLE_ADDRESS_P(X) \
|
||
(CONSTANT_ADDRESS_P (X) \
|
||
|| (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
||
|| (GET_CODE (X) == PLUS \
|
||
&& GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& CONSTANT_ADDRESS_P (XEXP (X, 1))))
|
||
|
||
#endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
|
||
|
||
/* Go to ADDR if X is a valid address not using indexing.
|
||
(This much is the easy part.) */
|
||
#define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
|
||
{ register rtx xfoob = (X); \
|
||
if (GET_CODE (xfoob) == REG) \
|
||
{ \
|
||
extern rtx *reg_equiv_mem; \
|
||
if (! reload_in_progress \
|
||
|| reg_equiv_mem[REGNO (xfoob)] == 0 \
|
||
|| INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
|
||
goto ADDR; \
|
||
} \
|
||
if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
|
||
if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
|
||
xfoob = XEXP (X, 0); \
|
||
if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
|
||
goto ADDR; \
|
||
if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
|
||
&& GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
|
||
goto ADDR; }
|
||
|
||
/* 1 if PROD is either a reg times size of mode MODE
|
||
or just a reg, if MODE is just one byte.
|
||
This macro's expansion uses the temporary variables xfoo0 and xfoo1
|
||
that must be declared in the surrounding context. */
|
||
#define INDEX_TERM_P(PROD, MODE) \
|
||
(GET_MODE_SIZE (MODE) == 1 \
|
||
? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
|
||
: (GET_CODE (PROD) == MULT \
|
||
&& \
|
||
(xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
|
||
((GET_CODE (xfoo0) == CONST_INT \
|
||
&& INTVAL (xfoo0) == GET_MODE_SIZE (MODE) \
|
||
&& GET_CODE (xfoo1) == REG \
|
||
&& REG_OK_FOR_INDEX_P (xfoo1)) \
|
||
|| \
|
||
(GET_CODE (xfoo1) == CONST_INT \
|
||
&& INTVAL (xfoo1) == GET_MODE_SIZE (MODE) \
|
||
&& GET_CODE (xfoo0) == REG \
|
||
&& REG_OK_FOR_INDEX_P (xfoo0))))))
|
||
|
||
/* Go to ADDR if X is the sum of a register
|
||
and a valid index term for mode MODE. */
|
||
#define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
|
||
{ register rtx xfooa; \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ if (GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0)) \
|
||
&& (xfooa = XEXP (X, 1), \
|
||
INDEX_TERM_P (xfooa, MODE))) \
|
||
goto ADDR; \
|
||
if (GET_CODE (XEXP (X, 1)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 1)) \
|
||
&& (xfooa = XEXP (X, 0), \
|
||
INDEX_TERM_P (xfooa, MODE))) \
|
||
goto ADDR; } }
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
|
||
{ register rtx xfoo, xfoo0, xfoo1; \
|
||
GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
|
||
if (GET_CODE (X) == PLUS) \
|
||
{ /* Handle <address>[index] represented with index-sum outermost */\
|
||
xfoo = XEXP (X, 0); \
|
||
if (INDEX_TERM_P (xfoo, MODE)) \
|
||
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
|
||
xfoo = XEXP (X, 1); \
|
||
if (INDEX_TERM_P (xfoo, MODE)) \
|
||
{ GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
|
||
/* Handle offset(reg)[index] with offset added outermost */ \
|
||
if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
|
||
{ if (GET_CODE (XEXP (X, 1)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 1))) \
|
||
goto ADDR; \
|
||
GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
|
||
if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
|
||
{ if (GET_CODE (XEXP (X, 0)) == REG \
|
||
&& REG_OK_FOR_BASE_P (XEXP (X, 0))) \
|
||
goto ADDR; \
|
||
GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output.
|
||
|
||
For the vax, nothing needs to be done. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for.
|
||
On the VAX, the predecrement and postincrement address depend thus
|
||
(the amount of decrement or increment being the length of the operand)
|
||
and all indexed address depend thus (because the index scale factor
|
||
is the length of the operand). */
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
||
{ if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
|
||
goto LABEL; \
|
||
if (GET_CODE (ADDR) == PLUS) \
|
||
{ if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
|
||
&& GET_CODE (XEXP (ADDR, 1)) == REG); \
|
||
else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
|
||
&& GET_CODE (XEXP (ADDR, 0)) == REG); \
|
||
else goto LABEL; }}
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE HImode
|
||
|
||
/* Define this if the case instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
#define CASE_VECTOR_PC_RELATIVE
|
||
|
||
/* Define this if the case instruction drops through after the table
|
||
when the index is out of range. Don't define it if the case insn
|
||
jumps to the default label instead. */
|
||
#define CASE_DROPS_THROUGH
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 1
|
||
|
||
/* This flag, if defined, says the same insns that convert to a signed fixnum
|
||
also convert validly to an unsigned one. */
|
||
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 8
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define if shifts truncate the shift count
|
||
which implies one can omit a sign-extension or zero-extension
|
||
of a shift count. */
|
||
/* #define SHIFT_COUNT_TRUNCATED */
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* This machine doesn't use IEEE floats. */
|
||
|
||
#define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
/* On a VAX, constants from 0..63 are cheap because they can use the
|
||
1 byte literal constant format. compare to -1 should be made cheap
|
||
so that decrement-and-branch insns can be formed more easily (if
|
||
the value -1 is copied to a register some decrement-and-branch patterns
|
||
will not match). */
|
||
|
||
#define CONST_COSTS(RTX,CODE,OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) == 0) return 0; \
|
||
if ((OUTER_CODE) == AND) \
|
||
return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
|
||
if ((unsigned) INTVAL (RTX) <= 077) return 1; \
|
||
if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
|
||
return 1; \
|
||
if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
|
||
return 1; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 3; \
|
||
case CONST_DOUBLE: \
|
||
if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
|
||
return vax_float_literal (RTX) ? 5 : 8; \
|
||
else \
|
||
return (((CONST_DOUBLE_HIGH (RTX) == 0 \
|
||
&& (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
|
||
|| ((OUTER_CODE) == PLUS \
|
||
&& CONST_DOUBLE_HIGH (RTX) == -1 \
|
||
&& (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
|
||
? 2 : 5);
|
||
|
||
#define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
|
||
case MULT: case DIV: case UDIV: case MOD: case UMOD: \
|
||
case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
|
||
case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
|
||
case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
|
||
case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
|
||
|
||
#define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
|
||
|
||
/* Specify the cost of a branch insn; roughly the number of extra insns that
|
||
should be added to avoid a branch.
|
||
|
||
Branches are extremely cheap on the VAX while the shift insns often
|
||
used to replace branches can be expensive. */
|
||
|
||
#define BRANCH_COST 0
|
||
|
||
/*
|
||
* We can use the BSD C library routines for the libgcc calls that are
|
||
* still generated, since that's what they boil down to anyways.
|
||
*/
|
||
|
||
#define UDIVSI3_LIBCALL "*udiv"
|
||
#define UMODSI3_LIBCALL "*urem"
|
||
|
||
/* Check a `double' value for validity for a particular machine mode. */
|
||
|
||
/* note that it is very hard to accidentally create a number that fits in a
|
||
double but not in a float, since their ranges are almost the same */
|
||
|
||
#define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
|
||
((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
|
||
|
||
/* For future reference:
|
||
D Float: 9 bit, sign magnitude, excess 128 binary exponent
|
||
normalized 56 bit fraction, redundant bit not represented
|
||
approximately 16 decimal digits of precision
|
||
|
||
The values to use if we trust decimal to binary conversions:
|
||
#define MAX_D_FLOAT 1.7014118346046923e+38
|
||
#define MIN_D_FLOAT .29387358770557188e-38
|
||
|
||
G float: 12 bit, sign magnitude, excess 1024 binary exponent
|
||
normalized 53 bit fraction, redundant bit not represented
|
||
approximately 15 decimal digits precision
|
||
|
||
The values to use if we trust decimal to binary conversions:
|
||
#define MAX_G_FLOAT .898846567431157e+308
|
||
#define MIN_G_FLOAT .556268464626800e-308
|
||
*/
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). No extra ones are needed for the vax. */
|
||
|
||
/* Store in cc_status the expressions
|
||
that the condition codes will describe
|
||
after execution of an instruction whose pattern is EXP.
|
||
Do not alter them if the instruction would not alter the cc's. */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
{ if (GET_CODE (EXP) == SET) \
|
||
{ if (GET_CODE (SET_SRC (EXP)) == CALL) \
|
||
CC_STATUS_INIT; \
|
||
else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
|
||
&& GET_CODE (SET_DEST (EXP)) != PC) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (EXP); \
|
||
cc_status.value2 = SET_SRC (EXP); } } \
|
||
else if (GET_CODE (EXP) == PARALLEL \
|
||
&& GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
|
||
{ \
|
||
if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
|
||
CC_STATUS_INIT; \
|
||
else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
|
||
{ cc_status.flags = 0; \
|
||
cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
|
||
cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
|
||
else \
|
||
/* PARALLELs whose first element sets the PC are aob, \
|
||
sob insns. They do change the cc's. */ \
|
||
CC_STATUS_INIT; } \
|
||
else CC_STATUS_INIT; \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
|
||
&& cc_status.value2 \
|
||
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
|
||
cc_status.value2 = 0; \
|
||
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
|
||
&& cc_status.value2 \
|
||
&& GET_CODE (cc_status.value2) == MEM) \
|
||
cc_status.value2 = 0; }
|
||
/* Actual condition, one line up, should be that value2's address
|
||
depends on value1, but that is too much of a pain. */
|
||
|
||
#define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
|
||
{ if (cc_status.flags & CC_NO_OVERFLOW) \
|
||
return NO_OV; \
|
||
return NORMAL; }
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Output at beginning of assembler file. */
|
||
|
||
#define ASM_FILE_START(FILE) fprintf (FILE, "#NO_APP\n");
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON "#APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF "#NO_APP\n"
|
||
|
||
/* Output before read-only data. */
|
||
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
|
||
"r9", "r10", "r11", "ap", "fp", "sp", "pc"}
|
||
|
||
/* This is BSD, so it wants DBX format. */
|
||
|
||
#define DBX_DEBUGGING_INFO
|
||
|
||
/* How to renumber registers for dbx and gdb.
|
||
Vax needs no change in the numeration. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* Do not break .stabs pseudos into continuations. */
|
||
|
||
#define DBX_CONTIN_LENGTH 0
|
||
|
||
/* This is the char to use for continuation (in case we need to turn
|
||
continuation back on). */
|
||
|
||
#define DBX_CONTIN_CHAR '?'
|
||
|
||
/* Don't use the `xsfoo;' construct in DBX output; this system
|
||
doesn't support it. */
|
||
|
||
#define DBX_NO_XREFS
|
||
|
||
/* Output the .stabs for a C `static' variable in the data section. */
|
||
#define DBX_STATIC_STAB_DATA_SECTION
|
||
|
||
/* Vax specific: which type character is used for type double? */
|
||
|
||
#define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX "_"
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, "%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, "*%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an assembler line defining a `double' constant.
|
||
It is .dfloat or .gfloat, depending. */
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
do { char dstr[30]; \
|
||
REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
|
||
fprintf (FILE, "\t.%cfloat 0%c%s\n", ASM_DOUBLE_CHAR, \
|
||
ASM_DOUBLE_CHAR, dstr); \
|
||
} while (0);
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
do { char dstr[30]; \
|
||
REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
|
||
fprintf (FILE, "\t.float 0f%s\n", dstr); } while (0);
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.long "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.word "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.byte "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute.
|
||
(The Vax does not use such vectors,
|
||
but we must define this macro anyway.) */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t.long L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
fprintf (FILE, "\t.align %d\n", (LOG))
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter by SIZE bytes. */
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
fprintf (FILE, "\t.space %u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs (".comm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
( fputs (".lcomm ", (FILE)), \
|
||
assemble_name ((FILE), (NAME)), \
|
||
fprintf ((FILE), ",%u\n", (ROUNDED)))
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* When debugging, we want to output an extra dummy label so that gas
|
||
can distinguish between D_float and G_float prior to processing the
|
||
.stabs directive identifying type double. */
|
||
|
||
#define ASM_IDENTIFY_LANGUAGE(FILE) \
|
||
do { \
|
||
output_lang_identify (FILE); \
|
||
if (write_symbols == DBX_DEBUG) \
|
||
fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
|
||
} while (0)
|
||
|
||
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
|
||
Used for C++ multiple inheritance.
|
||
.mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
|
||
addl2 $DELTA, 4(ap) #adjust first argument
|
||
jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
|
||
*/
|
||
#define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
|
||
do { \
|
||
fprintf (FILE, "\t.word 0x0ffc\n"); \
|
||
fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
|
||
fprintf (FILE, "\tjmp "); \
|
||
assemble_name (FILE, IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (FUNCTION))); \
|
||
fprintf (FILE, "+2\n"); \
|
||
} while (0)
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print an instruction operand X on file FILE.
|
||
CODE is the code from the %-spec that requested printing this operand;
|
||
if `%z3' was used to print operand 3, then CODE is 'z'.
|
||
|
||
VAX operand formatting codes:
|
||
|
||
letter print
|
||
C reverse branch condition
|
||
D 64-bit immediate operand
|
||
B the low 8 bits of the complement of a constant operand
|
||
H the low 16 bits of the complement of a constant operand
|
||
M a mask for the N highest bits of a word
|
||
N the complement of a constant integer operand
|
||
P constant operand plus 1
|
||
R 32 - constant operand
|
||
b the low 8 bits of a negated constant operand
|
||
h the low 16 bits of a negated constant operand
|
||
# 'd' or 'g' depending on whether dfloat or gfloat is used */
|
||
|
||
/* The purpose of D is to get around a quirk or bug in vax assembler
|
||
whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
|
||
which is not a 64-bit minus one. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
|
||
((CODE) == '#')
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ extern char *rev_cond_name (); \
|
||
if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
|
||
else if (CODE == 'C') \
|
||
fputs (rev_cond_name (X), FILE); \
|
||
else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
|
||
fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
|
||
else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", INTVAL (X) + 1); \
|
||
else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", ~ INTVAL (X)); \
|
||
/* rotl instruction cannot deal with negative arguments. */ \
|
||
else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", 32 - INTVAL (X)); \
|
||
else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
|
||
else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", (short) - INTVAL (x)); \
|
||
else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
|
||
else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
|
||
else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
|
||
fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
|
||
else if (GET_CODE (X) == REG) \
|
||
fprintf (FILE, "%s", reg_names[REGNO (X)]); \
|
||
else if (GET_CODE (X) == MEM) \
|
||
output_address (XEXP (X, 0)); \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
|
||
{ REAL_VALUE_TYPE r; char dstr[30]; \
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
|
||
REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
|
||
fprintf (FILE, "$0f%s", dstr); } \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
|
||
{ REAL_VALUE_TYPE r; char dstr[30]; \
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
|
||
REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
|
||
fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
|
||
else { putc ('$', FILE); output_addr_const (FILE, X); }}
|
||
|
||
/* Print a memory operand whose address is X, on file FILE.
|
||
This uses a function in output-vax.c. */
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
print_operand_address (FILE, ADDR)
|