mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-08 20:02:47 +01:00
6015 lines
173 KiB
C
6015 lines
173 KiB
C
/* Subroutines for insn-output.c for Sun SPARC.
|
||
Copyright (C) 1987, 88, 89, 92-97, 1998 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
|
||
at Cygnus Support.
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include <stdio.h>
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "expr.h"
|
||
#include "recog.h"
|
||
|
||
/* 1 if the caller has placed an "unimp" insn immediately after the call.
|
||
This is used in v8 code when calling a function that returns a structure.
|
||
v9 doesn't have this. Be careful to have this test be the same as that
|
||
used on the call. */
|
||
|
||
#define SKIP_CALLERS_UNIMP_P \
|
||
(!TARGET_ARCH64 && current_function_returns_struct \
|
||
&& ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \
|
||
&& (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \
|
||
== INTEGER_CST))
|
||
|
||
/* Global variables for machine-dependent things. */
|
||
|
||
/* Size of frame. Need to know this to emit return insns from leaf procedures.
|
||
ACTUAL_FSIZE is set by compute_frame_size() which is called during the
|
||
reload pass. This is important as the value is later used in insn
|
||
scheduling (to see what can go in a delay slot).
|
||
APPARENT_FSIZE is the size of the stack less the register save area and less
|
||
the outgoing argument area. It is used when saving call preserved regs. */
|
||
static int apparent_fsize;
|
||
static int actual_fsize;
|
||
|
||
/* Save the operands last given to a compare for use when we
|
||
generate a scc or bcc insn. */
|
||
|
||
rtx sparc_compare_op0, sparc_compare_op1;
|
||
|
||
/* We may need an epilogue if we spill too many registers.
|
||
If this is non-zero, then we branch here for the epilogue. */
|
||
static rtx leaf_label;
|
||
|
||
#ifdef LEAF_REGISTERS
|
||
|
||
/* Vector to say how input registers are mapped to output
|
||
registers. FRAME_POINTER_REGNUM cannot be remapped by
|
||
this function to eliminate it. You must use -fomit-frame-pointer
|
||
to get that. */
|
||
char leaf_reg_remap[] =
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7,
|
||
-1, -1, -1, -1, -1, -1, 14, -1,
|
||
-1, -1, -1, -1, -1, -1, -1, -1,
|
||
8, 9, 10, 11, 12, 13, -1, 15,
|
||
|
||
32, 33, 34, 35, 36, 37, 38, 39,
|
||
40, 41, 42, 43, 44, 45, 46, 47,
|
||
48, 49, 50, 51, 52, 53, 54, 55,
|
||
56, 57, 58, 59, 60, 61, 62, 63,
|
||
64, 65, 66, 67, 68, 69, 70, 71,
|
||
72, 73, 74, 75, 76, 77, 78, 79,
|
||
80, 81, 82, 83, 84, 85, 86, 87,
|
||
88, 89, 90, 91, 92, 93, 94, 95,
|
||
96, 97, 98, 99, 100};
|
||
|
||
#endif
|
||
|
||
/* Name of where we pretend to think the frame pointer points.
|
||
Normally, this is "%fp", but if we are in a leaf procedure,
|
||
this is "%sp+something". We record "something" separately as it may be
|
||
too big for reg+constant addressing. */
|
||
|
||
static char *frame_base_name;
|
||
static int frame_base_offset;
|
||
|
||
static rtx pic_setup_code PROTO((void));
|
||
static rtx find_addr_reg PROTO((rtx));
|
||
static void sparc_init_modes PROTO((void));
|
||
static int save_regs PROTO((FILE *, int, int, char *,
|
||
int, int, int));
|
||
static int restore_regs PROTO((FILE *, int, int, char *, int, int));
|
||
static void build_big_number PROTO((FILE *, int, char *));
|
||
static function_arg_slotno PROTO((const CUMULATIVE_ARGS *,
|
||
enum machine_mode, tree, int, int,
|
||
int *, int *));
|
||
|
||
#ifdef DWARF2_DEBUGGING_INFO
|
||
extern char *dwarf2out_cfi_label ();
|
||
#endif
|
||
|
||
/* Option handling. */
|
||
|
||
/* Code model option as passed by user. */
|
||
char *sparc_cmodel_string;
|
||
/* Parsed value. */
|
||
enum cmodel sparc_cmodel;
|
||
|
||
/* Record alignment options as passed by user. */
|
||
char *sparc_align_loops_string;
|
||
char *sparc_align_jumps_string;
|
||
char *sparc_align_funcs_string;
|
||
|
||
/* Parsed values, as a power of two. */
|
||
int sparc_align_loops;
|
||
int sparc_align_jumps;
|
||
int sparc_align_funcs;
|
||
|
||
struct sparc_cpu_select sparc_select[] =
|
||
{
|
||
/* switch name, tune arch */
|
||
{ (char *)0, "default", 1, 1 },
|
||
{ (char *)0, "-mcpu=", 1, 1 },
|
||
{ (char *)0, "-mtune=", 1, 0 },
|
||
{ 0, 0 }
|
||
};
|
||
|
||
/* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */
|
||
enum processor_type sparc_cpu;
|
||
|
||
/* Validate and override various options, and do some machine dependent
|
||
initialization. */
|
||
|
||
void
|
||
sparc_override_options ()
|
||
{
|
||
static struct code_model {
|
||
char *name;
|
||
int value;
|
||
} cmodels[] = {
|
||
{ "32", CM_32 },
|
||
{ "medlow", CM_MEDLOW },
|
||
{ "medmid", CM_MEDMID },
|
||
{ "medany", CM_MEDANY },
|
||
{ "embmedany", CM_EMBMEDANY },
|
||
{ 0, 0 }
|
||
};
|
||
struct code_model *cmodel;
|
||
/* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */
|
||
static struct cpu_default {
|
||
int cpu;
|
||
char *name;
|
||
} cpu_default[] = {
|
||
/* There must be one entry here for each TARGET_CPU value. */
|
||
{ TARGET_CPU_sparc, "cypress" },
|
||
{ TARGET_CPU_sparclet, "tsc701" },
|
||
{ TARGET_CPU_sparclite, "f930" },
|
||
{ TARGET_CPU_v8, "v8" },
|
||
{ TARGET_CPU_supersparc, "supersparc" },
|
||
{ TARGET_CPU_v9, "v9" },
|
||
{ TARGET_CPU_ultrasparc, "ultrasparc" },
|
||
{ 0 }
|
||
};
|
||
struct cpu_default *def;
|
||
/* Table of values for -m{cpu,tune}=. */
|
||
static struct cpu_table {
|
||
char *name;
|
||
enum processor_type processor;
|
||
int disable;
|
||
int enable;
|
||
} cpu_table[] = {
|
||
{ "v7", PROCESSOR_V7, MASK_ISA, 0 },
|
||
{ "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 },
|
||
{ "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 },
|
||
/* TI TMS390Z55 supersparc */
|
||
{ "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 },
|
||
{ "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE },
|
||
/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
|
||
The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */
|
||
{ "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE },
|
||
{ "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU },
|
||
{ "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET },
|
||
/* TEMIC sparclet */
|
||
{ "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET },
|
||
/* "v8plus" is what Sun calls Solaris2.5 running on UltraSPARC's. */
|
||
{ "v8plus", PROCESSOR_V8PLUS, MASK_ISA, MASK_V9 },
|
||
{ "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 },
|
||
/* TI ultrasparc */
|
||
{ "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9 },
|
||
{ 0 }
|
||
};
|
||
struct cpu_table *cpu;
|
||
struct sparc_cpu_select *sel;
|
||
int fpu;
|
||
|
||
#ifndef SPARC_BI_ARCH
|
||
/* Check for unsupported architecture size. */
|
||
if (! TARGET_64BIT != DEFAULT_ARCH32_P)
|
||
{
|
||
error ("%s is not supported by this configuration",
|
||
DEFAULT_ARCH32_P ? "-m64" : "-m32");
|
||
}
|
||
#endif
|
||
|
||
/* Code model selection. */
|
||
sparc_cmodel = SPARC_DEFAULT_CMODEL;
|
||
if (sparc_cmodel_string != NULL)
|
||
{
|
||
if (TARGET_ARCH64)
|
||
{
|
||
for (cmodel = &cmodels[0]; cmodel->name; cmodel++)
|
||
if (strcmp (sparc_cmodel_string, cmodel->name) == 0)
|
||
break;
|
||
if (cmodel->name == NULL)
|
||
error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string);
|
||
else
|
||
sparc_cmodel = cmodel->value;
|
||
}
|
||
else
|
||
error ("-mcmodel= is not supported on 32 bit systems");
|
||
}
|
||
|
||
fpu = TARGET_FPU; /* save current -mfpu status */
|
||
|
||
/* Set the default CPU. */
|
||
for (def = &cpu_default[0]; def->name; ++def)
|
||
if (def->cpu == TARGET_CPU_DEFAULT)
|
||
break;
|
||
if (! def->name)
|
||
abort ();
|
||
sparc_select[0].string = def->name;
|
||
|
||
for (sel = &sparc_select[0]; sel->name; ++sel)
|
||
{
|
||
if (sel->string)
|
||
{
|
||
for (cpu = &cpu_table[0]; cpu->name; ++cpu)
|
||
if (! strcmp (sel->string, cpu->name))
|
||
{
|
||
if (sel->set_tune_p)
|
||
sparc_cpu = cpu->processor;
|
||
|
||
if (sel->set_arch_p)
|
||
{
|
||
target_flags &= ~cpu->disable;
|
||
target_flags |= cpu->enable;
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (! cpu->name)
|
||
error ("bad value (%s) for %s switch", sel->string, sel->name);
|
||
}
|
||
}
|
||
|
||
/* If -mfpu or -mno-fpu was explicitly used, don't override with
|
||
the processor default. */
|
||
if (TARGET_FPU_SET)
|
||
target_flags = (target_flags & ~MASK_FPU) | fpu;
|
||
|
||
/* Use the deprecated v8 insns for sparc64 in 32 bit mode. */
|
||
if (TARGET_V9 && TARGET_ARCH32)
|
||
target_flags |= MASK_DEPRECATED_V8_INSNS;
|
||
|
||
/* Validate -malign-loops= value, or provide default. */
|
||
if (sparc_align_loops_string)
|
||
{
|
||
sparc_align_loops = exact_log2 (atoi (sparc_align_loops_string));
|
||
if (sparc_align_loops < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-loops=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_loops_string);
|
||
}
|
||
else
|
||
{
|
||
/* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
|
||
its 0. This sounds a bit kludgey. */
|
||
sparc_align_loops = 0;
|
||
}
|
||
|
||
/* Validate -malign-jumps= value, or provide default. */
|
||
if (sparc_align_jumps_string)
|
||
{
|
||
sparc_align_jumps = exact_log2 (atoi (sparc_align_jumps_string));
|
||
if (sparc_align_jumps < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-jumps=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_jumps_string);
|
||
}
|
||
else
|
||
{
|
||
/* ??? This relies on ASM_OUTPUT_ALIGN to not emit the alignment if
|
||
its 0. This sounds a bit kludgey. */
|
||
sparc_align_jumps = 0;
|
||
}
|
||
|
||
/* Validate -malign-functions= value, or provide default. */
|
||
if (sparc_align_funcs_string)
|
||
{
|
||
sparc_align_funcs = exact_log2 (atoi (sparc_align_funcs_string));
|
||
if (sparc_align_funcs < 2 || sparc_align_loops > 7)
|
||
fatal ("-malign-functions=%s is not between 4 and 128 or is not a power of two",
|
||
sparc_align_funcs_string);
|
||
}
|
||
else
|
||
sparc_align_funcs = DEFAULT_SPARC_ALIGN_FUNCS;
|
||
|
||
/* Do various machine dependent initializations. */
|
||
sparc_init_modes ();
|
||
}
|
||
|
||
/* Float conversions (v9 only).
|
||
|
||
The floating point registers cannot hold DImode values because SUBREG's
|
||
on them get the wrong register. "(subreg:SI (reg:DI M int-reg) 0)" is the
|
||
same as "(subreg:SI (reg:DI N float-reg) 1)", but gcc doesn't know how to
|
||
turn the "0" to a "1". Therefore, we must explicitly do the conversions
|
||
to/from int/fp regs. `sparc64_fpconv_stack_slot' is the address of an
|
||
8 byte stack slot used during the transfer.
|
||
??? I could have used [%fp-16] but I didn't want to add yet another
|
||
dependence on this. */
|
||
/* ??? Can we use assign_stack_temp here? */
|
||
|
||
static rtx fpconv_stack_temp;
|
||
|
||
/* Called once for each function. */
|
||
|
||
void
|
||
sparc_init_expanders ()
|
||
{
|
||
fpconv_stack_temp = NULL_RTX;
|
||
}
|
||
|
||
/* Assign a stack temp for fp/int DImode conversions. */
|
||
|
||
rtx
|
||
sparc64_fpconv_stack_temp ()
|
||
{
|
||
if (fpconv_stack_temp == NULL_RTX)
|
||
fpconv_stack_temp =
|
||
assign_stack_local (DImode, GET_MODE_SIZE (DImode), 0);
|
||
|
||
return fpconv_stack_temp;
|
||
}
|
||
|
||
/* Miscellaneous utilities. */
|
||
|
||
/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
|
||
or branch on register contents instructions. */
|
||
|
||
int
|
||
v9_regcmp_p (code)
|
||
enum rtx_code code;
|
||
{
|
||
return (code == EQ || code == NE || code == GE || code == LT
|
||
|| code == LE || code == GT);
|
||
}
|
||
|
||
/* Operand constraints. */
|
||
|
||
/* Return non-zero only if OP is a register of mode MODE,
|
||
or const0_rtx. Don't allow const0_rtx if TARGET_LIVE_G0 because
|
||
%g0 may contain anything. */
|
||
|
||
int
|
||
reg_or_0_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
if (op == const0_rtx)
|
||
return 1;
|
||
if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& CONST_DOUBLE_LOW (op) == 0)
|
||
return 1;
|
||
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& fp_zero_operand (op))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
/* Nonzero if OP is a floating point value with value 0.0. */
|
||
|
||
int
|
||
fp_zero_operand (op)
|
||
rtx op;
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
||
return (REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r));
|
||
}
|
||
|
||
/* Nonzero if OP is an integer register. */
|
||
|
||
int
|
||
intreg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, SImode)
|
||
|| (TARGET_ARCH64 && register_operand (op, DImode)));
|
||
}
|
||
|
||
/* Nonzero if OP is a floating point condition code register. */
|
||
|
||
int
|
||
fcc_reg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* This can happen when recog is called from combine. Op may be a MEM.
|
||
Fail instead of calling abort in this case. */
|
||
if (GET_CODE (op) != REG)
|
||
return 0;
|
||
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
if (mode == VOIDmode
|
||
&& (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
|
||
return 0;
|
||
|
||
#if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */
|
||
if (reg_renumber == 0)
|
||
return REGNO (op) >= FIRST_PSEUDO_REGISTER;
|
||
return REGNO_OK_FOR_CCFP_P (REGNO (op));
|
||
#else
|
||
return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4;
|
||
#endif
|
||
}
|
||
|
||
/* Nonzero if OP is an integer or floating point condition code register. */
|
||
|
||
int
|
||
icc_or_fcc_reg_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG)
|
||
{
|
||
if (mode != VOIDmode && mode != GET_MODE (op))
|
||
return 0;
|
||
if (mode == VOIDmode
|
||
&& GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
return fcc_reg_operand (op, mode);
|
||
}
|
||
|
||
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
|
||
int
|
||
restore_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == REG && GET_MODE (op) == mode
|
||
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
|
||
}
|
||
|
||
/* Call insn on SPARC can take a PC-relative constant address, or any regular
|
||
memory address. */
|
||
|
||
int
|
||
call_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
abort ();
|
||
op = XEXP (op, 0);
|
||
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
int
|
||
call_operand_address (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
|
||
}
|
||
|
||
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
|
||
reference and a constant. */
|
||
|
||
int
|
||
symbolic_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
return 1;
|
||
|
||
case CONST:
|
||
op = XEXP (op, 0);
|
||
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
||
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
||
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
|
||
|
||
/* ??? This clause seems to be irrelevant. */
|
||
case CONST_DOUBLE:
|
||
return GET_MODE (op) == mode;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a symbolic memory
|
||
operand of mode MODE. */
|
||
|
||
int
|
||
symbolic_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
return (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST
|
||
|| GET_CODE (op) == HIGH || GET_CODE (op) == LABEL_REF);
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a LABEL_REF of mode MODE. */
|
||
|
||
int
|
||
label_ref_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != LABEL_REF)
|
||
return 0;
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the operand is an argument used in generating pic references
|
||
in either the medium/low or medium/anywhere code models of sparc64. */
|
||
|
||
int
|
||
sp64_medium_pic_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* Check for (const (minus (symbol_ref:GOT)
|
||
(const (minus (label) (pc))))). */
|
||
if (GET_CODE (op) != CONST)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) != MINUS)
|
||
return 0;
|
||
if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF)
|
||
return 0;
|
||
/* ??? Ensure symbol is GOT. */
|
||
if (GET_CODE (XEXP (op, 1)) != CONST)
|
||
return 0;
|
||
if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if the operand is a data segment reference. This includes
|
||
the readonly data segment, or in other words anything but the text segment.
|
||
This is needed in the medium/anywhere code model on v9. These values
|
||
are accessed with EMBMEDANY_BASE_REG. */
|
||
|
||
int
|
||
data_segment_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case SYMBOL_REF :
|
||
return ! SYMBOL_REF_FLAG (op);
|
||
case PLUS :
|
||
/* Assume canonical format of symbol + constant.
|
||
Fall through. */
|
||
case CONST :
|
||
return data_segment_operand (XEXP (op, 0));
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if the operand is a text segment reference.
|
||
This is needed in the medium/anywhere code model on v9. */
|
||
|
||
int
|
||
text_segment_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (op))
|
||
{
|
||
case LABEL_REF :
|
||
return 1;
|
||
case SYMBOL_REF :
|
||
return SYMBOL_REF_FLAG (op);
|
||
case PLUS :
|
||
/* Assume canonical format of symbol + constant.
|
||
Fall through. */
|
||
case CONST :
|
||
return text_segment_operand (XEXP (op, 0));
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if the operand is either a register or a memory operand that is
|
||
not symbolic. */
|
||
|
||
int
|
||
reg_or_nonsymb_mem_operand (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
|
||
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
sparc_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return SMALL_INT (op);
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) == LO_SUM)
|
||
return (GET_CODE (XEXP (op, 0)) == REG
|
||
&& symbolic_operand (XEXP (op, 1), Pmode));
|
||
return memory_address_p (mode, op);
|
||
}
|
||
|
||
int
|
||
move_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (mode == DImode && arith_double_operand (op, mode))
|
||
return 1;
|
||
if (register_operand (op, mode))
|
||
return 1;
|
||
if (GET_CODE (op) == CONST_INT)
|
||
return SMALL_INT (op) || SPARC_SETHI_P (INTVAL (op));
|
||
|
||
if (GET_MODE (op) != mode)
|
||
return 0;
|
||
if (GET_CODE (op) == SUBREG)
|
||
op = SUBREG_REG (op);
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
op = XEXP (op, 0);
|
||
if (GET_CODE (op) == LO_SUM)
|
||
return (register_operand (XEXP (op, 0), Pmode)
|
||
&& CONSTANT_P (XEXP (op, 1)));
|
||
return memory_address_p (mode, op);
|
||
}
|
||
|
||
int
|
||
splittable_symbolic_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
if (! symbolic_operand (XEXP (op, 0), Pmode))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
int
|
||
splittable_immediate_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) != MEM)
|
||
return 0;
|
||
if (! immediate_operand (XEXP (op, 0), Pmode))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Return truth value of whether OP is EQ or NE. */
|
||
|
||
int
|
||
eq_or_neq (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
|
||
or LTU for non-floating-point. We handle those specially. */
|
||
|
||
int
|
||
normal_comp_operator (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CCFPmode
|
||
|| GET_MODE (XEXP (op, 0)) == CCFPEmode)
|
||
return 1;
|
||
|
||
return (code != NE && code != EQ && code != GEU && code != LTU);
|
||
}
|
||
|
||
/* Return 1 if this is a comparison operator. This allows the use of
|
||
MATCH_OPERATOR to recognize all the branch insns. */
|
||
|
||
int
|
||
noov_compare_op (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode)
|
||
/* These are the only branches which work with CC_NOOVmode. */
|
||
return (code == EQ || code == NE || code == GE || code == LT);
|
||
return 1;
|
||
}
|
||
|
||
/* Nonzero if OP is a comparison operator suitable for use in v9
|
||
conditional move or branch on register contents instructions. */
|
||
|
||
int
|
||
v9_regcmp_op (op, mode)
|
||
register rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (op);
|
||
|
||
if (GET_RTX_CLASS (code) != '<')
|
||
return 0;
|
||
|
||
return v9_regcmp_p (code);
|
||
}
|
||
|
||
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
|
||
|
||
int
|
||
extend_op (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can set
|
||
the condition codes explicitly. We do not include PLUS and MINUS
|
||
because these require CC_NOOVmode, which we handle explicitly. */
|
||
|
||
int
|
||
cc_arithop (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR
|
||
|| GET_CODE (op) == XOR)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if OP is an operator of mode MODE which can bitwise
|
||
complement its second operand and set the condition codes explicitly. */
|
||
|
||
int
|
||
cc_arithopn (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
|
||
and (xor ... (not ...)) to (not (xor ...)). */
|
||
return (GET_CODE (op) == AND
|
||
|| GET_CODE (op) == IOR);
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 13 bit immediate field. This is an acceptable SImode operand for
|
||
most 3 address instructions. */
|
||
|
||
int
|
||
arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op)));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 11 bit immediate field. This is an acceptable SImode operand for
|
||
the movcc instructions. */
|
||
|
||
int
|
||
arith11_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op))));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT that can fit in a
|
||
signed 10 bit immediate field. This is an acceptable SImode operand for
|
||
the movrcc instructions. */
|
||
|
||
int
|
||
arith10_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op))));
|
||
}
|
||
|
||
/* Return true if OP is a register, is a CONST_INT that fits in a 13 bit
|
||
immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit
|
||
immediate field.
|
||
v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in a 13 bit immediate field. This is an acceptable DImode operand
|
||
for most 3 address instructions. */
|
||
|
||
int
|
||
arith_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op))
|
||
|| (! TARGET_ARCH64
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000)
|
||
|| (TARGET_ARCH64
|
||
&& GET_CODE (op) == CONST_DOUBLE
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0))));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in an 11 bit immediate field. This is an acceptable DImode
|
||
operand for the movcc instructions. */
|
||
/* ??? Replace with arith11_operand? */
|
||
|
||
int
|
||
arith11_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0x400)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0)))
|
||
|| (GET_CODE (op) == CONST_INT
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800));
|
||
}
|
||
|
||
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
|
||
can fit in an 10 bit immediate field. This is an acceptable DImode
|
||
operand for the movrcc instructions. */
|
||
/* ??? Replace with arith10_operand? */
|
||
|
||
int
|
||
arith10_double_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (register_operand (op, mode)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400
|
||
&& ((CONST_DOUBLE_HIGH (op) == -1
|
||
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0x200)
|
||
|| (CONST_DOUBLE_HIGH (op) == 0
|
||
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0)))
|
||
|| (GET_CODE (op) == CONST_INT
|
||
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
|
||
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400));
|
||
}
|
||
|
||
/* Return truth value of whether OP is a integer which fits the
|
||
range constraining immediate operands in most three-address insns,
|
||
which have a 13 bit immediate field. */
|
||
|
||
int
|
||
small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
|
||
}
|
||
|
||
/* Recognize operand values for the umul instruction. That instruction sign
|
||
extends immediate values just like all other sparc instructions, but
|
||
interprets the extended result as an unsigned number. */
|
||
|
||
int
|
||
uns_small_int (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
#if HOST_BITS_PER_WIDE_INT > 32
|
||
/* All allowed constants will fit a CONST_INT. */
|
||
return (GET_CODE (op) == CONST_INT
|
||
&& ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
|
||
|| (INTVAL (op) >= 0xFFFFF000 && INTVAL (op) < 0x100000000L)));
|
||
#else
|
||
return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
|
||
|| (GET_CODE (op) == CONST_DOUBLE
|
||
&& CONST_DOUBLE_HIGH (op) == 0
|
||
&& (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
|
||
#endif
|
||
}
|
||
|
||
int
|
||
uns_arith_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return register_operand (op, mode) || uns_small_int (op, mode);
|
||
}
|
||
|
||
/* Return truth value of statement that OP is a call-clobbered register. */
|
||
int
|
||
clobbered_register (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
|
||
}
|
||
|
||
/* X and Y are two things to compare using CODE. Emit the compare insn and
|
||
return the rtx for the cc reg in the proper mode. */
|
||
|
||
rtx
|
||
gen_compare_reg (code, x, y)
|
||
enum rtx_code code;
|
||
rtx x, y;
|
||
{
|
||
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
|
||
rtx cc_reg;
|
||
|
||
/* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
|
||
fcc regs (cse can't tell they're really call clobbered regs and will
|
||
remove a duplicate comparison even if there is an intervening function
|
||
call - it will then try to reload the cc reg via an int reg which is why
|
||
we need the movcc patterns). It is possible to provide the movcc
|
||
patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two
|
||
registers (say %g1,%g5) and it takes about 6 insns. A better fix would be
|
||
to tell cse that CCFPE mode registers (even pseudos) are call
|
||
clobbered. */
|
||
|
||
/* ??? This is an experiment. Rather than making changes to cse which may
|
||
or may not be easy/clean, we do our own cse. This is possible because
|
||
we will generate hard registers. Cse knows they're call clobbered (it
|
||
doesn't know the same thing about pseudos). If we guess wrong, no big
|
||
deal, but if we win, great! */
|
||
|
||
if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
||
#if 1 /* experiment */
|
||
{
|
||
int reg;
|
||
/* We cycle through the registers to ensure they're all exercised. */
|
||
static int next_fcc_reg = 0;
|
||
/* Previous x,y for each fcc reg. */
|
||
static rtx prev_args[4][2];
|
||
|
||
/* Scan prev_args for x,y. */
|
||
for (reg = 0; reg < 4; reg++)
|
||
if (prev_args[reg][0] == x && prev_args[reg][1] == y)
|
||
break;
|
||
if (reg == 4)
|
||
{
|
||
reg = next_fcc_reg;
|
||
prev_args[reg][0] = x;
|
||
prev_args[reg][1] = y;
|
||
next_fcc_reg = (next_fcc_reg + 1) & 3;
|
||
}
|
||
cc_reg = gen_rtx (REG, mode, reg + SPARC_FIRST_V9_FCC_REG);
|
||
}
|
||
#else
|
||
cc_reg = gen_reg_rtx (mode);
|
||
#endif /* ! experiment */
|
||
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
||
cc_reg = gen_rtx (REG, mode, SPARC_FCC_REG);
|
||
else
|
||
cc_reg = gen_rtx (REG, mode, SPARC_ICC_REG);
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode, cc_reg,
|
||
gen_rtx (COMPARE, mode, x, y)));
|
||
|
||
return cc_reg;
|
||
}
|
||
|
||
/* This function is used for v9 only.
|
||
CODE is the code for an Scc's comparison.
|
||
OPERANDS[0] is the target of the Scc insn.
|
||
OPERANDS[1] is the value we compare against const0_rtx (which hasn't
|
||
been generated yet).
|
||
|
||
This function is needed to turn
|
||
|
||
(set (reg:SI 110)
|
||
(gt (reg:CCX 100 %icc)
|
||
(const_int 0)))
|
||
into
|
||
(set (reg:SI 110)
|
||
(gt:DI (reg:CCX 100 %icc)
|
||
(const_int 0)))
|
||
|
||
IE: The instruction recognizer needs to see the mode of the comparison to
|
||
find the right instruction. We could use "gt:DI" right in the
|
||
define_expand, but leaving it out allows us to handle DI, SI, etc.
|
||
|
||
We refer to the global sparc compare operands sparc_compare_op0 and
|
||
sparc_compare_op1. */
|
||
|
||
int
|
||
gen_v9_scc (compare_code, operands)
|
||
enum rtx_code compare_code;
|
||
register rtx *operands;
|
||
{
|
||
rtx temp, op0, op1;
|
||
|
||
if (! TARGET_ARCH64
|
||
&& (GET_MODE (sparc_compare_op0) == DImode
|
||
|| GET_MODE (operands[0]) == DImode))
|
||
return 0;
|
||
|
||
/* Handle the case where operands[0] == sparc_compare_op0.
|
||
We "early clobber" the result. */
|
||
if (REGNO (operands[0]) == REGNO (sparc_compare_op0))
|
||
{
|
||
op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0));
|
||
emit_move_insn (op0, sparc_compare_op0);
|
||
}
|
||
else
|
||
op0 = sparc_compare_op0;
|
||
/* For consistency in the following. */
|
||
op1 = sparc_compare_op1;
|
||
|
||
/* Try to use the movrCC insns. */
|
||
if (TARGET_ARCH64
|
||
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
|
||
&& op1 == const0_rtx
|
||
&& v9_regcmp_p (compare_code))
|
||
{
|
||
/* Special case for op0 != 0. This can be done with one instruction if
|
||
operands[0] == sparc_compare_op0. We don't assume they are equal
|
||
now though. */
|
||
|
||
if (compare_code == NE
|
||
&& GET_MODE (operands[0]) == DImode
|
||
&& GET_MODE (op0) == DImode)
|
||
{
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0], op0));
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
|
||
gen_rtx (IF_THEN_ELSE, DImode,
|
||
gen_rtx (compare_code, DImode,
|
||
op0, const0_rtx),
|
||
const1_rtx,
|
||
operands[0])));
|
||
return 1;
|
||
}
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
|
||
if (GET_MODE (op0) != DImode)
|
||
{
|
||
temp = gen_reg_rtx (DImode);
|
||
convert_move (temp, op0, 0);
|
||
}
|
||
else
|
||
temp = op0;
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
|
||
gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]),
|
||
gen_rtx (compare_code, DImode,
|
||
temp, const0_rtx),
|
||
const1_rtx,
|
||
operands[0])));
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
operands[1] = gen_compare_reg (compare_code, op0, op1);
|
||
|
||
switch (GET_MODE (operands[1]))
|
||
{
|
||
case CCmode :
|
||
case CCXmode :
|
||
case CCFPEmode :
|
||
case CCFPmode :
|
||
break;
|
||
default :
|
||
abort ();
|
||
}
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0], const0_rtx));
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0],
|
||
gen_rtx (IF_THEN_ELSE, GET_MODE (operands[0]),
|
||
gen_rtx (compare_code,
|
||
GET_MODE (operands[1]),
|
||
operands[1], const0_rtx),
|
||
const1_rtx, operands[0])));
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Emit a conditional jump insn for the v9 architecture using comparison code
|
||
CODE and jump target LABEL.
|
||
This function exists to take advantage of the v9 brxx insns. */
|
||
|
||
void
|
||
emit_v9_brxx_insn (code, op0, label)
|
||
enum rtx_code code;
|
||
rtx op0, label;
|
||
{
|
||
emit_jump_insn (gen_rtx (SET, VOIDmode,
|
||
pc_rtx,
|
||
gen_rtx (IF_THEN_ELSE, VOIDmode,
|
||
gen_rtx (code, GET_MODE (op0),
|
||
op0, const0_rtx),
|
||
gen_rtx (LABEL_REF, VOIDmode, label),
|
||
pc_rtx)));
|
||
}
|
||
|
||
/* Return nonzero if a return peephole merging return with
|
||
setting of output register is ok. */
|
||
int
|
||
leaf_return_peephole_ok ()
|
||
{
|
||
return (actual_fsize == 0);
|
||
}
|
||
|
||
/* Return nonzero if TRIAL can go into the function epilogue's
|
||
delay slot. SLOT is the slot we are trying to fill. */
|
||
|
||
int
|
||
eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot;
|
||
{
|
||
rtx pat, src;
|
||
|
||
if (slot >= 1)
|
||
return 0;
|
||
|
||
if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET)
|
||
return 0;
|
||
|
||
if (get_attr_length (trial) != 1)
|
||
return 0;
|
||
|
||
/* If %g0 is live, there are lots of things we can't handle.
|
||
Rather than trying to find them all now, let's punt and only
|
||
optimize things as necessary. */
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
|
||
/* In the case of a true leaf function, anything can go into the delay slot.
|
||
A delay slot only exists however if the frame size is zero, otherwise
|
||
we will put an insn to adjust the stack after the return. */
|
||
if (leaf_function)
|
||
{
|
||
if (leaf_return_peephole_ok ())
|
||
return ((get_attr_in_uncond_branch_delay (trial)
|
||
== IN_BRANCH_DELAY_TRUE));
|
||
return 0;
|
||
}
|
||
|
||
/* If only trivial `restore' insns work, nothing can go in the
|
||
delay slot. */
|
||
else if (TARGET_BROKEN_SAVERESTORE)
|
||
return 0;
|
||
|
||
pat = PATTERN (trial);
|
||
|
||
/* Otherwise, only operations which can be done in tandem with
|
||
a `restore' insn can go into the delay slot. */
|
||
if (GET_CODE (SET_DEST (pat)) != REG
|
||
|| REGNO (SET_DEST (pat)) >= 32
|
||
|| REGNO (SET_DEST (pat)) < 24)
|
||
return 0;
|
||
|
||
/* The set of insns matched here must agree precisely with the set of
|
||
patterns paired with a RETURN in sparc.md. */
|
||
|
||
src = SET_SRC (pat);
|
||
|
||
/* This matches "*return_[qhs]". */
|
||
if (arith_operand (src, GET_MODE (src)))
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
|
||
|
||
/* This matches "*return_di". */
|
||
else if (arith_double_operand (src, GET_MODE (src)))
|
||
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
|
||
|
||
/* This matches "*return_sf_no_fpu". */
|
||
else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode)
|
||
&& register_operand (src, SFmode))
|
||
return 1;
|
||
|
||
/* This matches "*return_addsi". */
|
||
else if (GET_CODE (src) == PLUS
|
||
&& arith_operand (XEXP (src, 0), SImode)
|
||
&& arith_operand (XEXP (src, 1), SImode)
|
||
&& (register_operand (XEXP (src, 0), SImode)
|
||
|| register_operand (XEXP (src, 1), SImode)))
|
||
return 1;
|
||
|
||
/* This matches "*return_adddi". */
|
||
else if (GET_CODE (src) == PLUS
|
||
&& arith_double_operand (XEXP (src, 0), DImode)
|
||
&& arith_double_operand (XEXP (src, 1), DImode)
|
||
&& (register_operand (XEXP (src, 0), DImode)
|
||
|| register_operand (XEXP (src, 1), DImode)))
|
||
return 1;
|
||
|
||
/* This matches "*return_subsi". */
|
||
else if (GET_CODE (src) == MINUS
|
||
&& register_operand (XEXP (src, 0), SImode)
|
||
&& small_int (XEXP (src, 1), VOIDmode)
|
||
&& INTVAL (XEXP (src, 1)) != -4096)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
short_branch (uid1, uid2)
|
||
int uid1, uid2;
|
||
{
|
||
unsigned int delta = insn_addresses[uid1] - insn_addresses[uid2];
|
||
if (delta + 1024 < 2048)
|
||
return 1;
|
||
/* warning ("long branch, distance %d", delta); */
|
||
return 0;
|
||
}
|
||
|
||
/* Return non-zero if REG is not used after INSN.
|
||
We assume REG is a reload reg, and therefore does
|
||
not live past labels or calls or jumps. */
|
||
int
|
||
reg_unused_after (reg, insn)
|
||
rtx reg;
|
||
rtx insn;
|
||
{
|
||
enum rtx_code code, prev_code = UNKNOWN;
|
||
|
||
while (insn = NEXT_INSN (insn))
|
||
{
|
||
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
|
||
return 1;
|
||
|
||
code = GET_CODE (insn);
|
||
if (GET_CODE (insn) == CODE_LABEL)
|
||
return 1;
|
||
|
||
if (GET_RTX_CLASS (code) == 'i')
|
||
{
|
||
rtx set = single_set (insn);
|
||
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
|
||
if (set && in_src)
|
||
return 0;
|
||
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
||
return 1;
|
||
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
||
return 0;
|
||
}
|
||
prev_code = code;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* The table we use to reference PIC data. */
|
||
static rtx global_offset_table;
|
||
|
||
/* Ensure that we are not using patterns that are not OK with PIC. */
|
||
|
||
int
|
||
check_pic (i)
|
||
int i;
|
||
{
|
||
switch (flag_pic)
|
||
{
|
||
case 1:
|
||
if (GET_CODE (recog_operand[i]) == SYMBOL_REF
|
||
|| (GET_CODE (recog_operand[i]) == CONST
|
||
&& ! (GET_CODE (XEXP (recog_operand[i], 0)) == MINUS
|
||
&& (XEXP (XEXP (recog_operand[i], 0), 0)
|
||
== global_offset_table)
|
||
&& (GET_CODE (XEXP (XEXP (recog_operand[i], 0), 1))
|
||
== CONST))))
|
||
abort ();
|
||
case 2:
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Return true if X is an address which needs a temporary register when
|
||
reloaded while generating PIC code. */
|
||
|
||
int
|
||
pic_address_needs_scratch (x)
|
||
rtx x;
|
||
{
|
||
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
|
||
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
||
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Legitimize PIC addresses. If the address is already position-independent,
|
||
we return ORIG. Newly generated position-independent addresses go into a
|
||
reg. This is REG if non zero, otherwise we allocate register(s) as
|
||
necessary. */
|
||
|
||
rtx
|
||
legitimize_pic_address (orig, mode, reg)
|
||
rtx orig;
|
||
enum machine_mode mode;
|
||
rtx reg;
|
||
{
|
||
if (GET_CODE (orig) == SYMBOL_REF)
|
||
{
|
||
rtx pic_ref, address;
|
||
rtx insn;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (flag_pic == 2)
|
||
{
|
||
/* If not during reload, allocate another temp reg here for loading
|
||
in the address, so that these instructions can be optimized
|
||
properly. */
|
||
rtx temp_reg = ((reload_in_progress || reload_completed)
|
||
? reg : gen_reg_rtx (Pmode));
|
||
|
||
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
|
||
won't get confused into thinking that these two instructions
|
||
are loading in the true address of the symbol. If in the
|
||
future a PIC rtx exists, that should be used instead. */
|
||
emit_insn (gen_pic_sethi_si (temp_reg, orig));
|
||
emit_insn (gen_pic_lo_sum_si (temp_reg, temp_reg, orig));
|
||
|
||
address = temp_reg;
|
||
}
|
||
else
|
||
address = orig;
|
||
|
||
pic_ref = gen_rtx (MEM, Pmode,
|
||
gen_rtx (PLUS, Pmode,
|
||
pic_offset_table_rtx, address));
|
||
current_function_uses_pic_offset_table = 1;
|
||
RTX_UNCHANGING_P (pic_ref) = 1;
|
||
insn = emit_move_insn (reg, pic_ref);
|
||
/* Put a REG_EQUAL note on this insn, so that it can be optimized
|
||
by loop. */
|
||
REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, orig,
|
||
REG_NOTES (insn));
|
||
return reg;
|
||
}
|
||
else if (GET_CODE (orig) == CONST)
|
||
{
|
||
rtx base, offset;
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
||
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
|
||
return orig;
|
||
|
||
if (reg == 0)
|
||
{
|
||
if (reload_in_progress || reload_completed)
|
||
abort ();
|
||
else
|
||
reg = gen_reg_rtx (Pmode);
|
||
}
|
||
|
||
if (GET_CODE (XEXP (orig, 0)) == PLUS)
|
||
{
|
||
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
||
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
||
base == reg ? 0 : reg);
|
||
}
|
||
else
|
||
abort ();
|
||
|
||
if (GET_CODE (offset) == CONST_INT)
|
||
{
|
||
if (SMALL_INT (offset))
|
||
return plus_constant_for_output (base, INTVAL (offset));
|
||
else if (! reload_in_progress && ! reload_completed)
|
||
offset = force_reg (Pmode, offset);
|
||
else
|
||
/* If we reach here, then something is seriously wrong. */
|
||
abort ();
|
||
}
|
||
return gen_rtx (PLUS, Pmode, base, offset);
|
||
}
|
||
else if (GET_CODE (orig) == LABEL_REF)
|
||
/* ??? Why do we do this? */
|
||
current_function_uses_pic_offset_table = 1;
|
||
|
||
return orig;
|
||
}
|
||
|
||
/* Set up PIC-specific rtl. This should not cause any insns
|
||
to be emitted. */
|
||
|
||
void
|
||
initialize_pic ()
|
||
{
|
||
}
|
||
|
||
/* Return the RTX for insns to set the PIC register. */
|
||
|
||
static rtx
|
||
pic_setup_code ()
|
||
{
|
||
rtx pic_pc_rtx;
|
||
rtx l1, l2;
|
||
rtx seq;
|
||
|
||
start_sequence ();
|
||
|
||
/* If -O0, show the PIC register remains live before this. */
|
||
if (obey_regdecls)
|
||
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
|
||
|
||
l1 = gen_label_rtx ();
|
||
|
||
pic_pc_rtx = gen_rtx (CONST, Pmode,
|
||
gen_rtx (MINUS, Pmode,
|
||
global_offset_table,
|
||
gen_rtx (CONST, Pmode,
|
||
gen_rtx (MINUS, Pmode,
|
||
gen_rtx (LABEL_REF,
|
||
VOIDmode, l1),
|
||
pc_rtx))));
|
||
|
||
/* sparc64: the RDPC instruction doesn't pair, and puts 4 bubbles in the
|
||
pipe to boot. So don't use it here, especially when we're
|
||
doing a save anyway because of %l7. */
|
||
|
||
l2 = gen_label_rtx ();
|
||
emit_label (l1);
|
||
|
||
/* Iff we are doing delay branch optimization, slot the sethi up
|
||
here so that it will fill the delay slot of the call. */
|
||
if (flag_delayed_branch)
|
||
emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
|
||
gen_rtx (HIGH, Pmode, pic_pc_rtx)));
|
||
|
||
/* Note that we pun calls and jumps here! */
|
||
emit_jump_insn (gen_get_pc_via_call (l2, l1));
|
||
|
||
emit_label (l2);
|
||
|
||
if (!flag_delayed_branch)
|
||
emit_insn (gen_rtx (SET, VOIDmode, pic_offset_table_rtx,
|
||
gen_rtx (HIGH, Pmode, pic_pc_rtx)));
|
||
|
||
emit_insn (gen_rtx (SET, VOIDmode,
|
||
pic_offset_table_rtx,
|
||
gen_rtx (LO_SUM, Pmode,
|
||
pic_offset_table_rtx, pic_pc_rtx)));
|
||
emit_insn (gen_rtx (SET, VOIDmode,
|
||
pic_offset_table_rtx,
|
||
gen_rtx (PLUS, Pmode,
|
||
pic_offset_table_rtx,
|
||
gen_rtx (REG, Pmode, 15))));
|
||
|
||
/* emit_insn (gen_rtx (ASM_INPUT, VOIDmode, "!#PROLOGUE# 1")); */
|
||
LABEL_PRESERVE_P (l1) = 1;
|
||
LABEL_PRESERVE_P (l2) = 1;
|
||
|
||
seq = gen_sequence ();
|
||
end_sequence ();
|
||
|
||
return seq;
|
||
}
|
||
|
||
/* Emit special PIC prologues and epilogues. */
|
||
|
||
void
|
||
finalize_pic ()
|
||
{
|
||
/* Labels to get the PC in the prologue of this function. */
|
||
int orig_flag_pic = flag_pic;
|
||
rtx insn;
|
||
|
||
if (current_function_uses_pic_offset_table == 0)
|
||
return;
|
||
|
||
if (! flag_pic)
|
||
abort ();
|
||
|
||
/* Initialize every time through, since we can't easily
|
||
know this to be permanent. */
|
||
global_offset_table = gen_rtx (SYMBOL_REF, Pmode, "_GLOBAL_OFFSET_TABLE_");
|
||
flag_pic = 0;
|
||
|
||
emit_insn_after (pic_setup_code (), get_insns ());
|
||
|
||
/* Insert the code in each nonlocal goto receiver. */
|
||
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
||
if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE
|
||
&& XINT (PATTERN (insn), 1) == 4)
|
||
emit_insn_after (pic_setup_code (), insn);
|
||
|
||
flag_pic = orig_flag_pic;
|
||
|
||
/* Need to emit this whether or not we obey regdecls,
|
||
since setjmp/longjmp can cause life info to screw up.
|
||
??? In the case where we don't obey regdecls, this is not sufficient
|
||
since we may not fall out the bottom. */
|
||
emit_insn (gen_rtx (USE, VOIDmode, pic_offset_table_rtx));
|
||
}
|
||
|
||
/* Emit insns to move operands[1] into operands[0].
|
||
|
||
Return 1 if we have written out everything that needs to be done to
|
||
do the move. Otherwise, return 0 and the caller will emit the move
|
||
normally. */
|
||
|
||
int
|
||
emit_move_sequence (operands, mode)
|
||
rtx *operands;
|
||
enum machine_mode mode;
|
||
{
|
||
register rtx operand0 = operands[0];
|
||
register rtx operand1 = operands[1];
|
||
|
||
if (CONSTANT_P (operand1) && flag_pic
|
||
&& pic_address_needs_scratch (operand1))
|
||
operands[1] = operand1 = legitimize_pic_address (operand1, mode, 0);
|
||
|
||
/* Handle most common case first: storing into a register. */
|
||
if (register_operand (operand0, mode))
|
||
{
|
||
if (register_operand (operand1, mode)
|
||
|| (GET_CODE (operand1) == CONST_INT && SMALL_INT (operand1))
|
||
|| (GET_CODE (operand1) == CONST_DOUBLE
|
||
&& arith_double_operand (operand1, DImode))
|
||
|| (GET_CODE (operand1) == HIGH && GET_MODE (operand1) != DImode)
|
||
/* Only `general_operands' can come here, so MEM is ok. */
|
||
|| GET_CODE (operand1) == MEM)
|
||
{
|
||
/* Run this case quickly. */
|
||
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
|
||
return 1;
|
||
}
|
||
}
|
||
else if (GET_CODE (operand0) == MEM)
|
||
{
|
||
if (register_operand (operand1, mode)
|
||
|| (operand1 == const0_rtx && ! TARGET_LIVE_G0))
|
||
{
|
||
/* Run this case quickly. */
|
||
emit_insn (gen_rtx (SET, VOIDmode, operand0, operand1));
|
||
return 1;
|
||
}
|
||
if (! reload_in_progress)
|
||
{
|
||
operands[0] = validize_mem (operand0);
|
||
operands[1] = operand1 = force_reg (mode, operand1);
|
||
}
|
||
}
|
||
|
||
if (GET_CODE (operand1) == LABEL_REF
|
||
&& mode == SImode && flag_pic)
|
||
{
|
||
if (TARGET_ARCH64)
|
||
abort ();
|
||
emit_insn (gen_move_pic_label_si (operand0, operand1));
|
||
return 1;
|
||
}
|
||
/* Non-pic LABEL_REF's in sparc64 are expensive to do the normal way,
|
||
so always use special code. */
|
||
else if (GET_CODE (operand1) == LABEL_REF
|
||
&& mode == DImode)
|
||
{
|
||
if (! TARGET_ARCH64)
|
||
abort ();
|
||
emit_insn (gen_move_label_di (operand0, operand1));
|
||
return 1;
|
||
}
|
||
/* DImode HIGH values in sparc64 need a clobber added. */
|
||
else if (TARGET_ARCH64
|
||
&& GET_CODE (operand1) == HIGH && GET_MODE (operand1) == DImode)
|
||
{
|
||
emit_insn (gen_sethi_di_sp64 (operand0, XEXP (operand1, 0)));
|
||
return 1;
|
||
}
|
||
/* Simplify the source if we need to. */
|
||
else if (GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|
||
{
|
||
if (flag_pic && symbolic_operand (operand1, mode))
|
||
{
|
||
rtx temp_reg = reload_in_progress ? operand0 : 0;
|
||
|
||
operands[1] = legitimize_pic_address (operand1, mode, temp_reg);
|
||
}
|
||
else if (GET_CODE (operand1) == CONST_INT
|
||
? (! SMALL_INT (operand1)
|
||
&& ! SPARC_SETHI_P (INTVAL (operand1)))
|
||
: GET_CODE (operand1) == CONST_DOUBLE
|
||
? ! arith_double_operand (operand1, DImode)
|
||
: 1)
|
||
{
|
||
/* For DImode values, temp must be operand0 because of the way
|
||
HI and LO_SUM work. The LO_SUM operator only copies half of
|
||
the LSW from the dest of the HI operator. If the LO_SUM dest is
|
||
not the same as the HI dest, then the MSW of the LO_SUM dest will
|
||
never be set.
|
||
|
||
??? The real problem here is that the ...(HI:DImode pattern emits
|
||
multiple instructions, and the ...(LO_SUM:DImode pattern emits
|
||
one instruction. This fails, because the compiler assumes that
|
||
LO_SUM copies all bits of the first operand to its dest. Better
|
||
would be to have the HI pattern emit one instruction and the
|
||
LO_SUM pattern multiple instructions. Even better would be
|
||
to use four rtl insns. */
|
||
rtx temp = ((reload_in_progress || mode == DImode)
|
||
? operand0 : gen_reg_rtx (mode));
|
||
|
||
if (TARGET_ARCH64 && mode == DImode)
|
||
emit_insn (gen_sethi_di_sp64 (temp, operand1));
|
||
else
|
||
emit_insn (gen_rtx (SET, VOIDmode, temp,
|
||
gen_rtx (HIGH, mode, operand1)));
|
||
|
||
if (GET_CODE (operand1) == CONST_INT)
|
||
operand1 = GEN_INT (INTVAL (operand1) & 0xffffffff);
|
||
else if (GET_CODE (operand1) == CONST_DOUBLE)
|
||
operand1 = GEN_INT (CONST_DOUBLE_LOW (operand1) & 0xffffffff);
|
||
operands[1] = gen_rtx (LO_SUM, mode, temp, operand1);
|
||
}
|
||
}
|
||
|
||
/* Now have insn-emit do whatever it normally does. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return the best assembler insn template
|
||
for moving operands[1] into operands[0] as a 4 byte quantity.
|
||
|
||
This isn't intended to be very smart. It is up to the caller to
|
||
choose the best way to do things.
|
||
|
||
Note that OPERANDS may be modified to suit the returned string. */
|
||
|
||
char *
|
||
singlemove_string (operands)
|
||
rtx *operands;
|
||
{
|
||
if (GET_CODE (operands[0]) == MEM)
|
||
{
|
||
if (GET_CODE (operands[1]) != MEM)
|
||
return "st %r1,%0";
|
||
else
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (operands[1]) == MEM)
|
||
return "ld %1,%0";
|
||
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long i;
|
||
|
||
/* Must be SFmode, otherwise this doesn't make sense. */
|
||
if (GET_MODE (operands[1]) != SFmode)
|
||
abort ();
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
|
||
REAL_VALUE_TO_TARGET_SINGLE (r, i);
|
||
operands[1] = GEN_INT (i);
|
||
|
||
if (CONST_OK_FOR_LETTER_P (i, 'I'))
|
||
return "mov %1,%0";
|
||
else if ((i & 0x000003FF) != 0)
|
||
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
|
||
else
|
||
return "sethi %%hi(%a1),%0";
|
||
}
|
||
else if (GET_CODE (operands[1]) == CONST_INT
|
||
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
|
||
{
|
||
HOST_WIDE_INT i = INTVAL (operands[1]);
|
||
|
||
/* If all low order 10 bits are clear, then we only need a single
|
||
sethi insn to load the constant. */
|
||
/* FIXME: Use SETHI_P. */
|
||
if ((i & 0x000003FF) != 0)
|
||
return "sethi %%hi(%a1),%0\n\tor %0,%%lo(%a1),%0";
|
||
else
|
||
return "sethi %%hi(%a1),%0";
|
||
}
|
||
/* Operand 1 must be a register, or a 'I' type CONST_INT. */
|
||
return "mov %1,%0";
|
||
}
|
||
|
||
/* Return the best assembler insn template
|
||
for moving operands[1] into operands[0] as an 8 byte quantity.
|
||
|
||
This isn't intended to be very smart. It is up to the caller to
|
||
choose the best way to do things.
|
||
|
||
Note that OPERANDS may be modified to suit the returned string. */
|
||
|
||
char *
|
||
doublemove_string (operands)
|
||
rtx *operands;
|
||
{
|
||
rtx op0 = operands[0], op1 = operands[1];
|
||
|
||
if (GET_CODE (op0) == MEM)
|
||
{
|
||
if (GET_CODE (op1) == REG)
|
||
{
|
||
if (FP_REG_P (op1))
|
||
return "std %1,%0";
|
||
return TARGET_ARCH64 ? "stx %1,%0" : "std %1,%0";
|
||
}
|
||
if (TARGET_ARCH64
|
||
&& (op1 == const0_rtx
|
||
|| (GET_MODE (op1) != VOIDmode
|
||
&& op1 == CONST0_RTX (GET_MODE (op1)))))
|
||
return "stx %r1,%0";
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (op1) == MEM)
|
||
{
|
||
if (GET_CODE (op0) != REG)
|
||
abort ();
|
||
if (FP_REG_P (op0))
|
||
return "ldd %1,%0";
|
||
return TARGET_ARCH64 ? "ldx %1,%0" : "ldd %1,%0";
|
||
}
|
||
else if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
||
{
|
||
/* ??? Unfinished, and maybe not needed. */
|
||
abort ();
|
||
}
|
||
else if (GET_CODE (operands[1]) == CONST_INT
|
||
&& ! CONST_OK_FOR_LETTER_P (INTVAL (operands[1]), 'I'))
|
||
{
|
||
/* ??? Unfinished, and maybe not needed. */
|
||
abort ();
|
||
}
|
||
/* Operand 1 must be a register, or a 'I' type CONST_INT. */
|
||
return "mov %1,%0";
|
||
}
|
||
|
||
/* Return non-zero if it is OK to assume that the given memory operand is
|
||
aligned at least to a 8-byte boundary. This should only be called
|
||
for memory accesses whose size is 8 bytes or larger. */
|
||
|
||
int
|
||
mem_aligned_8 (mem)
|
||
register rtx mem;
|
||
{
|
||
register rtx addr;
|
||
register rtx base;
|
||
register rtx offset;
|
||
|
||
if (GET_CODE (mem) != MEM)
|
||
return 0; /* It's gotta be a MEM! */
|
||
|
||
addr = XEXP (mem, 0);
|
||
|
||
/* Now that all misaligned double parms are copied on function entry,
|
||
we can assume any 64-bit object is 64-bit aligned except those which
|
||
are at unaligned offsets from the stack or frame pointer. If the
|
||
TARGET_UNALIGNED_DOUBLES switch is given, we do not make this
|
||
assumption. */
|
||
|
||
/* See what register we use in the address. */
|
||
base = 0;
|
||
if (GET_CODE (addr) == PLUS)
|
||
{
|
||
if (GET_CODE (XEXP (addr, 0)) == REG
|
||
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
|
||
{
|
||
base = XEXP (addr, 0);
|
||
offset = XEXP (addr, 1);
|
||
}
|
||
}
|
||
else if (GET_CODE (addr) == REG)
|
||
{
|
||
base = addr;
|
||
offset = const0_rtx;
|
||
}
|
||
|
||
/* If it's the stack or frame pointer, check offset alignment.
|
||
We can have improper alignment in the function entry code. */
|
||
if (base
|
||
&& (REGNO (base) == FRAME_POINTER_REGNUM
|
||
|| REGNO (base) == STACK_POINTER_REGNUM))
|
||
{
|
||
if (((INTVAL (offset) - SPARC_STACK_BIAS) & 0x7) == 0)
|
||
return 1;
|
||
}
|
||
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
|
||
is true, in which case we can only assume that an access is aligned if
|
||
it is to a constant address, or the address involves a LO_SUM.
|
||
|
||
We used to assume an address was aligned if MEM_IN_STRUCT_P was true.
|
||
That assumption was deleted so that gcc generated code can be used with
|
||
memory allocators that only guarantee 4 byte alignment. */
|
||
else if (! TARGET_UNALIGNED_DOUBLES || CONSTANT_P (addr)
|
||
|| GET_CODE (addr) == LO_SUM)
|
||
return 1;
|
||
|
||
/* An obviously unaligned address. */
|
||
return 0;
|
||
}
|
||
|
||
enum optype { REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP };
|
||
|
||
/* Output assembler code to perform a doubleword move insn
|
||
with operands OPERANDS. This is very similar to the following
|
||
output_move_quad function. */
|
||
|
||
char *
|
||
output_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
register enum optype optype0;
|
||
register enum optype optype1;
|
||
rtx latehalf[2];
|
||
rtx addreg0 = 0;
|
||
rtx addreg1 = 0;
|
||
int highest_first = 0;
|
||
int no_addreg1_decrement = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (op0))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (op0))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (op0) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (op1))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (op1))
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (op1))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (op1) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP
|
||
|| (optype0 == MEM && optype1 == MEM))
|
||
abort ();
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the second word. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (op0, 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (op1, 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Set up in LATEHALF the operands to use for the
|
||
high-numbered (least significant) word and in some cases alter the
|
||
operands in OPERANDS to be suitable for the low-numbered word. */
|
||
|
||
if (optype0 == REGOP)
|
||
latehalf[0] = gen_rtx (REG, SImode, REGNO (op0) + 1);
|
||
else if (optype0 == OFFSOP)
|
||
latehalf[0] = adj_offsettable_operand (op0, 4);
|
||
else
|
||
latehalf[0] = op0;
|
||
|
||
if (optype1 == REGOP)
|
||
latehalf[1] = gen_rtx (REG, SImode, REGNO (op1) + 1);
|
||
else if (optype1 == OFFSOP)
|
||
latehalf[1] = adj_offsettable_operand (op1, 4);
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
if (TARGET_ARCH64)
|
||
{
|
||
if (arith_double_operand (op1, DImode))
|
||
{
|
||
operands[1] = gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_LOW (op1));
|
||
return "mov %1,%0";
|
||
}
|
||
else
|
||
{
|
||
/* The only way to handle CONST_DOUBLEs or other 64 bit
|
||
constants here is to use a temporary, such as is done
|
||
for the V9 DImode sethi insn pattern. This is not
|
||
a practical solution, so abort if we reach here.
|
||
The md file should always force such constants to
|
||
memory. */
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
split_double (op1, &operands[1], &latehalf[1]);
|
||
}
|
||
else
|
||
latehalf[1] = op1;
|
||
|
||
/* Easy case: try moving both words at once. Check for moving between
|
||
an even/odd register pair and a memory location. */
|
||
if ((optype0 == REGOP && optype1 != REGOP && optype1 != CNSTOP
|
||
&& (TARGET_ARCH64 || (REGNO (op0) & 1) == 0))
|
||
|| (optype0 != REGOP && optype0 != CNSTOP && optype1 == REGOP
|
||
&& (TARGET_ARCH64 || (REGNO (op1) & 1) == 0)))
|
||
{
|
||
register rtx mem,reg;
|
||
|
||
if (optype0 == REGOP)
|
||
mem = op1, reg = op0;
|
||
else
|
||
mem = op0, reg = op1;
|
||
|
||
/* In v9, ldd can be used for word aligned addresses, so technically
|
||
some of this logic is unneeded. We still avoid ldd if the address
|
||
is obviously unaligned though. */
|
||
|
||
if (mem_aligned_8 (mem)
|
||
/* If this is a floating point register higher than %f31,
|
||
then we *must* use an aligned load, since `ld' will not accept
|
||
the register number. */
|
||
|| (TARGET_V9 && REGNO (reg) >= 64))
|
||
{
|
||
if (FP_REG_P (reg) || ! TARGET_ARCH64)
|
||
return (mem == op1 ? "ldd %1,%0" : "std %1,%0");
|
||
else
|
||
return (mem == op1 ? "ldx %1,%0" : "stx %1,%0");
|
||
}
|
||
}
|
||
|
||
if (TARGET_ARCH64)
|
||
{
|
||
if (optype0 == REGOP && optype1 == REGOP)
|
||
{
|
||
if (FP_REG_P (op0))
|
||
return "fmovd %1,%0";
|
||
else
|
||
return "mov %1,%0";
|
||
}
|
||
}
|
||
|
||
/* If the first move would clobber the source of the second one,
|
||
do them in the other order. */
|
||
|
||
/* Overlapping registers. */
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (op0) == REGNO (latehalf[1]))
|
||
{
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
/* Do low-numbered word. */
|
||
return singlemove_string (operands);
|
||
}
|
||
/* Loading into a register which overlaps a register used in the address. */
|
||
else if (optype0 == REGOP && optype1 != REGOP
|
||
&& reg_overlap_mentioned_p (op0, op1))
|
||
{
|
||
/* If both halves of dest are used in the src memory address,
|
||
add the two regs and put them in the low reg (op0).
|
||
Then it works to load latehalf first. */
|
||
if (reg_mentioned_p (op0, XEXP (op1, 0))
|
||
&& reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
|
||
{
|
||
rtx xops[2];
|
||
xops[0] = latehalf[0];
|
||
xops[1] = op0;
|
||
output_asm_insn ("add %1,%0,%1", xops);
|
||
operands[1] = gen_rtx (MEM, DImode, op0);
|
||
latehalf[1] = adj_offsettable_operand (operands[1], 4);
|
||
addreg1 = 0;
|
||
highest_first = 1;
|
||
}
|
||
/* Only one register in the dest is used in the src memory address,
|
||
and this is the first register of the dest, so we want to do
|
||
the late half first here also. */
|
||
else if (! reg_mentioned_p (latehalf[0], XEXP (op1, 0)))
|
||
highest_first = 1;
|
||
/* Only one register in the dest is used in the src memory address,
|
||
and this is the second register of the dest, so we want to do
|
||
the late half last. If addreg1 is set, and addreg1 is the same
|
||
register as latehalf, then we must suppress the trailing decrement,
|
||
because it would clobber the value just loaded. */
|
||
else if (addreg1 && reg_mentioned_p (addreg1, latehalf[0]))
|
||
no_addreg1_decrement = 1;
|
||
}
|
||
|
||
/* Normal case: do the two words, low-numbered first.
|
||
Overlap case (highest_first set): do high-numbered word first. */
|
||
|
||
if (! highest_first)
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
/* Make any unoffsettable addresses point at high-numbered word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do that word. */
|
||
output_asm_insn (singlemove_string (latehalf), latehalf);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,-0x4,%0", &addreg0);
|
||
if (addreg1 && ! no_addreg1_decrement)
|
||
output_asm_insn ("add %0,-0x4,%0", &addreg1);
|
||
|
||
if (highest_first)
|
||
output_asm_insn (singlemove_string (operands), operands);
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Output assembler code to perform a quadword move insn
|
||
with operands OPERANDS. This is very similar to the preceding
|
||
output_move_double function. */
|
||
|
||
char *
|
||
output_move_quad (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
register enum optype optype0;
|
||
register enum optype optype1;
|
||
rtx wordpart[4][2];
|
||
rtx addreg0 = 0;
|
||
rtx addreg1 = 0;
|
||
|
||
/* First classify both operands. */
|
||
|
||
if (REG_P (op0))
|
||
optype0 = REGOP;
|
||
else if (offsettable_memref_p (op0))
|
||
optype0 = OFFSOP;
|
||
else if (GET_CODE (op0) == MEM)
|
||
optype0 = MEMOP;
|
||
else
|
||
optype0 = RNDOP;
|
||
|
||
if (REG_P (op1))
|
||
optype1 = REGOP;
|
||
else if (CONSTANT_P (op1))
|
||
optype1 = CNSTOP;
|
||
else if (offsettable_memref_p (op1))
|
||
optype1 = OFFSOP;
|
||
else if (GET_CODE (op1) == MEM)
|
||
optype1 = MEMOP;
|
||
else
|
||
optype1 = RNDOP;
|
||
|
||
/* Check for the cases that the operand constraints are not
|
||
supposed to allow to happen. Abort if we get one,
|
||
because generating code for these cases is painful. */
|
||
|
||
if (optype0 == RNDOP || optype1 == RNDOP
|
||
|| (optype0 == MEM && optype1 == MEM))
|
||
abort ();
|
||
|
||
/* If an operand is an unoffsettable memory ref, find a register
|
||
we can increment temporarily to make it refer to the later words. */
|
||
|
||
if (optype0 == MEMOP)
|
||
addreg0 = find_addr_reg (XEXP (op0, 0));
|
||
|
||
if (optype1 == MEMOP)
|
||
addreg1 = find_addr_reg (XEXP (op1, 0));
|
||
|
||
/* Ok, we can do one word at a time.
|
||
Set up in wordpart the operands to use for each word of the arguments. */
|
||
|
||
if (optype0 == REGOP)
|
||
{
|
||
wordpart[0][0] = gen_rtx (REG, word_mode, REGNO (op0) + 0);
|
||
wordpart[1][0] = gen_rtx (REG, word_mode, REGNO (op0) + 1);
|
||
if (TARGET_ARCH32)
|
||
{
|
||
wordpart[2][0] = gen_rtx (REG, word_mode, REGNO (op0) + 2);
|
||
wordpart[3][0] = gen_rtx (REG, word_mode, REGNO (op0) + 3);
|
||
}
|
||
}
|
||
else if (optype0 == OFFSOP)
|
||
{
|
||
wordpart[0][0] = adj_offsettable_operand (op0, 0);
|
||
if (TARGET_ARCH32)
|
||
{
|
||
wordpart[1][0] = adj_offsettable_operand (op0, 4);
|
||
wordpart[2][0] = adj_offsettable_operand (op0, 8);
|
||
wordpart[3][0] = adj_offsettable_operand (op0, 12);
|
||
}
|
||
else
|
||
wordpart[1][0] = adj_offsettable_operand (op0, 8);
|
||
}
|
||
else
|
||
{
|
||
wordpart[0][0] = op0;
|
||
wordpart[1][0] = op0;
|
||
wordpart[2][0] = op0;
|
||
wordpart[3][0] = op0;
|
||
}
|
||
|
||
if (optype1 == REGOP)
|
||
{
|
||
wordpart[0][1] = gen_rtx (REG, word_mode, REGNO (op1) + 0);
|
||
wordpart[1][1] = gen_rtx (REG, word_mode, REGNO (op1) + 1);
|
||
if (TARGET_ARCH32)
|
||
{
|
||
wordpart[2][1] = gen_rtx (REG, word_mode, REGNO (op1) + 2);
|
||
wordpart[3][1] = gen_rtx (REG, word_mode, REGNO (op1) + 3);
|
||
}
|
||
}
|
||
else if (optype1 == OFFSOP)
|
||
{
|
||
wordpart[0][1] = adj_offsettable_operand (op1, 0);
|
||
if (TARGET_ARCH32)
|
||
{
|
||
wordpart[1][1] = adj_offsettable_operand (op1, 4);
|
||
wordpart[2][1] = adj_offsettable_operand (op1, 8);
|
||
wordpart[3][1] = adj_offsettable_operand (op1, 12);
|
||
}
|
||
else
|
||
wordpart[1][1] = adj_offsettable_operand (op1, 8);
|
||
}
|
||
else if (optype1 == CNSTOP)
|
||
{
|
||
REAL_VALUE_TYPE r;
|
||
long l[4];
|
||
|
||
/* This only works for TFmode floating point constants. */
|
||
if (GET_CODE (op1) != CONST_DOUBLE || GET_MODE (op1) != TFmode)
|
||
abort ();
|
||
|
||
REAL_VALUE_FROM_CONST_DOUBLE (r, op1);
|
||
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
|
||
|
||
wordpart[0][1] = GEN_INT (l[0]);
|
||
wordpart[1][1] = GEN_INT (l[1]);
|
||
wordpart[2][1] = GEN_INT (l[2]);
|
||
wordpart[3][1] = GEN_INT (l[3]);
|
||
}
|
||
else
|
||
{
|
||
wordpart[0][1] = op1;
|
||
wordpart[1][1] = op1;
|
||
wordpart[2][1] = op1;
|
||
wordpart[3][1] = op1;
|
||
}
|
||
|
||
/* Easy case: try moving the quad as two pairs. Check for moving between
|
||
an even/odd register pair and a memory location.
|
||
Also handle new v9 fp regs here. */
|
||
/* ??? Should also handle the case of non-offsettable addresses here.
|
||
We can at least do the first pair as a ldd/std, and then do the third
|
||
and fourth words individually. */
|
||
if ((optype0 == REGOP && optype1 == OFFSOP && (REGNO (op0) & 1) == 0)
|
||
|| (optype0 == OFFSOP && optype1 == REGOP && (REGNO (op1) & 1) == 0))
|
||
{
|
||
rtx mem, reg;
|
||
|
||
if (optype0 == REGOP)
|
||
mem = op1, reg = op0;
|
||
else
|
||
mem = op0, reg = op1;
|
||
|
||
if (mem_aligned_8 (mem)
|
||
/* If this is a floating point register higher than %f31,
|
||
then we *must* use an aligned load, since `ld' will not accept
|
||
the register number. */
|
||
|| (TARGET_V9 && REGNO (reg) >= SPARC_FIRST_V9_FP_REG))
|
||
{
|
||
if (TARGET_V9 && FP_REG_P (reg) && TARGET_HARD_QUAD)
|
||
{
|
||
if ((REGNO (reg) & 3) != 0)
|
||
abort ();
|
||
/* ??? Can `mem' have an inappropriate alignment here? */
|
||
return (mem == op1 ? "ldq %1,%0" : "stq %1,%0");
|
||
}
|
||
operands[2] = adj_offsettable_operand (mem, 8);
|
||
/* ??? In arch64 case, shouldn't we use ldd/std for fp regs. */
|
||
if (mem == op1)
|
||
return TARGET_ARCH64 ? "ldx %1,%0;ldx %2,%R0" : "ldd %1,%0;ldd %2,%S0";
|
||
else
|
||
return TARGET_ARCH64 ? "stx %1,%0;stx %R1,%2" : "std %1,%0;std %S1,%2";
|
||
}
|
||
}
|
||
|
||
/* If the first move would clobber the source of the second one,
|
||
do them in the other order. */
|
||
|
||
/* Overlapping registers? */
|
||
if (TARGET_ARCH32)
|
||
{
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& (REGNO (op0) == REGNO (wordpart[1][3])
|
||
|| REGNO (op0) == REGNO (wordpart[1][2])
|
||
|| REGNO (op0) == REGNO (wordpart[1][1])))
|
||
{
|
||
/* Do fourth word. */
|
||
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
|
||
/* Do the third word. */
|
||
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
|
||
/* Do the second word. */
|
||
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
|
||
/* Do lowest-numbered word. */
|
||
output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);
|
||
return "";
|
||
}
|
||
}
|
||
else /* TARGET_ARCH64 */
|
||
{
|
||
if (optype0 == REGOP && optype1 == REGOP
|
||
&& REGNO (op0) == REGNO (wordpart[1][1]))
|
||
{
|
||
output_asm_insn ("mov %1,%0", wordpart[1]);
|
||
output_asm_insn ("mov %1,%0", wordpart[0]);
|
||
return "";
|
||
}
|
||
}
|
||
|
||
/* Loading into a register which overlaps a register used in the address. */
|
||
if (optype0 == REGOP && optype1 != REGOP
|
||
&& reg_overlap_mentioned_p (op0, op1))
|
||
{
|
||
/* ??? Not implemented yet. This is a bit complicated, because we
|
||
must load which ever part overlaps the address last. If the address
|
||
is a double-reg address, then there are two parts which need to
|
||
be done last, which is impossible. We would need a scratch register
|
||
in that case. */
|
||
abort ();
|
||
}
|
||
|
||
/* Normal case: move the words in lowest to highest address order. */
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
output_asm_insn (singlemove_string (wordpart[0]), wordpart[0]);
|
||
|
||
/* Make any unoffsettable addresses point at the second word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the second word. */
|
||
output_asm_insn (singlemove_string (wordpart[1]), wordpart[1]);
|
||
|
||
/* Make any unoffsettable addresses point at the third word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the third word. */
|
||
output_asm_insn (singlemove_string (wordpart[2]), wordpart[2]);
|
||
|
||
/* Make any unoffsettable addresses point at the fourth word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x4,%0", &addreg1);
|
||
|
||
/* Do the fourth word. */
|
||
output_asm_insn (singlemove_string (wordpart[3]), wordpart[3]);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,-0xc,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,-0xc,%0", &addreg1);
|
||
}
|
||
else /* TARGET_ARCH64 */
|
||
{
|
||
output_asm_insn (doublemove_string (wordpart[0]), wordpart[0]);
|
||
|
||
/* Make any unoffsettable addresses point at the second word. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,0x8,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,0x8,%0", &addreg1);
|
||
|
||
/* Do the second word. */
|
||
output_asm_insn (doublemove_string (wordpart[1]), wordpart[1]);
|
||
|
||
/* Undo the adds we just did. */
|
||
if (addreg0)
|
||
output_asm_insn ("add %0,-0x8,%0", &addreg0);
|
||
if (addreg1)
|
||
output_asm_insn ("add %0,-0x8,%0", &addreg1);
|
||
}
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Output assembler code to perform a doubleword move insn with operands
|
||
OPERANDS, one of which must be a floating point register. */
|
||
|
||
char *
|
||
output_fp_move_double (operands)
|
||
rtx *operands;
|
||
{
|
||
if (FP_REG_P (operands[0]))
|
||
{
|
||
if (FP_REG_P (operands[1]))
|
||
{
|
||
if (TARGET_V9)
|
||
return "fmovd %1,%0";
|
||
else
|
||
return "fmovs %1,%0\n\tfmovs %R1,%R0";
|
||
}
|
||
else if (GET_CODE (operands[1]) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_double (operands);
|
||
}
|
||
else if (FP_REG_P (operands[1]))
|
||
{
|
||
if (GET_CODE (operands[0]) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_double (operands);
|
||
}
|
||
else abort ();
|
||
}
|
||
|
||
/* Output assembler code to perform a quadword move insn with operands
|
||
OPERANDS, one of which must be a floating point register. */
|
||
|
||
char *
|
||
output_fp_move_quad (operands)
|
||
rtx *operands;
|
||
{
|
||
register rtx op0 = operands[0];
|
||
register rtx op1 = operands[1];
|
||
|
||
if (FP_REG_P (op0))
|
||
{
|
||
if (FP_REG_P (op1))
|
||
{
|
||
if (TARGET_V9 && TARGET_HARD_QUAD)
|
||
return "fmovq %1,%0";
|
||
else if (TARGET_V9)
|
||
return "fmovd %1,%0\n\tfmovd %S1,%S0";
|
||
else
|
||
return "fmovs %1,%0\n\tfmovs %R1,%R0\n\tfmovs %S1,%S0\n\tfmovs %T1,%T0";
|
||
}
|
||
else if (GET_CODE (op1) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_quad (operands);
|
||
}
|
||
else if (FP_REG_P (op1))
|
||
{
|
||
if (GET_CODE (op0) == REG)
|
||
abort ();
|
||
else
|
||
return output_move_quad (operands);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return a REG that occurs in ADDR with coefficient 1.
|
||
ADDR can be effectively incremented by incrementing REG. */
|
||
|
||
static rtx
|
||
find_addr_reg (addr)
|
||
rtx addr;
|
||
{
|
||
while (GET_CODE (addr) == PLUS)
|
||
{
|
||
/* We absolutely can not fudge the frame pointer here, because the
|
||
frame pointer must always be 8 byte aligned. It also confuses
|
||
debuggers. */
|
||
if (GET_CODE (XEXP (addr, 0)) == REG
|
||
&& REGNO (XEXP (addr, 0)) != FRAME_POINTER_REGNUM)
|
||
addr = XEXP (addr, 0);
|
||
else if (GET_CODE (XEXP (addr, 1)) == REG
|
||
&& REGNO (XEXP (addr, 1)) != FRAME_POINTER_REGNUM)
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 0)))
|
||
addr = XEXP (addr, 1);
|
||
else if (CONSTANT_P (XEXP (addr, 1)))
|
||
addr = XEXP (addr, 0);
|
||
else
|
||
abort ();
|
||
}
|
||
if (GET_CODE (addr) == REG)
|
||
return addr;
|
||
abort ();
|
||
}
|
||
|
||
#if 0 /* not currently used */
|
||
|
||
void
|
||
output_sized_memop (opname, mode, signedp)
|
||
char *opname;
|
||
enum machine_mode mode;
|
||
int signedp;
|
||
{
|
||
static char *ld_size_suffix_u[] = { "ub", "uh", "", "?", "d" };
|
||
static char *ld_size_suffix_s[] = { "sb", "sh", "", "?", "d" };
|
||
static char *st_size_suffix[] = { "b", "h", "", "?", "d" };
|
||
char **opnametab, *modename;
|
||
|
||
if (opname[0] == 'l')
|
||
if (signedp)
|
||
opnametab = ld_size_suffix_s;
|
||
else
|
||
opnametab = ld_size_suffix_u;
|
||
else
|
||
opnametab = st_size_suffix;
|
||
modename = opnametab[GET_MODE_SIZE (mode) >> 1];
|
||
|
||
fprintf (asm_out_file, "\t%s%s", opname, modename);
|
||
}
|
||
|
||
void
|
||
output_move_with_extension (operands)
|
||
rtx *operands;
|
||
{
|
||
if (GET_MODE (operands[2]) == HImode)
|
||
output_asm_insn ("sll %2,0x10,%0", operands);
|
||
else if (GET_MODE (operands[2]) == QImode)
|
||
output_asm_insn ("sll %2,0x18,%0", operands);
|
||
else
|
||
abort ();
|
||
}
|
||
#endif /* not currently used */
|
||
|
||
#if 0
|
||
/* ??? These are only used by the movstrsi pattern, but we get better code
|
||
in general without that, because emit_block_move can do just as good a
|
||
job as this function does when alignment and size are known. When they
|
||
aren't known, a call to strcpy may be faster anyways, because it is
|
||
likely to be carefully crafted assembly language code, and below we just
|
||
do a byte-wise copy.
|
||
|
||
Also, emit_block_move expands into multiple read/write RTL insns, which
|
||
can then be optimized, whereas our movstrsi pattern can not be optimized
|
||
at all. */
|
||
|
||
/* Load the address specified by OPERANDS[3] into the register
|
||
specified by OPERANDS[0].
|
||
|
||
OPERANDS[3] may be the result of a sum, hence it could either be:
|
||
|
||
(1) CONST
|
||
(2) REG
|
||
(2) REG + CONST_INT
|
||
(3) REG + REG + CONST_INT
|
||
(4) REG + REG (special case of 3).
|
||
|
||
Note that (3) is not a legitimate address.
|
||
All cases are handled here. */
|
||
|
||
void
|
||
output_load_address (operands)
|
||
rtx *operands;
|
||
{
|
||
rtx base, offset;
|
||
|
||
if (CONSTANT_P (operands[3]))
|
||
{
|
||
output_asm_insn ("set %3,%0", operands);
|
||
return;
|
||
}
|
||
|
||
if (REG_P (operands[3]))
|
||
{
|
||
if (REGNO (operands[0]) != REGNO (operands[3]))
|
||
output_asm_insn ("mov %3,%0", operands);
|
||
return;
|
||
}
|
||
|
||
if (GET_CODE (operands[3]) != PLUS)
|
||
abort ();
|
||
|
||
base = XEXP (operands[3], 0);
|
||
offset = XEXP (operands[3], 1);
|
||
|
||
if (GET_CODE (base) == CONST_INT)
|
||
{
|
||
rtx tmp = base;
|
||
base = offset;
|
||
offset = tmp;
|
||
}
|
||
|
||
if (GET_CODE (offset) != CONST_INT)
|
||
{
|
||
/* Operand is (PLUS (REG) (REG)). */
|
||
base = operands[3];
|
||
offset = const0_rtx;
|
||
}
|
||
|
||
if (REG_P (base))
|
||
{
|
||
operands[6] = base;
|
||
operands[7] = offset;
|
||
if (SMALL_INT (offset))
|
||
output_asm_insn ("add %6,%7,%0", operands);
|
||
else
|
||
output_asm_insn ("set %7,%0\n\tadd %0,%6,%0", operands);
|
||
}
|
||
else if (GET_CODE (base) == PLUS)
|
||
{
|
||
operands[6] = XEXP (base, 0);
|
||
operands[7] = XEXP (base, 1);
|
||
operands[8] = offset;
|
||
|
||
if (SMALL_INT (offset))
|
||
output_asm_insn ("add %6,%7,%0\n\tadd %0,%8,%0", operands);
|
||
else
|
||
output_asm_insn ("set %8,%0\n\tadd %0,%6,%0\n\tadd %0,%7,%0", operands);
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Output code to place a size count SIZE in register REG.
|
||
ALIGN is the size of the unit of transfer.
|
||
|
||
Because block moves are pipelined, we don't include the
|
||
first element in the transfer of SIZE to REG. */
|
||
|
||
static void
|
||
output_size_for_block_move (size, reg, align)
|
||
rtx size, reg;
|
||
rtx align;
|
||
{
|
||
rtx xoperands[3];
|
||
|
||
xoperands[0] = reg;
|
||
xoperands[1] = size;
|
||
xoperands[2] = align;
|
||
if (GET_CODE (size) == REG)
|
||
output_asm_insn ("sub %1,%2,%0", xoperands);
|
||
else
|
||
{
|
||
xoperands[1]
|
||
= gen_rtx (CONST_INT, VOIDmode, INTVAL (size) - INTVAL (align));
|
||
output_asm_insn ("set %1,%0", xoperands);
|
||
}
|
||
}
|
||
|
||
/* Emit code to perform a block move.
|
||
|
||
OPERANDS[0] is the destination.
|
||
OPERANDS[1] is the source.
|
||
OPERANDS[2] is the size.
|
||
OPERANDS[3] is the alignment safe to use.
|
||
OPERANDS[4] is a register we can safely clobber as a temp. */
|
||
|
||
char *
|
||
output_block_move (operands)
|
||
rtx *operands;
|
||
{
|
||
/* A vector for our computed operands. Note that load_output_address
|
||
makes use of (and can clobber) up to the 8th element of this vector. */
|
||
rtx xoperands[10];
|
||
rtx zoperands[10];
|
||
static int movstrsi_label = 0;
|
||
int i;
|
||
rtx temp1 = operands[4];
|
||
rtx sizertx = operands[2];
|
||
rtx alignrtx = operands[3];
|
||
int align = INTVAL (alignrtx);
|
||
char label3[30], label5[30];
|
||
|
||
xoperands[0] = operands[0];
|
||
xoperands[1] = operands[1];
|
||
xoperands[2] = temp1;
|
||
|
||
/* We can't move more than this many bytes at a time because we have only
|
||
one register, %g1, to move them through. */
|
||
if (align > UNITS_PER_WORD)
|
||
{
|
||
align = UNITS_PER_WORD;
|
||
alignrtx = gen_rtx (CONST_INT, VOIDmode, UNITS_PER_WORD);
|
||
}
|
||
|
||
/* We consider 8 ld/st pairs, for a total of 16 inline insns to be
|
||
reasonable here. (Actually will emit a maximum of 18 inline insns for
|
||
the case of size == 31 and align == 4). */
|
||
|
||
if (GET_CODE (sizertx) == CONST_INT && (INTVAL (sizertx) / align) <= 8
|
||
&& memory_address_p (QImode, plus_constant_for_output (xoperands[0],
|
||
INTVAL (sizertx)))
|
||
&& memory_address_p (QImode, plus_constant_for_output (xoperands[1],
|
||
INTVAL (sizertx))))
|
||
{
|
||
int size = INTVAL (sizertx);
|
||
int offset = 0;
|
||
|
||
/* We will store different integers into this particular RTX. */
|
||
xoperands[2] = rtx_alloc (CONST_INT);
|
||
PUT_MODE (xoperands[2], VOIDmode);
|
||
|
||
/* This case is currently not handled. Abort instead of generating
|
||
bad code. */
|
||
if (align > UNITS_PER_WORD)
|
||
abort ();
|
||
|
||
if (TARGET_ARCH64 && align >= 8)
|
||
{
|
||
for (i = (size >> 3) - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = (i << 3) + offset;
|
||
output_asm_insn ("ldx [%a1+%2],%%g1\n\tstx %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
offset += (size & ~0x7);
|
||
size = size & 0x7;
|
||
if (size == 0)
|
||
return "";
|
||
}
|
||
|
||
if (align >= 4)
|
||
{
|
||
for (i = (size >> 2) - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = (i << 2) + offset;
|
||
output_asm_insn ("ld [%a1+%2],%%g1\n\tst %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
offset += (size & ~0x3);
|
||
size = size & 0x3;
|
||
if (size == 0)
|
||
return "";
|
||
}
|
||
|
||
if (align >= 2)
|
||
{
|
||
for (i = (size >> 1) - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = (i << 1) + offset;
|
||
output_asm_insn ("lduh [%a1+%2],%%g1\n\tsth %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
offset += (size & ~0x1);
|
||
size = size & 0x1;
|
||
if (size == 0)
|
||
return "";
|
||
}
|
||
|
||
if (align >= 1)
|
||
{
|
||
for (i = size - 1; i >= 0; i--)
|
||
{
|
||
INTVAL (xoperands[2]) = i + offset;
|
||
output_asm_insn ("ldub [%a1+%2],%%g1\n\tstb %%g1,[%a0+%2]",
|
||
xoperands);
|
||
}
|
||
return "";
|
||
}
|
||
|
||
/* We should never reach here. */
|
||
abort ();
|
||
}
|
||
|
||
/* If the size isn't known to be a multiple of the alignment,
|
||
we have to do it in smaller pieces. If we could determine that
|
||
the size was a multiple of 2 (or whatever), we could be smarter
|
||
about this. */
|
||
if (GET_CODE (sizertx) != CONST_INT)
|
||
align = 1;
|
||
else
|
||
{
|
||
int size = INTVAL (sizertx);
|
||
while (size % align)
|
||
align >>= 1;
|
||
}
|
||
|
||
if (align != INTVAL (alignrtx))
|
||
alignrtx = gen_rtx (CONST_INT, VOIDmode, align);
|
||
|
||
xoperands[3] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
|
||
xoperands[4] = gen_rtx (CONST_INT, VOIDmode, align);
|
||
xoperands[5] = gen_rtx (CONST_INT, VOIDmode, movstrsi_label++);
|
||
|
||
ASM_GENERATE_INTERNAL_LABEL (label3, "Lm", INTVAL (xoperands[3]));
|
||
ASM_GENERATE_INTERNAL_LABEL (label5, "Lm", INTVAL (xoperands[5]));
|
||
|
||
/* This is the size of the transfer. Emit code to decrement the size
|
||
value by ALIGN, and store the result in the temp1 register. */
|
||
output_size_for_block_move (sizertx, temp1, alignrtx);
|
||
|
||
/* Must handle the case when the size is zero or negative, so the first thing
|
||
we do is compare the size against zero, and only copy bytes if it is
|
||
zero or greater. Note that we have already subtracted off the alignment
|
||
once, so we must copy 1 alignment worth of bytes if the size is zero
|
||
here.
|
||
|
||
The SUN assembler complains about labels in branch delay slots, so we
|
||
do this before outputting the load address, so that there will always
|
||
be a harmless insn between the branch here and the next label emitted
|
||
below. */
|
||
|
||
{
|
||
char pattern[100];
|
||
|
||
sprintf (pattern, "cmp %%2,0\n\tbl %s", &label5[1]);
|
||
output_asm_insn (pattern, xoperands);
|
||
}
|
||
|
||
zoperands[0] = operands[0];
|
||
zoperands[3] = plus_constant_for_output (operands[0], align);
|
||
output_load_address (zoperands);
|
||
|
||
/* ??? This might be much faster if the loops below were preconditioned
|
||
and unrolled.
|
||
|
||
That is, at run time, copy enough bytes one at a time to ensure that the
|
||
target and source addresses are aligned to the the largest possible
|
||
alignment. Then use a preconditioned unrolled loop to copy say 16
|
||
bytes at a time. Then copy bytes one at a time until finish the rest. */
|
||
|
||
/* Output the first label separately, so that it is spaced properly. */
|
||
|
||
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "Lm", INTVAL (xoperands[3]));
|
||
|
||
{
|
||
char pattern[200];
|
||
register char *ld_suffix = ((align == 1) ? "ub" : (align == 2) ? "uh"
|
||
: (align == 8 && TARGET_ARCH64) ? "x" : "");
|
||
register char *st_suffix = ((align == 1) ? "b" : (align == 2) ? "h"
|
||
: (align == 8 && TARGET_ARCH64) ? "x" : "");
|
||
|
||
sprintf (pattern, "ld%s [%%1+%%2],%%%%g1\n\tsubcc %%2,%%4,%%2\n\tbge %s\n\tst%s %%%%g1,[%%0+%%2]\n%s:", ld_suffix, &label3[1], st_suffix, &label5[1]);
|
||
output_asm_insn (pattern, xoperands);
|
||
}
|
||
|
||
return "";
|
||
}
|
||
#endif
|
||
|
||
/* Output reasonable peephole for set-on-condition-code insns.
|
||
Note that these insns assume a particular way of defining
|
||
labels. Therefore, *both* sparc.h and this function must
|
||
be changed if a new syntax is needed. */
|
||
|
||
char *
|
||
output_scc_insn (operands, insn)
|
||
rtx operands[];
|
||
rtx insn;
|
||
{
|
||
static char string[100];
|
||
rtx label = 0, next = insn;
|
||
int need_label = 0;
|
||
|
||
/* Try doing a jump optimization which jump.c can't do for us
|
||
because we did not expose that setcc works by using branches.
|
||
|
||
If this scc insn is followed by an unconditional branch, then have
|
||
the jump insn emitted here jump to that location, instead of to
|
||
the end of the scc sequence as usual. */
|
||
|
||
do
|
||
{
|
||
if (GET_CODE (next) == CODE_LABEL)
|
||
label = next;
|
||
next = NEXT_INSN (next);
|
||
if (next == 0)
|
||
break;
|
||
}
|
||
while (GET_CODE (next) == NOTE || GET_CODE (next) == CODE_LABEL);
|
||
|
||
/* If we are in a sequence, and the following insn is a sequence also,
|
||
then just following the current insn's next field will take us to the
|
||
first insn of the next sequence, which is the wrong place. We don't
|
||
want to optimize with a branch that has had its delay slot filled.
|
||
Avoid this by verifying that NEXT_INSN (PREV_INSN (next)) == next
|
||
which fails only if NEXT is such a branch. */
|
||
|
||
if (next && GET_CODE (next) == JUMP_INSN && simplejump_p (next)
|
||
&& (! final_sequence || NEXT_INSN (PREV_INSN (next)) == next))
|
||
label = JUMP_LABEL (next);
|
||
/* If not optimizing, jump label fields are not set. To be safe, always
|
||
check here to whether label is still zero. */
|
||
if (label == 0)
|
||
{
|
||
label = gen_label_rtx ();
|
||
need_label = 1;
|
||
}
|
||
|
||
LABEL_NUSES (label) += 1;
|
||
|
||
/* operands[3] is an unused slot. */
|
||
operands[3] = label;
|
||
|
||
/* If we are in a delay slot, assume it is the delay slot of an fpcc
|
||
insn since our type isn't allowed anywhere else. */
|
||
|
||
/* ??? Fpcc instructions no longer have delay slots, so this code is
|
||
probably obsolete. */
|
||
|
||
/* The fastest way to emit code for this is an annulled branch followed
|
||
by two move insns. This will take two cycles if the branch is taken,
|
||
and three cycles if the branch is not taken.
|
||
|
||
However, if we are in the delay slot of another branch, this won't work,
|
||
because we can't put a branch in the delay slot of another branch.
|
||
The above sequence would effectively take 3 or 4 cycles respectively
|
||
since a no op would have be inserted between the two branches.
|
||
In this case, we want to emit a move, annulled branch, and then the
|
||
second move. This sequence always takes 3 cycles, and hence is faster
|
||
when we are in a branch delay slot. */
|
||
|
||
if (final_sequence)
|
||
{
|
||
strcpy (string, "mov 0,%0\n\t");
|
||
strcat (string, output_cbranch (operands[2], 3, 0, 1, 0));
|
||
strcat (string, "\n\tmov 1,%0");
|
||
}
|
||
else
|
||
{
|
||
strcpy (string, output_cbranch (operands[2], 3, 0, 1, 0));
|
||
strcat (string, "\n\tmov 1,%0\n\tmov 0,%0");
|
||
}
|
||
|
||
if (need_label)
|
||
strcat (string, "\n%l3:");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Vectors to keep interesting information about registers where it can easily
|
||
be got. We use to use the actual mode value as the bit number, but there
|
||
are more than 32 modes now. Instead we use two tables: one indexed by
|
||
hard register number, and one indexed by mode. */
|
||
|
||
/* The purpose of sparc_mode_class is to shrink the range of modes so that
|
||
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
|
||
mapped into one sparc_mode_class mode. */
|
||
|
||
enum sparc_mode_class {
|
||
S_MODE, D_MODE, T_MODE, O_MODE,
|
||
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
|
||
CC_MODE, CCFP_MODE
|
||
};
|
||
|
||
/* Modes for single-word and smaller quantities. */
|
||
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
|
||
|
||
/* Modes for double-word and smaller quantities. */
|
||
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
|
||
|
||
/* Modes for quad-word and smaller quantities. */
|
||
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
|
||
|
||
/* Modes for single-float quantities. We must allow any single word or
|
||
smaller quantity. This is because the fix/float conversion instructions
|
||
take integer inputs/outputs from the float registers. */
|
||
#define SF_MODES (S_MODES)
|
||
|
||
/* Modes for double-float and smaller quantities. */
|
||
#define DF_MODES (S_MODES | D_MODES)
|
||
|
||
/* ??? Sparc64 fp regs cannot hold DImode values. */
|
||
#define DF_MODES64 (SF_MODES | DF_MODE /* | D_MODE*/)
|
||
|
||
/* Modes for double-float only quantities. */
|
||
/* ??? Sparc64 fp regs cannot hold DImode values.
|
||
See fix_truncsfdi2. */
|
||
#define DF_ONLY_MODES ((1 << (int) DF_MODE) /*| (1 << (int) D_MODE)*/)
|
||
|
||
/* Modes for double-float and larger quantities. */
|
||
#define DF_UP_MODES (DF_ONLY_MODES | TF_ONLY_MODES)
|
||
|
||
/* Modes for quad-float only quantities. */
|
||
#define TF_ONLY_MODES (1 << (int) TF_MODE)
|
||
|
||
/* Modes for quad-float and smaller quantities. */
|
||
#define TF_MODES (DF_MODES | TF_ONLY_MODES)
|
||
|
||
/* ??? Sparc64 fp regs cannot hold DImode values.
|
||
See fix_truncsfdi2. */
|
||
#define TF_MODES64 (DF_MODES64 | TF_ONLY_MODES)
|
||
|
||
/* Modes for condition codes. */
|
||
#define CC_MODES (1 << (int) CC_MODE)
|
||
#define CCFP_MODES (1 << (int) CCFP_MODE)
|
||
|
||
/* Value is 1 if register/mode pair is acceptable on sparc.
|
||
The funny mixture of D and T modes is because integer operations
|
||
do not specially operate on tetra quantities, so non-quad-aligned
|
||
registers can hold quadword quantities (except %o4 and %i4 because
|
||
they cross fixed registers). */
|
||
|
||
/* This points to either the 32 bit or the 64 bit version. */
|
||
int *hard_regno_mode_classes;
|
||
|
||
static int hard_32bit_mode_classes[] = {
|
||
S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
|
||
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
|
||
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
TF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
|
||
|
||
/* FP regs f32 to f63. Only the even numbered registers actually exist,
|
||
and none can hold SFmode/SImode values. */
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
|
||
/* %fcc[0123] */
|
||
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
|
||
|
||
/* %icc */
|
||
CC_MODES
|
||
};
|
||
|
||
static int hard_64bit_mode_classes[] = {
|
||
D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
|
||
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
TF_MODES64, SF_MODES, DF_MODES64, SF_MODES, TF_MODES64, SF_MODES, DF_MODES64, SF_MODES,
|
||
|
||
/* FP regs f32 to f63. Only the even numbered registers actually exist,
|
||
and none can hold SFmode/SImode values. */
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
DF_UP_MODES, 0, DF_ONLY_MODES, 0, DF_UP_MODES, 0, DF_ONLY_MODES, 0,
|
||
|
||
/* %fcc[0123] */
|
||
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
|
||
|
||
/* %icc */
|
||
CC_MODES
|
||
};
|
||
|
||
int sparc_mode_class [NUM_MACHINE_MODES];
|
||
|
||
enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
|
||
|
||
static void
|
||
sparc_init_modes ()
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
{
|
||
switch (GET_MODE_CLASS (i))
|
||
{
|
||
case MODE_INT:
|
||
case MODE_PARTIAL_INT:
|
||
case MODE_COMPLEX_INT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
sparc_mode_class[i] = 1 << (int) S_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
sparc_mode_class[i] = 1 << (int) D_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
sparc_mode_class[i] = 1 << (int) T_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
sparc_mode_class[i] = 1 << (int) O_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
case MODE_FLOAT:
|
||
case MODE_COMPLEX_FLOAT:
|
||
if (GET_MODE_SIZE (i) <= 4)
|
||
sparc_mode_class[i] = 1 << (int) SF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 8)
|
||
sparc_mode_class[i] = 1 << (int) DF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 16)
|
||
sparc_mode_class[i] = 1 << (int) TF_MODE;
|
||
else if (GET_MODE_SIZE (i) == 32)
|
||
sparc_mode_class[i] = 1 << (int) OF_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
case MODE_CC:
|
||
default:
|
||
/* mode_class hasn't been initialized yet for EXTRA_CC_MODES, so
|
||
we must explicitly check for them here. */
|
||
if (i == (int) CCFPmode || i == (int) CCFPEmode)
|
||
sparc_mode_class[i] = 1 << (int) CCFP_MODE;
|
||
else if (i == (int) CCmode || i == (int) CC_NOOVmode
|
||
|| i == (int) CCXmode || i == (int) CCX_NOOVmode)
|
||
sparc_mode_class[i] = 1 << (int) CC_MODE;
|
||
else
|
||
sparc_mode_class[i] = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (TARGET_ARCH64)
|
||
hard_regno_mode_classes = hard_64bit_mode_classes;
|
||
else
|
||
hard_regno_mode_classes = hard_32bit_mode_classes;
|
||
|
||
/* Initialize the array used by REGNO_REG_CLASS. */
|
||
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
||
{
|
||
if (i < 32)
|
||
sparc_regno_reg_class[i] = GENERAL_REGS;
|
||
else if (i < 64)
|
||
sparc_regno_reg_class[i] = FP_REGS;
|
||
else if (i < 96)
|
||
sparc_regno_reg_class[i] = EXTRA_FP_REGS;
|
||
else if (i < 100)
|
||
sparc_regno_reg_class[i] = FPCC_REGS;
|
||
else
|
||
sparc_regno_reg_class[i] = NO_REGS;
|
||
}
|
||
}
|
||
|
||
/* Save non call used registers from LOW to HIGH at BASE+OFFSET.
|
||
N_REGS is the number of 4-byte regs saved thus far. This applies even to
|
||
v9 int regs as it simplifies the code. */
|
||
|
||
static int
|
||
save_regs (file, low, high, base, offset, n_regs, real_offset)
|
||
FILE *file;
|
||
int low, high;
|
||
char *base;
|
||
int offset;
|
||
int n_regs;
|
||
int real_offset;
|
||
{
|
||
int i;
|
||
|
||
if (TARGET_ARCH64 && high <= 32)
|
||
{
|
||
for (i = low; i < high; i++)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
{
|
||
fprintf (file, "\tstx %s,[%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
{
|
||
fprintf (file, "\tstd %s,[%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
dwarf2out_reg_save (l, i, real_offset + 4 * n_regs);
|
||
dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4);
|
||
}
|
||
n_regs += 2;
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[i], base, offset + 4 * n_regs);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
|
||
n_regs += 2;
|
||
}
|
||
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[i+1], base, offset + 4 * n_regs + 4);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4);
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
}
|
||
return n_regs;
|
||
}
|
||
|
||
/* Restore non call used registers from LOW to HIGH at BASE+OFFSET.
|
||
|
||
N_REGS is the number of 4-byte regs saved thus far. This applies even to
|
||
v9 int regs as it simplifies the code. */
|
||
|
||
static int
|
||
restore_regs (file, low, high, base, offset, n_regs)
|
||
FILE *file;
|
||
int low, high;
|
||
char *base;
|
||
int offset;
|
||
int n_regs;
|
||
{
|
||
int i;
|
||
|
||
if (TARGET_ARCH64 && high <= 32)
|
||
{
|
||
for (i = low; i < high; i++)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
fprintf (file, "\tldx [%s+%d], %s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (i = low; i < high; i += 2)
|
||
{
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tldd [%s+%d], %s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
else
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
base, offset + 4 * n_regs, reg_names[i]),
|
||
n_regs += 2;
|
||
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
base, offset + 4 * n_regs + 4, reg_names[i+1]),
|
||
n_regs += 2;
|
||
}
|
||
}
|
||
return n_regs;
|
||
}
|
||
|
||
/* Static variables we want to share between prologue and epilogue. */
|
||
|
||
/* Number of live general or floating point registers needed to be saved
|
||
(as 4-byte quantities). This is only done if TARGET_EPILOGUE. */
|
||
static int num_gfregs;
|
||
|
||
/* Compute the frame size required by the function. This function is called
|
||
during the reload pass and also by output_function_prologue(). */
|
||
|
||
int
|
||
compute_frame_size (size, leaf_function)
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
int n_regs = 0, i;
|
||
int outgoing_args_size = (current_function_outgoing_args_size
|
||
+ REG_PARM_STACK_SPACE (current_function_decl));
|
||
|
||
if (TARGET_EPILOGUE)
|
||
{
|
||
/* N_REGS is the number of 4-byte regs saved thus far. This applies
|
||
even to v9 int regs to be consistent with save_regs/restore_regs. */
|
||
|
||
if (TARGET_ARCH64)
|
||
{
|
||
for (i = 0; i < 8; i++)
|
||
if (regs_ever_live[i] && ! call_used_regs[i])
|
||
n_regs += 2;
|
||
}
|
||
else
|
||
{
|
||
for (i = 0; i < 8; i += 2)
|
||
if ((regs_ever_live[i] && ! call_used_regs[i])
|
||
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
|
||
n_regs += 2;
|
||
}
|
||
|
||
for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
|
||
if ((regs_ever_live[i] && ! call_used_regs[i])
|
||
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
|
||
n_regs += 2;
|
||
}
|
||
|
||
/* Set up values for use in `function_epilogue'. */
|
||
num_gfregs = n_regs;
|
||
|
||
if (leaf_function && n_regs == 0
|
||
&& size == 0 && current_function_outgoing_args_size == 0)
|
||
{
|
||
actual_fsize = apparent_fsize = 0;
|
||
}
|
||
else
|
||
{
|
||
/* We subtract STARTING_FRAME_OFFSET, remember it's negative.
|
||
The stack bias (if any) is taken out to undo its effects. */
|
||
apparent_fsize = (size - STARTING_FRAME_OFFSET + SPARC_STACK_BIAS + 7) & -8;
|
||
apparent_fsize += n_regs * 4;
|
||
actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8);
|
||
}
|
||
|
||
/* Make sure nothing can clobber our register windows.
|
||
If a SAVE must be done, or there is a stack-local variable,
|
||
the register window area must be allocated.
|
||
??? For v8 we apparently need an additional 8 bytes of reserved space. */
|
||
if (leaf_function == 0 || size > 0)
|
||
actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8);
|
||
|
||
return SPARC_STACK_ALIGN (actual_fsize);
|
||
}
|
||
|
||
/* Build a (32 bit) big number in a register. */
|
||
/* ??? We may be able to use the set macro here too. */
|
||
|
||
static void
|
||
build_big_number (file, num, reg)
|
||
FILE *file;
|
||
int num;
|
||
char *reg;
|
||
{
|
||
if (num >= 0 || ! TARGET_ARCH64)
|
||
{
|
||
fprintf (file, "\tsethi %%hi(%d),%s\n", num, reg);
|
||
if ((num & 0x3ff) != 0)
|
||
fprintf (file, "\tor %s,%%lo(%d),%s\n", reg, num, reg);
|
||
}
|
||
else /* num < 0 && TARGET_ARCH64 */
|
||
{
|
||
/* Sethi does not sign extend, so we must use a little trickery
|
||
to use it for negative numbers. Invert the constant before
|
||
loading it in, then use xor immediate to invert the loaded bits
|
||
(along with the upper 32 bits) to the desired constant. This
|
||
works because the sethi and immediate fields overlap. */
|
||
int asize = num;
|
||
int inv = ~asize;
|
||
int low = -0x400 + (asize & 0x3FF);
|
||
|
||
fprintf (file, "\tsethi %%hi(%d),%s\n\txor %s,%d,%s\n",
|
||
inv, reg, reg, low, reg);
|
||
}
|
||
}
|
||
|
||
/* Output code for the function prologue. */
|
||
|
||
void
|
||
output_function_prologue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
/* Need to use actual_fsize, since we are also allocating
|
||
space for our callee (and our own register save area). */
|
||
actual_fsize = compute_frame_size (size, leaf_function);
|
||
|
||
if (leaf_function)
|
||
{
|
||
frame_base_name = "%sp";
|
||
frame_base_offset = actual_fsize + SPARC_STACK_BIAS;
|
||
}
|
||
else
|
||
{
|
||
frame_base_name = "%fp";
|
||
frame_base_offset = SPARC_STACK_BIAS;
|
||
}
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
|
||
|
||
if (actual_fsize == 0)
|
||
/* do nothing. */ ;
|
||
else if (! leaf_function && ! TARGET_BROKEN_SAVERESTORE)
|
||
{
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tsave %%sp,-%d,%%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tsave %%sp,-4096,%%sp\n");
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tsave %%sp,%%g1,%%sp\n");
|
||
}
|
||
}
|
||
else if (! leaf_function && TARGET_BROKEN_SAVERESTORE)
|
||
{
|
||
/* We assume the environment will properly handle or otherwise avoid
|
||
trouble associated with an interrupt occurring after the `save' or
|
||
trap occurring during it. */
|
||
fprintf (file, "\tsave\n");
|
||
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tadd %%fp,-4096,%%sp\n");
|
||
fprintf (file, "\tadd %%fp,-%d,%%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tadd %%fp,%%g1,%%sp\n");
|
||
}
|
||
}
|
||
else /* leaf function */
|
||
{
|
||
if (actual_fsize <= 4096)
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
fprintf (file, "\tadd %%sp,-4096,%%sp\n");
|
||
fprintf (file, "\tadd %%sp,-%d,%%sp\n", actual_fsize - 4096);
|
||
}
|
||
else
|
||
{
|
||
build_big_number (file, -actual_fsize, "%g1");
|
||
fprintf (file, "\tadd %%sp,%%g1,%%sp\n");
|
||
}
|
||
}
|
||
|
||
if (dwarf2out_do_frame () && actual_fsize)
|
||
{
|
||
char *label = dwarf2out_cfi_label ();
|
||
|
||
/* The canonical frame address refers to the top of the frame. */
|
||
dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM
|
||
: FRAME_POINTER_REGNUM),
|
||
frame_base_offset);
|
||
|
||
if (! leaf_function)
|
||
{
|
||
/* Note the register window save. This tells the unwinder that
|
||
it needs to restore the window registers from the previous
|
||
frame's window save area at 0(cfa). */
|
||
dwarf2out_window_save (label);
|
||
|
||
/* The return address (-8) is now in %i7. */
|
||
dwarf2out_return_reg (label, 31);
|
||
}
|
||
}
|
||
|
||
/* If doing anything with PIC, do it now. */
|
||
if (! flag_pic)
|
||
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
|
||
|
||
/* Call saved registers are saved just above the outgoing argument area. */
|
||
if (num_gfregs)
|
||
{
|
||
int offset, real_offset, n_regs;
|
||
char *base;
|
||
|
||
real_offset = -apparent_fsize;
|
||
offset = -apparent_fsize + frame_base_offset;
|
||
if (offset < -4096 || offset + num_gfregs * 4 > 4096)
|
||
{
|
||
/* ??? This might be optimized a little as %g1 might already have a
|
||
value close enough that a single add insn will do. */
|
||
/* ??? Although, all of this is probably only a temporary fix
|
||
because if %g1 can hold a function result, then
|
||
output_function_epilogue will lose (the result will get
|
||
clobbered). */
|
||
build_big_number (file, offset, "%g1");
|
||
fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
|
||
base = "%g1";
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
base = frame_base_name;
|
||
}
|
||
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
/* ??? Originally saved regs 0-15 here. */
|
||
n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
|
||
else if (leaf_function)
|
||
/* ??? Originally saved regs 0-31 here. */
|
||
n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
|
||
if (TARGET_EPILOGUE)
|
||
save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs,
|
||
real_offset);
|
||
}
|
||
|
||
leaf_label = 0;
|
||
if (leaf_function && actual_fsize != 0)
|
||
{
|
||
/* warning ("leaf procedure with frame size %d", actual_fsize); */
|
||
if (! TARGET_EPILOGUE)
|
||
leaf_label = gen_label_rtx ();
|
||
}
|
||
}
|
||
|
||
/* Output code for the function epilogue. */
|
||
|
||
void
|
||
output_function_epilogue (file, size, leaf_function)
|
||
FILE *file;
|
||
int size;
|
||
int leaf_function;
|
||
{
|
||
char *ret;
|
||
|
||
if (leaf_label)
|
||
{
|
||
emit_label_after (leaf_label, get_last_insn ());
|
||
final_scan_insn (get_last_insn (), file, 0, 0, 1);
|
||
}
|
||
|
||
#ifdef FUNCTION_BLOCK_PROFILER_EXIT
|
||
else if (profile_block_flag == 2)
|
||
{
|
||
FUNCTION_BLOCK_PROFILER_EXIT(file);
|
||
}
|
||
#endif
|
||
|
||
/* Restore any call saved registers. */
|
||
if (num_gfregs)
|
||
{
|
||
int offset, n_regs;
|
||
char *base;
|
||
|
||
offset = -apparent_fsize + frame_base_offset;
|
||
if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/)
|
||
{
|
||
build_big_number (file, offset, "%g1");
|
||
fprintf (file, "\tadd %s,%%g1,%%g1\n", frame_base_name);
|
||
base = "%g1";
|
||
offset = 0;
|
||
}
|
||
else
|
||
{
|
||
base = frame_base_name;
|
||
}
|
||
|
||
if (TARGET_EPILOGUE && ! leaf_function)
|
||
/* ??? Originally saved regs 0-15 here. */
|
||
n_regs = restore_regs (file, 0, 8, base, offset, 0);
|
||
else if (leaf_function)
|
||
/* ??? Originally saved regs 0-31 here. */
|
||
n_regs = restore_regs (file, 0, 8, base, offset, 0);
|
||
if (TARGET_EPILOGUE)
|
||
restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
|
||
}
|
||
|
||
/* Work out how to skip the caller's unimp instruction if required. */
|
||
if (leaf_function)
|
||
ret = (SKIP_CALLERS_UNIMP_P ? "jmp %o7+12" : "retl");
|
||
else
|
||
ret = (SKIP_CALLERS_UNIMP_P ? "jmp %i7+12" : "ret");
|
||
|
||
if (TARGET_EPILOGUE || leaf_label)
|
||
{
|
||
int old_target_epilogue = TARGET_EPILOGUE;
|
||
target_flags &= ~old_target_epilogue;
|
||
|
||
if (! leaf_function)
|
||
{
|
||
/* If we wound up with things in our delay slot, flush them here. */
|
||
if (current_function_epilogue_delay_list)
|
||
{
|
||
rtx insn = emit_jump_insn_after (gen_rtx (RETURN, VOIDmode),
|
||
get_last_insn ());
|
||
PATTERN (insn) = gen_rtx (PARALLEL, VOIDmode,
|
||
gen_rtvec (2,
|
||
PATTERN (XEXP (current_function_epilogue_delay_list, 0)),
|
||
PATTERN (insn)));
|
||
final_scan_insn (insn, file, 1, 0, 1);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\n\trestore\n", ret);
|
||
}
|
||
/* All of the following cases are for leaf functions. */
|
||
else if (current_function_epilogue_delay_list)
|
||
{
|
||
/* eligible_for_epilogue_delay_slot ensures that if this is a
|
||
leaf function, then we will only have insn in the delay slot
|
||
if the frame size is zero, thus no adjust for the stack is
|
||
needed here. */
|
||
if (actual_fsize != 0)
|
||
abort ();
|
||
fprintf (file, "\t%s\n", ret);
|
||
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
|
||
file, 1, 0, 1);
|
||
}
|
||
/* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
|
||
avoid generating confusing assembly language output. */
|
||
else if (actual_fsize == 0)
|
||
fprintf (file, "\t%s\n\tnop\n", ret);
|
||
else if (actual_fsize <= 4096)
|
||
fprintf (file, "\t%s\n\tsub %%sp,-%d,%%sp\n", ret, actual_fsize);
|
||
else if (actual_fsize <= 8192)
|
||
fprintf (file, "\tsub %%sp,-4096,%%sp\n\t%s\n\tsub %%sp,-%d,%%sp\n",
|
||
ret, actual_fsize - 4096);
|
||
else if ((actual_fsize & 0x3ff) == 0)
|
||
fprintf (file, "\tsethi %%hi(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
|
||
actual_fsize, ret);
|
||
else
|
||
fprintf (file, "\tsethi %%hi(%d),%%g1\n\tor %%g1,%%lo(%d),%%g1\n\t%s\n\tadd %%sp,%%g1,%%sp\n",
|
||
actual_fsize, actual_fsize, ret);
|
||
target_flags |= old_target_epilogue;
|
||
}
|
||
}
|
||
|
||
/* Functions for handling argument passing.
|
||
|
||
For v8 the first six args are normally in registers and the rest are
|
||
pushed. Any arg that starts within the first 6 words is at least
|
||
partially passed in a register unless its data type forbids.
|
||
|
||
For v9, the argument registers are laid out as an array of 16 elements
|
||
and arguments are added sequentially. The first 6 int args and up to the
|
||
first 16 fp args (depending on size) are passed in regs.
|
||
|
||
Slot Stack Integral Float Float in structure Double Long Double
|
||
---- ----- -------- ----- ------------------ ------ -----------
|
||
15 [SP+248] %f31 %f30,%f31 %d30
|
||
14 [SP+240] %f29 %f28,%f29 %d28 %q28
|
||
13 [SP+232] %f27 %f26,%f27 %d26
|
||
12 [SP+224] %f25 %f24,%f25 %d24 %q24
|
||
11 [SP+216] %f23 %f22,%f23 %d22
|
||
10 [SP+208] %f21 %f20,%f21 %d20 %q20
|
||
9 [SP+200] %f19 %f18,%f19 %d18
|
||
8 [SP+192] %f17 %f16,%f17 %d16 %q16
|
||
7 [SP+184] %f15 %f14,%f15 %d14
|
||
6 [SP+176] %f13 %f12,%f13 %d12 %q12
|
||
5 [SP+168] %o5 %f11 %f10,%f11 %d10
|
||
4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8
|
||
3 [SP+152] %o3 %f7 %f6,%f7 %d6
|
||
2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4
|
||
1 [SP+136] %o1 %f3 %f2,%f3 %d2
|
||
0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0
|
||
|
||
Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.
|
||
|
||
Integral arguments are always passed as 64 bit quantities appropriately
|
||
extended.
|
||
|
||
Passing of floating point values is handled as follows.
|
||
If a prototype is in scope:
|
||
If the value is in a named argument (i.e. not a stdarg function or a
|
||
value not part of the `...') then the value is passed in the appropriate
|
||
fp reg.
|
||
If the value is part of the `...' and is passed in one of the first 6
|
||
slots then the value is passed in the appropriate int reg.
|
||
If the value is part of the `...' and is not passed in one of the first 6
|
||
slots then the value is passed in memory.
|
||
If a prototype is not in scope:
|
||
If the value is one of the first 6 arguments the value is passed in the
|
||
appropriate integer reg and the appropriate fp reg.
|
||
If the value is not one of the first 6 arguments the value is passed in
|
||
the appropriate fp reg and in memory.
|
||
*/
|
||
|
||
/* Maximum number of int regs for args. */
|
||
#define SPARC_INT_ARG_MAX 6
|
||
/* Maximum number of fp regs for args. */
|
||
#define SPARC_FP_ARG_MAX 16
|
||
|
||
#define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Handle the INIT_CUMULATIVE_ARGS macro.
|
||
Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0. */
|
||
|
||
void
|
||
init_cumulative_args (cum, fntype, libname, indirect)
|
||
CUMULATIVE_ARGS *cum;
|
||
tree fntype, libname;
|
||
int indirect;
|
||
{
|
||
cum->words = 0;
|
||
cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype);
|
||
cum->libcall_p = fntype == 0;
|
||
}
|
||
|
||
/* Compute the slot number to pass an argument in.
|
||
Returns the slot number or -1 if passing on the stack.
|
||
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
|
||
*PREGNO records the register number to use if scalar type.
|
||
*PPADDING records the amount of padding needed in words. */
|
||
|
||
static int
|
||
function_arg_slotno (cum, mode, type, named, incoming_p, pregno, ppadding)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
int incoming_p;
|
||
int *pregno;
|
||
int *ppadding;
|
||
{
|
||
int regbase = (incoming_p
|
||
? SPARC_INCOMING_INT_ARG_FIRST
|
||
: SPARC_OUTGOING_INT_ARG_FIRST);
|
||
int slotno = cum->words;
|
||
int regno;
|
||
|
||
*ppadding = 0;
|
||
|
||
if (type != 0 && TREE_ADDRESSABLE (type))
|
||
return -1;
|
||
if (TARGET_ARCH32
|
||
&& type != 0 && mode == BLKmode
|
||
&& TYPE_ALIGN (type) % PARM_BOUNDARY != 0)
|
||
return -1;
|
||
|
||
switch (mode)
|
||
{
|
||
case VOIDmode :
|
||
/* MODE is VOIDmode when generating the actual call.
|
||
See emit_call_1. */
|
||
return -1;
|
||
|
||
case QImode : case CQImode :
|
||
case HImode : case CHImode :
|
||
case SImode : case CSImode :
|
||
case DImode : case CDImode :
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
break;
|
||
|
||
case SFmode : case SCmode :
|
||
case DFmode : case DCmode :
|
||
case TFmode : case TCmode :
|
||
if (TARGET_ARCH32)
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
else
|
||
{
|
||
if ((mode == TFmode || mode == TCmode)
|
||
&& (slotno & 1) != 0)
|
||
slotno++, *ppadding = 1;
|
||
if (TARGET_FPU && named)
|
||
{
|
||
if (slotno >= SPARC_FP_ARG_MAX)
|
||
return 0;
|
||
regno = SPARC_FP_ARG_FIRST + slotno * 2;
|
||
if (mode == SFmode)
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case BLKmode :
|
||
/* For sparc64, objects requiring 16 byte alignment get it. */
|
||
if (TARGET_ARCH64)
|
||
{
|
||
if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0)
|
||
slotno++, *ppadding = 1;
|
||
}
|
||
|
||
if (TARGET_ARCH32
|
||
|| type && TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
if (slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
regno = regbase + slotno;
|
||
}
|
||
else
|
||
{
|
||
tree field;
|
||
int intregs_p = 0, fpregs_p = 0;
|
||
/* The ABI obviously doesn't specify how packed
|
||
structures are passed. These are defined to be passed
|
||
in int regs if possible, otherwise memory. */
|
||
int packed_p = 0;
|
||
|
||
/* First see what kinds of registers we need. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU)
|
||
fpregs_p = 1;
|
||
else
|
||
intregs_p = 1;
|
||
if (DECL_PACKED (field))
|
||
packed_p = 1;
|
||
}
|
||
}
|
||
if (packed_p || !named)
|
||
fpregs_p = 0, intregs_p = 1;
|
||
|
||
/* If all arg slots are filled, then must pass on stack. */
|
||
if (fpregs_p && slotno >= SPARC_FP_ARG_MAX)
|
||
return -1;
|
||
/* If there are only int args and all int arg slots are filled,
|
||
then must pass on stack. */
|
||
if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX)
|
||
return -1;
|
||
/* Note that even if all int arg slots are filled, fp members may
|
||
still be passed in regs if such regs are available.
|
||
*PREGNO isn't set because there may be more than one, it's up
|
||
to the caller to compute them. */
|
||
return slotno;
|
||
}
|
||
break;
|
||
|
||
default :
|
||
abort ();
|
||
}
|
||
|
||
*pregno = regno;
|
||
return slotno;
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG macro.
|
||
Determine where to put an argument to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis).
|
||
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */
|
||
|
||
rtx
|
||
function_arg (cum, mode, type, named, incoming_p)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
int incoming_p;
|
||
{
|
||
int regbase = (incoming_p
|
||
? SPARC_INCOMING_INT_ARG_FIRST
|
||
: SPARC_OUTGOING_INT_ARG_FIRST);
|
||
int slotno, regno, padding;
|
||
rtx reg;
|
||
|
||
slotno = function_arg_slotno (cum, mode, type, named, incoming_p,
|
||
®no, &padding);
|
||
|
||
if (slotno == -1)
|
||
return 0;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
reg = gen_rtx (REG, mode, regno);
|
||
return reg;
|
||
}
|
||
|
||
/* v9 fp args in reg slots beyond the int reg slots get passed in regs
|
||
but also have the slot allocated for them.
|
||
If no prototype is in scope fp values in register slots get passed
|
||
in two places, either fp regs and int regs or fp regs and memory. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_FLOAT
|
||
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
&& SPARC_FP_REG_P (regno))
|
||
{
|
||
reg = gen_rtx (REG, mode, regno);
|
||
if (cum->prototype_p || cum->libcall_p)
|
||
{
|
||
/* "* 2" because fp reg numbers are recorded in 4 byte
|
||
quantities. */
|
||
/* ??? This will cause the value to be passed in the fp reg and
|
||
in the stack. When a prototype exists we want to pass the
|
||
value in the reg but reserve space on the stack. That's an
|
||
optimization, and is deferred [for a bit]. */
|
||
if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2)
|
||
return gen_rtx (PARALLEL, mode,
|
||
gen_rtvec (2,
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
NULL_RTX, const0_rtx),
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
reg, const0_rtx)));
|
||
else
|
||
return reg;
|
||
}
|
||
else
|
||
{
|
||
if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
|
||
{
|
||
int regbase = (incoming_p
|
||
? SPARC_INCOMING_INT_ARG_FIRST
|
||
: SPARC_OUTGOING_INT_ARG_FIRST);
|
||
int intreg = regbase + (regno - SPARC_FP_ARG_FIRST) / 2;
|
||
return gen_rtx (PARALLEL, mode,
|
||
gen_rtvec (2,
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
gen_rtx (REG, mode, intreg),
|
||
const0_rtx),
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
reg, const0_rtx)));
|
||
}
|
||
else
|
||
return gen_rtx (PARALLEL, mode,
|
||
gen_rtvec (2,
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
NULL_RTX, const0_rtx),
|
||
gen_rtx (EXPR_LIST, VOIDmode,
|
||
reg, const0_rtx)));
|
||
}
|
||
}
|
||
else if (type && TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
/* Structures up to 16 bytes in size are passed in arg slots on the
|
||
stack and are promoted to registers where possible. */
|
||
tree field;
|
||
rtx ret;
|
||
int i;
|
||
int nregs;
|
||
/* Starting bit position of a sequence of integer fields, counted from
|
||
msb of left most byte, -1 if last field wasn't an int. */
|
||
/* ??? This isn't entirely necessary, some simplification
|
||
may be possible. */
|
||
int start_int_bitpos;
|
||
/* Current bitpos in struct, counted from msb of left most byte. */
|
||
int bitpos, this_slotno;
|
||
/* The ABI obviously doesn't specify how packed
|
||
structures are passed. These are defined to be passed
|
||
in int regs if possible, otherwise memory. */
|
||
int packed_p = 0;
|
||
|
||
if (int_size_in_bytes (type) > 16)
|
||
abort (); /* shouldn't get here */
|
||
|
||
/* We need to compute how many registers are needed so we can allocate
|
||
the PARALLEL but before we can do that we need to know whether there
|
||
are any packed fields. If there are, int regs are used regardless of
|
||
whether there are fp values present. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& DECL_PACKED (field))
|
||
{
|
||
packed_p = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Compute how many registers we need. */
|
||
nregs = 0;
|
||
start_int_bitpos = -1;
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
|
||
this_slotno = slotno + bitpos / BITS_PER_WORD;
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU
|
||
&& ! packed_p
|
||
&& named)
|
||
{
|
||
/* There's no need to check this_slotno < SPARC_FP_ARG MAX.
|
||
If it wasn't true we wouldn't be here. */
|
||
nregs++;
|
||
start_int_bitpos = -1;
|
||
}
|
||
else if (this_slotno < SPARC_INT_ARG_MAX)
|
||
{
|
||
if (start_int_bitpos == -1)
|
||
{
|
||
nregs++;
|
||
start_int_bitpos = bitpos;
|
||
}
|
||
else
|
||
{
|
||
if (bitpos % BITS_PER_WORD == 0)
|
||
nregs++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (nregs == 0)
|
||
abort ();
|
||
|
||
ret = gen_rtx (PARALLEL, BLKmode, rtvec_alloc (nregs + 1));
|
||
|
||
/* ??? This causes the entire struct to be passed in memory.
|
||
This isn't necessary, but is left for later. */
|
||
XVECEXP (ret, 0, 0) = gen_rtx (EXPR_LIST, VOIDmode, NULL_RTX,
|
||
const0_rtx);
|
||
|
||
/* Fill in the entries. */
|
||
start_int_bitpos = -1;
|
||
for (i = 1, field = TYPE_FIELDS (type);
|
||
field;
|
||
field = TREE_CHAIN (field))
|
||
{
|
||
bitpos = TREE_INT_CST_LOW (DECL_FIELD_BITPOS (field));
|
||
this_slotno = slotno + bitpos / BITS_PER_WORD;
|
||
if (TREE_CODE (field) == FIELD_DECL)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (field)) == REAL_TYPE
|
||
&& TARGET_FPU
|
||
&& ! packed_p
|
||
&& named)
|
||
{
|
||
reg = gen_rtx (REG, DECL_MODE (field),
|
||
(SPARC_FP_ARG_FIRST + this_slotno * 2
|
||
+ (DECL_MODE (field) == SFmode
|
||
&& (bitpos & 32) != 0)));
|
||
XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg,
|
||
GEN_INT (bitpos / BITS_PER_UNIT));
|
||
i++;
|
||
start_int_bitpos = -1;
|
||
}
|
||
else
|
||
{
|
||
if (this_slotno < SPARC_INT_ARG_MAX
|
||
&& (start_int_bitpos == -1
|
||
|| bitpos % BITS_PER_WORD == 0))
|
||
{
|
||
enum machine_mode mode;
|
||
|
||
/* If this is the trailing part of a word, only load
|
||
that much into the register. Otherwise load the
|
||
whole register. Note that in the latter case we may
|
||
pick up unwanted bits. It's not a problem at the
|
||
moment but may wish to revisit. */
|
||
if (bitpos % BITS_PER_WORD != 0)
|
||
mode = mode_for_size (BITS_PER_WORD - bitpos % BITS_PER_WORD,
|
||
MODE_INT, 0);
|
||
else
|
||
mode = word_mode;
|
||
|
||
regno = regbase + this_slotno;
|
||
reg = gen_rtx (REG, mode, regno);
|
||
XVECEXP (ret, 0, i) = gen_rtx (EXPR_LIST, VOIDmode, reg,
|
||
GEN_INT (bitpos / BITS_PER_UNIT));
|
||
i++;
|
||
if (start_int_bitpos == -1)
|
||
start_int_bitpos = bitpos;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (i != nregs + 1)
|
||
abort ();
|
||
|
||
return ret;
|
||
}
|
||
else if (type && TREE_CODE (type) == UNION_TYPE)
|
||
{
|
||
enum machine_mode mode;
|
||
int bytes = int_size_in_bytes (type);
|
||
|
||
if (bytes > 16)
|
||
abort ();
|
||
|
||
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0);
|
||
reg = gen_rtx (REG, mode, regno);
|
||
}
|
||
else
|
||
{
|
||
/* Scalar or complex int. */
|
||
reg = gen_rtx (REG, mode, regno);
|
||
}
|
||
|
||
return reg;
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PARTIAL_NREGS macro.
|
||
For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero.
|
||
|
||
Any arg that starts in the first 6 regs but won't entirely fit in them
|
||
needs partial registers on v8. On v9, structures with integer
|
||
values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
|
||
values that begin in the last fp reg [where "last fp reg" varies with the
|
||
mode] will be split between that reg and memory. */
|
||
|
||
int
|
||
function_arg_partial_nregs (cum, mode, type, named)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
int slotno, regno, padding;
|
||
|
||
/* We pass 0 for incoming_p here, it doesn't matter. */
|
||
slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding);
|
||
|
||
if (slotno == -1)
|
||
return 0;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
if ((slotno + (mode == BLKmode
|
||
? ROUND_ADVANCE (int_size_in_bytes (type))
|
||
: ROUND_ADVANCE (GET_MODE_SIZE (mode))))
|
||
> NPARM_REGS (SImode))
|
||
return NPARM_REGS (SImode) - slotno;
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
if (type && AGGREGATE_TYPE_P (type))
|
||
{
|
||
int size = int_size_in_bytes (type);
|
||
int align = TYPE_ALIGN (type);
|
||
|
||
if (align == 16)
|
||
slotno += slotno & 1;
|
||
if (size > 8 && size <= 16
|
||
&& slotno == SPARC_INT_ARG_MAX - 1)
|
||
return 1;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|
||
|| (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
|
||
&& ! TARGET_FPU))
|
||
{
|
||
if (GET_MODE_ALIGNMENT (mode) == 128)
|
||
{
|
||
slotno += slotno & 1;
|
||
if (slotno == SPARC_INT_ARG_MAX - 2)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
if (slotno == SPARC_INT_ARG_MAX - 1)
|
||
return 1;
|
||
}
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
{
|
||
if (GET_MODE_ALIGNMENT (mode) == 128)
|
||
slotno += slotno & 1;
|
||
if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD)
|
||
> SPARC_FP_ARG_MAX)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro.
|
||
!v9: The SPARC ABI stipulates passing struct arguments (of any size) and
|
||
quad-precision floats by invisible reference.
|
||
v9: aggregates greater than 16 bytes are passed by reference.
|
||
For Pascal, also pass arrays by reference. */
|
||
|
||
int
|
||
function_arg_pass_by_reference (cum, mode, type, named)
|
||
const CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
if (TARGET_ARCH32)
|
||
{
|
||
return (type && AGGREGATE_TYPE_P (type)
|
||
|| mode == TFmode || mode == TCmode);
|
||
}
|
||
else
|
||
{
|
||
return ((type && TREE_CODE (type) == ARRAY_TYPE)
|
||
|| (type && AGGREGATE_TYPE_P (type)
|
||
&& int_size_in_bytes (type) > 16));
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_ADVANCE macro.
|
||
Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
TYPE is null for libcalls where that information may not be available. */
|
||
|
||
void
|
||
function_arg_advance (cum, mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
int slotno, regno, padding;
|
||
|
||
/* We pass 0 for incoming_p here, it doesn't matter. */
|
||
slotno = function_arg_slotno (cum, mode, type, named, 0, ®no, &padding);
|
||
|
||
/* If register required leading padding, add it. */
|
||
if (slotno != -1)
|
||
cum->words += padding;
|
||
|
||
if (TARGET_ARCH32)
|
||
{
|
||
cum->words += (mode != BLKmode
|
||
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
|
||
: ROUND_ADVANCE (int_size_in_bytes (type)));
|
||
}
|
||
else
|
||
{
|
||
if (type && AGGREGATE_TYPE_P (type))
|
||
{
|
||
int size = int_size_in_bytes (type);
|
||
|
||
if (size <= 8)
|
||
++cum->words;
|
||
else if (size <= 16)
|
||
cum->words += 2;
|
||
else /* passed by reference */
|
||
++cum->words;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
|
||
{
|
||
cum->words += 2;
|
||
}
|
||
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
|
||
{
|
||
cum->words += GET_MODE_SIZE (mode) / UNITS_PER_WORD;
|
||
}
|
||
else
|
||
{
|
||
cum->words += (mode != BLKmode
|
||
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
|
||
: ROUND_ADVANCE (int_size_in_bytes (type)));
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Handle the FUNCTION_ARG_PADDING macro.
|
||
For the 64 bit ABI structs are always stored left shifted in their
|
||
argument slot. */
|
||
|
||
enum direction
|
||
function_arg_padding (mode, type)
|
||
enum machine_mode mode;
|
||
tree type;
|
||
{
|
||
if (TARGET_ARCH64 && type && TREE_CODE (type) == RECORD_TYPE)
|
||
{
|
||
return upward;
|
||
}
|
||
|
||
/* This is the default definition. */
|
||
return (! BYTES_BIG_ENDIAN
|
||
? upward
|
||
: ((mode == BLKmode
|
||
? (type && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
||
&& int_size_in_bytes (type) < (PARM_BOUNDARY / BITS_PER_UNIT))
|
||
: GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
|
||
? downward : upward));
|
||
}
|
||
|
||
/* Do what is necessary for `va_start'. The argument is ignored.
|
||
|
||
We look at the current function to determine if stdarg or varargs
|
||
is used and return the address of the first unnamed parameter. */
|
||
|
||
rtx
|
||
sparc_builtin_saveregs (arglist)
|
||
tree arglist;
|
||
{
|
||
tree fntype = TREE_TYPE (current_function_decl);
|
||
int stdarg = (TYPE_ARG_TYPES (fntype) != 0
|
||
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
||
!= void_type_node));
|
||
int first_reg = current_function_args_info.words;
|
||
rtx address;
|
||
int regno;
|
||
|
||
for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++)
|
||
emit_move_insn (gen_rtx (MEM, word_mode,
|
||
gen_rtx (PLUS, Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * regno))),
|
||
gen_rtx (REG, word_mode,
|
||
BASE_INCOMING_ARG_REG (word_mode) + regno));
|
||
|
||
address = gen_rtx (PLUS, Pmode,
|
||
frame_pointer_rtx,
|
||
GEN_INT (STACK_POINTER_OFFSET
|
||
+ UNITS_PER_WORD * first_reg));
|
||
|
||
if (flag_check_memory_usage
|
||
&& first_reg < NPARM_REGS (word_mode))
|
||
emit_library_call (chkr_set_right_libfunc, 1, VOIDmode, 3,
|
||
address, ptr_mode,
|
||
GEN_INT (UNITS_PER_WORD
|
||
* (NPARM_REGS (word_mode) - first_reg)),
|
||
TYPE_MODE (sizetype), GEN_INT (MEMORY_USE_RW),
|
||
TYPE_MODE (integer_type_node));
|
||
|
||
return address;
|
||
}
|
||
|
||
/* Return the string to output a conditional branch to LABEL, which is
|
||
the operand number of the label. OP is the conditional expression.
|
||
XEXP (OP, 0) is assumed to be a condition code register (integer or
|
||
floating point) and its mode specifies what kind of comparison we made.
|
||
|
||
REVERSED is non-zero if we should reverse the sense of the comparison.
|
||
|
||
ANNUL is non-zero if we should generate an annulling branch.
|
||
|
||
NOOP is non-zero if we have to follow this branch by a noop. */
|
||
|
||
char *
|
||
output_cbranch (op, label, reversed, annul, noop)
|
||
rtx op;
|
||
int label;
|
||
int reversed, annul, noop;
|
||
{
|
||
static char string[20];
|
||
enum rtx_code code = GET_CODE (op);
|
||
rtx cc_reg = XEXP (op, 0);
|
||
enum machine_mode mode = GET_MODE (cc_reg);
|
||
static char v8_labelno[] = " %lX";
|
||
static char v9_icc_labelno[] = " %%icc,%lX";
|
||
static char v9_xcc_labelno[] = " %%xcc,%lX";
|
||
static char v9_fcc_labelno[] = " %%fccX,%lY";
|
||
char *labelno;
|
||
int labeloff;
|
||
|
||
/* ??? !v9: FP branches cannot be preceded by another floating point insn.
|
||
Because there is currently no concept of pre-delay slots, we can fix
|
||
this only by always emitting a nop before a floating point branch. */
|
||
|
||
if ((mode == CCFPmode || mode == CCFPEmode) && ! TARGET_V9)
|
||
strcpy (string, "nop\n\t");
|
||
else
|
||
string[0] = '\0';
|
||
|
||
/* If not floating-point or if EQ or NE, we can just reverse the code. */
|
||
if (reversed
|
||
&& ((mode != CCFPmode && mode != CCFPEmode) || code == EQ || code == NE))
|
||
code = reverse_condition (code), reversed = 0;
|
||
|
||
/* Start by writing the branch condition. */
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
strcat (string, "fbne");
|
||
else
|
||
strcpy (string, "bne");
|
||
break;
|
||
|
||
case EQ:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
strcat (string, "fbe");
|
||
else
|
||
strcpy (string, "be");
|
||
break;
|
||
|
||
case GE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbul");
|
||
else
|
||
strcat (string, "fbge");
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
strcpy (string, "bpos");
|
||
else
|
||
strcpy (string, "bge");
|
||
break;
|
||
|
||
case GT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbule");
|
||
else
|
||
strcat (string, "fbg");
|
||
}
|
||
else
|
||
strcpy (string, "bg");
|
||
break;
|
||
|
||
case LE:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbug");
|
||
else
|
||
strcat (string, "fble");
|
||
}
|
||
else
|
||
strcpy (string, "ble");
|
||
break;
|
||
|
||
case LT:
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
if (reversed)
|
||
strcat (string, "fbuge");
|
||
else
|
||
strcat (string, "fbl");
|
||
}
|
||
else if (mode == CC_NOOVmode)
|
||
strcpy (string, "bneg");
|
||
else
|
||
strcpy (string, "bl");
|
||
break;
|
||
|
||
case GEU:
|
||
strcpy (string, "bgeu");
|
||
break;
|
||
|
||
case GTU:
|
||
strcpy (string, "bgu");
|
||
break;
|
||
|
||
case LEU:
|
||
strcpy (string, "bleu");
|
||
break;
|
||
|
||
case LTU:
|
||
strcpy (string, "blu");
|
||
break;
|
||
}
|
||
|
||
/* Now add the annulling, the label, and a possible noop. */
|
||
if (annul)
|
||
strcat (string, ",a");
|
||
|
||
/* ??? If v9, optional prediction bit ",pt" or ",pf" goes here. */
|
||
|
||
if (! TARGET_V9)
|
||
{
|
||
labeloff = 3;
|
||
labelno = v8_labelno;
|
||
}
|
||
else
|
||
{
|
||
labeloff = 9;
|
||
if (mode == CCFPmode || mode == CCFPEmode)
|
||
{
|
||
labeloff = 10;
|
||
labelno = v9_fcc_labelno;
|
||
/* Set the char indicating the number of the fcc reg to use. */
|
||
labelno[6] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
|
||
}
|
||
else if (mode == CCXmode || mode == CCX_NOOVmode)
|
||
labelno = v9_xcc_labelno;
|
||
else
|
||
labelno = v9_icc_labelno;
|
||
}
|
||
/* Set the char indicating the number of the operand containing the
|
||
label_ref. */
|
||
labelno[labeloff] = label + '0';
|
||
strcat (string, labelno);
|
||
|
||
if (noop)
|
||
strcat (string, "\n\tnop");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Return the string to output a conditional branch to LABEL, testing
|
||
register REG. LABEL is the operand number of the label; REG is the
|
||
operand number of the reg. OP is the conditional expression. The mode
|
||
of REG says what kind of comparison we made.
|
||
|
||
REVERSED is non-zero if we should reverse the sense of the comparison.
|
||
|
||
ANNUL is non-zero if we should generate an annulling branch.
|
||
|
||
NOOP is non-zero if we have to follow this branch by a noop. */
|
||
|
||
char *
|
||
output_v9branch (op, reg, label, reversed, annul, noop)
|
||
rtx op;
|
||
int reg, label;
|
||
int reversed, annul, noop;
|
||
{
|
||
static char string[20];
|
||
enum rtx_code code = GET_CODE (op);
|
||
enum machine_mode mode = GET_MODE (XEXP (op, 0));
|
||
static char labelno[] = " %X,%lX";
|
||
|
||
/* If not floating-point or if EQ or NE, we can just reverse the code. */
|
||
if (reversed)
|
||
code = reverse_condition (code), reversed = 0;
|
||
|
||
/* Only 64 bit versions of these instructions exist. */
|
||
if (mode != DImode)
|
||
abort ();
|
||
|
||
/* Start by writing the branch condition. */
|
||
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
strcpy (string, "brnz");
|
||
break;
|
||
|
||
case EQ:
|
||
strcpy (string, "brz");
|
||
break;
|
||
|
||
case GE:
|
||
strcpy (string, "brgez");
|
||
break;
|
||
|
||
case LT:
|
||
strcpy (string, "brlz");
|
||
break;
|
||
|
||
case LE:
|
||
strcpy (string, "brlez");
|
||
break;
|
||
|
||
case GT:
|
||
strcpy (string, "brgz");
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Now add the annulling, reg, label, and nop. */
|
||
if (annul)
|
||
strcat (string, ",a");
|
||
|
||
/* ??? Optional prediction bit ",pt" or ",pf" goes here. */
|
||
|
||
labelno[2] = reg + '0';
|
||
labelno[6] = label + '0';
|
||
strcat (string, labelno);
|
||
|
||
if (noop)
|
||
strcat (string, "\n\tnop");
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Output assembler code to return from a function. */
|
||
|
||
/* ??? v9: Update to use the new `return' instruction. Also, add patterns to
|
||
md file for the `return' instruction. */
|
||
|
||
char *
|
||
output_return (operands)
|
||
rtx *operands;
|
||
{
|
||
if (leaf_label)
|
||
{
|
||
operands[0] = leaf_label;
|
||
return "b,a %l0";
|
||
}
|
||
else if (leaf_function)
|
||
{
|
||
/* If we didn't allocate a frame pointer for the current function,
|
||
the stack pointer might have been adjusted. Output code to
|
||
restore it now. */
|
||
|
||
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize);
|
||
|
||
/* Use sub of negated value in first two cases instead of add to
|
||
allow actual_fsize == 4096. */
|
||
|
||
if (actual_fsize <= 4096)
|
||
{
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "jmp %%o7+12\n\tsub %%sp,-%0,%%sp";
|
||
else
|
||
return "retl\n\tsub %%sp,-%0,%%sp";
|
||
}
|
||
else if (actual_fsize <= 8192)
|
||
{
|
||
operands[0] = gen_rtx (CONST_INT, VOIDmode, actual_fsize - 4096);
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "sub %%sp,-4096,%%sp\n\tjmp %%o7+12\n\tsub %%sp,-%0,%%sp";
|
||
else
|
||
return "sub %%sp,-4096,%%sp\n\tretl\n\tsub %%sp,-%0,%%sp";
|
||
}
|
||
else if (SKIP_CALLERS_UNIMP_P)
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
|
||
else
|
||
return "sethi %%hi(%a0),%%g1\n\tjmp %%o7+12\n\tadd %%sp,%%g1,%%sp";
|
||
}
|
||
else
|
||
{
|
||
if ((actual_fsize & 0x3ff) != 0)
|
||
return "sethi %%hi(%a0),%%g1\n\tor %%g1,%%lo(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
else
|
||
return "sethi %%hi(%a0),%%g1\n\tretl\n\tadd %%sp,%%g1,%%sp";
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (SKIP_CALLERS_UNIMP_P)
|
||
return "jmp %%i7+12\n\trestore";
|
||
else
|
||
return "ret\n\trestore";
|
||
}
|
||
}
|
||
|
||
/* Leaf functions and non-leaf functions have different needs. */
|
||
|
||
static int
|
||
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
|
||
|
||
static int
|
||
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
|
||
|
||
static int *reg_alloc_orders[] = {
|
||
reg_leaf_alloc_order,
|
||
reg_nonleaf_alloc_order};
|
||
|
||
void
|
||
order_regs_for_local_alloc ()
|
||
{
|
||
static int last_order_nonleaf = 1;
|
||
|
||
if (regs_ever_live[15] != last_order_nonleaf)
|
||
{
|
||
last_order_nonleaf = !last_order_nonleaf;
|
||
bcopy ((char *) reg_alloc_orders[last_order_nonleaf],
|
||
(char *) reg_alloc_order, FIRST_PSEUDO_REGISTER * sizeof (int));
|
||
}
|
||
}
|
||
|
||
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
|
||
This makes them candidates for using ldd and std insns.
|
||
|
||
Note reg1 and reg2 *must* be hard registers. To be sure we will
|
||
abort if we are passed pseudo registers. */
|
||
|
||
int
|
||
registers_ok_for_ldd_peep (reg1, reg2)
|
||
rtx reg1, reg2;
|
||
{
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg1) % 2 != 0)
|
||
return 0;
|
||
|
||
return (REGNO (reg1) == REGNO (reg2) - 1);
|
||
}
|
||
|
||
/* Return 1 if addr1 and addr2 are suitable for use in an ldd or
|
||
std insn.
|
||
|
||
This can only happen when addr1 and addr2 are consecutive memory
|
||
locations (addr1 + 4 == addr2). addr1 must also be aligned on a
|
||
64 bit boundary (addr1 % 8 == 0).
|
||
|
||
We know %sp and %fp are kept aligned on a 64 bit boundary. Other
|
||
registers are assumed to *never* be properly aligned and are
|
||
rejected.
|
||
|
||
Knowing %sp and %fp are kept aligned on a 64 bit boundary, we
|
||
need only check that the offset for addr1 % 8 == 0. */
|
||
|
||
int
|
||
addrs_ok_for_ldd_peep (addr1, addr2)
|
||
rtx addr1, addr2;
|
||
{
|
||
int reg1, offset1;
|
||
|
||
/* Extract a register number and offset (if used) from the first addr. */
|
||
if (GET_CODE (addr1) == PLUS)
|
||
{
|
||
/* If not a REG, return zero. */
|
||
if (GET_CODE (XEXP (addr1, 0)) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (XEXP (addr1, 0));
|
||
/* The offset must be constant! */
|
||
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
|
||
return 0;
|
||
offset1 = INTVAL (XEXP (addr1, 1));
|
||
}
|
||
}
|
||
else if (GET_CODE (addr1) != REG)
|
||
return 0;
|
||
else
|
||
{
|
||
reg1 = REGNO (addr1);
|
||
/* This was a simple (mem (reg)) expression. Offset is 0. */
|
||
offset1 = 0;
|
||
}
|
||
|
||
/* Make sure the second address is a (mem (plus (reg) (const_int). */
|
||
if (GET_CODE (addr2) != PLUS)
|
||
return 0;
|
||
|
||
if (GET_CODE (XEXP (addr2, 0)) != REG
|
||
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
|
||
return 0;
|
||
|
||
/* Only %fp and %sp are allowed. Additionally both addresses must
|
||
use the same register. */
|
||
if (reg1 != FRAME_POINTER_REGNUM && reg1 != STACK_POINTER_REGNUM)
|
||
return 0;
|
||
|
||
if (reg1 != REGNO (XEXP (addr2, 0)))
|
||
return 0;
|
||
|
||
/* The first offset must be evenly divisible by 8 to ensure the
|
||
address is 64 bit aligned. */
|
||
if (offset1 % 8 != 0)
|
||
return 0;
|
||
|
||
/* The offset for the second addr must be 4 more than the first addr. */
|
||
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
|
||
return 0;
|
||
|
||
/* All the tests passed. addr1 and addr2 are valid for ldd and std
|
||
instructions. */
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if reg is a pseudo, or is the first register in
|
||
a hard register pair. This makes it a candidate for use in
|
||
ldd and std insns. */
|
||
|
||
int
|
||
register_ok_for_ldd (reg)
|
||
rtx reg;
|
||
{
|
||
/* We might have been passed a SUBREG. */
|
||
if (GET_CODE (reg) != REG)
|
||
return 0;
|
||
|
||
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
||
return (REGNO (reg) % 2 == 0);
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case '#':
|
||
/* Output a 'nop' if there's nothing for the delay slot. */
|
||
if (dbr_sequence_length () == 0)
|
||
fputs ("\n\tnop", file);
|
||
return;
|
||
case '*':
|
||
/* Output an annul flag if there's nothing for the delay slot and we
|
||
are optimizing. This is always used with '(' below. */
|
||
/* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
|
||
this is a dbx bug. So, we only do this when optimizing. */
|
||
if (dbr_sequence_length () == 0 && optimize)
|
||
fputs (",a", file);
|
||
return;
|
||
case '(':
|
||
/* Output a 'nop' if there's nothing for the delay slot and we are
|
||
not optimizing. This is always used with '*' above. */
|
||
if (dbr_sequence_length () == 0 && ! optimize)
|
||
fputs ("\n\tnop", file);
|
||
return;
|
||
case '_':
|
||
/* Output the Embedded Medium/Anywhere code model base register. */
|
||
fputs (EMBMEDANY_BASE_REG, file);
|
||
return;
|
||
case '@':
|
||
/* Print out what we are using as the frame pointer. This might
|
||
be %fp, or might be %sp+offset. */
|
||
/* ??? What if offset is too big? Perhaps the caller knows it isn't? */
|
||
fprintf (file, "%s+%d", frame_base_name, frame_base_offset);
|
||
return;
|
||
case 'Y':
|
||
/* Adjust the operand to take into account a RESTORE operation. */
|
||
if (GET_CODE (x) != REG)
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
else if (REGNO (x) < 8)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (REGNO (x) >= 24 && REGNO (x) < 32)
|
||
fputs (reg_names[REGNO (x)-16], file);
|
||
else
|
||
output_operand_lossage ("Invalid %%Y operand");
|
||
return;
|
||
case 'L':
|
||
/* Print out the low order register name of a register pair. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
else
|
||
fputs (reg_names[REGNO (x)], file);
|
||
return;
|
||
case 'H':
|
||
/* Print out the high order register name of a register pair. */
|
||
if (WORDS_BIG_ENDIAN)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
return;
|
||
case 'R':
|
||
/* Print out the second register name of a register pair or quad.
|
||
I.e., R (%o0) => %o1. */
|
||
fputs (reg_names[REGNO (x)+1], file);
|
||
return;
|
||
case 'S':
|
||
/* Print out the third register name of a register quad.
|
||
I.e., S (%o0) => %o2. */
|
||
fputs (reg_names[REGNO (x)+2], file);
|
||
return;
|
||
case 'T':
|
||
/* Print out the fourth register name of a register quad.
|
||
I.e., T (%o0) => %o3. */
|
||
fputs (reg_names[REGNO (x)+3], file);
|
||
return;
|
||
case 'x':
|
||
/* Print a condition code register. */
|
||
if (REGNO (x) == SPARC_ICC_REG)
|
||
{
|
||
/* We don't handle CC[X]_NOOVmode because they're not supposed
|
||
to occur here. */
|
||
if (GET_MODE (x) == CCmode)
|
||
fputs ("%icc", file);
|
||
else if (GET_MODE (x) == CCXmode)
|
||
fputs ("%xcc", file);
|
||
else
|
||
abort ();
|
||
}
|
||
else
|
||
/* %fccN register */
|
||
fputs (reg_names[REGNO (x)], file);
|
||
return;
|
||
case 'm':
|
||
/* Print the operand's address only. */
|
||
output_address (XEXP (x, 0));
|
||
return;
|
||
case 'r':
|
||
/* In this case we need a register. Use %g0 if the
|
||
operand is const0_rtx. */
|
||
if (x == const0_rtx
|
||
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
|
||
{
|
||
fputs ("%g0", file);
|
||
return;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case 'A':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("or", file); break;
|
||
case AND: fputs ("and", file); break;
|
||
case XOR: fputs ("xor", file); break;
|
||
default: output_operand_lossage ("Invalid %%A operand");
|
||
}
|
||
return;
|
||
|
||
case 'B':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR: fputs ("orn", file); break;
|
||
case AND: fputs ("andn", file); break;
|
||
case XOR: fputs ("xnor", file); break;
|
||
default: output_operand_lossage ("Invalid %%B operand");
|
||
}
|
||
return;
|
||
|
||
/* These are used by the conditional move instructions. */
|
||
case 'c' :
|
||
case 'C':
|
||
{
|
||
enum rtx_code rc = (code == 'c'
|
||
? reverse_condition (GET_CODE (x))
|
||
: GET_CODE (x));
|
||
switch (rc)
|
||
{
|
||
case NE: fputs ("ne", file); break;
|
||
case EQ: fputs ("e", file); break;
|
||
case GE: fputs ("ge", file); break;
|
||
case GT: fputs ("g", file); break;
|
||
case LE: fputs ("le", file); break;
|
||
case LT: fputs ("l", file); break;
|
||
case GEU: fputs ("geu", file); break;
|
||
case GTU: fputs ("gu", file); break;
|
||
case LEU: fputs ("leu", file); break;
|
||
case LTU: fputs ("lu", file); break;
|
||
default: output_operand_lossage (code == 'c'
|
||
? "Invalid %%c operand"
|
||
: "Invalid %%C operand");
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* These are used by the movr instruction pattern. */
|
||
case 'd':
|
||
case 'D':
|
||
{
|
||
enum rtx_code rc = (code == 'd'
|
||
? reverse_condition (GET_CODE (x))
|
||
: GET_CODE (x));
|
||
switch (rc)
|
||
{
|
||
case NE: fputs ("ne", file); break;
|
||
case EQ: fputs ("e", file); break;
|
||
case GE: fputs ("gez", file); break;
|
||
case LT: fputs ("lz", file); break;
|
||
case LE: fputs ("lez", file); break;
|
||
case GT: fputs ("gz", file); break;
|
||
default: output_operand_lossage (code == 'd'
|
||
? "Invalid %%d operand"
|
||
: "Invalid %%D operand");
|
||
}
|
||
return;
|
||
}
|
||
|
||
case 'b':
|
||
{
|
||
/* Print a sign-extended character. */
|
||
int i = INTVAL (x) & 0xff;
|
||
if (i & 0x80)
|
||
i |= 0xffffff00;
|
||
fprintf (file, "%d", i);
|
||
return;
|
||
}
|
||
|
||
case 'f':
|
||
/* Operand must be a MEM; write its address. */
|
||
if (GET_CODE (x) != MEM)
|
||
output_operand_lossage ("Invalid %%f operand");
|
||
output_address (XEXP (x, 0));
|
||
return;
|
||
|
||
case 0:
|
||
/* Do nothing special. */
|
||
break;
|
||
|
||
default:
|
||
/* Undocumented flag. */
|
||
output_operand_lossage ("invalid operand output code");
|
||
}
|
||
|
||
if (GET_CODE (x) == REG)
|
||
fputs (reg_names[REGNO (x)], file);
|
||
else if (GET_CODE (x) == MEM)
|
||
{
|
||
fputc ('[', file);
|
||
/* Poor Sun assembler doesn't understand absolute addressing. */
|
||
if (CONSTANT_P (XEXP (x, 0))
|
||
&& ! TARGET_LIVE_G0)
|
||
fputs ("%g0+", file);
|
||
output_address (XEXP (x, 0));
|
||
fputc (']', file);
|
||
}
|
||
else if (GET_CODE (x) == HIGH)
|
||
{
|
||
fputs ("%hi(", file);
|
||
output_addr_const (file, XEXP (x, 0));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == LO_SUM)
|
||
{
|
||
print_operand (file, XEXP (x, 0), 0);
|
||
fputs ("+%lo(", file);
|
||
output_addr_const (file, XEXP (x, 1));
|
||
fputc (')', file);
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE
|
||
&& (GET_MODE (x) == VOIDmode
|
||
|| GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
|
||
{
|
||
if (CONST_DOUBLE_HIGH (x) == 0)
|
||
fprintf (file, "%u", CONST_DOUBLE_LOW (x));
|
||
else if (CONST_DOUBLE_HIGH (x) == -1
|
||
&& CONST_DOUBLE_LOW (x) < 0)
|
||
fprintf (file, "%d", CONST_DOUBLE_LOW (x));
|
||
else
|
||
output_operand_lossage ("long long constant not a valid immediate operand");
|
||
}
|
||
else if (GET_CODE (x) == CONST_DOUBLE)
|
||
output_operand_lossage ("floating point constant not a valid immediate operand");
|
||
else { output_addr_const (file, x); }
|
||
}
|
||
|
||
/* This function outputs assembler code for VALUE to FILE, where VALUE is
|
||
a 64 bit (DImode) value. */
|
||
|
||
/* ??? If there is a 64 bit counterpart to .word that the assembler
|
||
understands, then using that would simply this code greatly. */
|
||
/* ??? We only output .xword's for symbols and only then in environments
|
||
where the assembler can handle them. */
|
||
|
||
void
|
||
output_double_int (file, value)
|
||
FILE *file;
|
||
rtx value;
|
||
{
|
||
if (GET_CODE (value) == CONST_INT)
|
||
{
|
||
/* ??? This has endianness issues. */
|
||
#if HOST_BITS_PER_WIDE_INT == 64
|
||
HOST_WIDE_INT xword = INTVAL (value);
|
||
HOST_WIDE_INT high, low;
|
||
|
||
high = (xword >> 32) & 0xffffffff;
|
||
low = xword & 0xffffffff;
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, high));
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode, low));
|
||
#else
|
||
if (INTVAL (value) < 0)
|
||
ASM_OUTPUT_INT (file, constm1_rtx);
|
||
else
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
#endif
|
||
}
|
||
else if (GET_CODE (value) == CONST_DOUBLE)
|
||
{
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_HIGH (value)));
|
||
ASM_OUTPUT_INT (file, gen_rtx (CONST_INT, VOIDmode,
|
||
CONST_DOUBLE_LOW (value)));
|
||
}
|
||
else if (GET_CODE (value) == SYMBOL_REF
|
||
|| GET_CODE (value) == CONST
|
||
|| GET_CODE (value) == PLUS
|
||
|| (TARGET_ARCH64 &&
|
||
(GET_CODE (value) == LABEL_REF
|
||
|| GET_CODE (value) == CODE_LABEL
|
||
|| GET_CODE (value) == MINUS)))
|
||
{
|
||
if (!TARGET_V9 || TARGET_CM_MEDLOW)
|
||
{
|
||
ASM_OUTPUT_INT (file, const0_rtx);
|
||
ASM_OUTPUT_INT (file, value);
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\t%s\t", ASM_LONGLONG);
|
||
output_addr_const (file, value);
|
||
fprintf (file, "\n");
|
||
}
|
||
}
|
||
else
|
||
abort ();
|
||
}
|
||
|
||
/* Return the value of a code used in the .proc pseudo-op that says
|
||
what kind of result this function returns. For non-C types, we pick
|
||
the closest C type. */
|
||
|
||
#ifndef CHAR_TYPE_SIZE
|
||
#define CHAR_TYPE_SIZE BITS_PER_UNIT
|
||
#endif
|
||
|
||
#ifndef SHORT_TYPE_SIZE
|
||
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
|
||
#endif
|
||
|
||
#ifndef INT_TYPE_SIZE
|
||
#define INT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_TYPE_SIZE
|
||
#define LONG_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef LONG_LONG_TYPE_SIZE
|
||
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef FLOAT_TYPE_SIZE
|
||
#define FLOAT_TYPE_SIZE BITS_PER_WORD
|
||
#endif
|
||
|
||
#ifndef DOUBLE_TYPE_SIZE
|
||
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
#ifndef LONG_DOUBLE_TYPE_SIZE
|
||
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
|
||
#endif
|
||
|
||
unsigned long
|
||
sparc_type_code (type)
|
||
register tree type;
|
||
{
|
||
register unsigned long qualifiers = 0;
|
||
register unsigned shift = 6;
|
||
|
||
/* Only the first 30 bits of the qualifier are valid. We must refrain from
|
||
setting more, since some assemblers will give an error for this. Also,
|
||
we must be careful to avoid shifts of 32 bits or more to avoid getting
|
||
unpredictable results. */
|
||
|
||
for (;;)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case ERROR_MARK:
|
||
return qualifiers;
|
||
|
||
case ARRAY_TYPE:
|
||
if (shift < 30)
|
||
qualifiers |= (3 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
if (shift < 30)
|
||
qualifiers |= (2 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
if (shift < 30)
|
||
qualifiers |= (1 << shift);
|
||
shift += 2;
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
return (qualifiers | 8);
|
||
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return (qualifiers | 9);
|
||
|
||
case ENUMERAL_TYPE:
|
||
return (qualifiers | 10);
|
||
|
||
case VOID_TYPE:
|
||
return (qualifiers | 16);
|
||
|
||
case INTEGER_TYPE:
|
||
/* If this is a range type, consider it to be the underlying
|
||
type. */
|
||
if (TREE_TYPE (type) != 0)
|
||
{
|
||
type = TREE_TYPE (type);
|
||
break;
|
||
}
|
||
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C. We do this by
|
||
testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to
|
||
look at both the names and the above fields, but that's redundant.
|
||
Any type whose size is between two C types will be considered
|
||
to be the wider of the two types. Also, we do not have a
|
||
special code to use for "long long", so anything wider than
|
||
long is treated the same. Note that we can't distinguish
|
||
between "int" and "long" in this code if they are the same
|
||
size, but that's fine, since neither can the assembler. */
|
||
|
||
if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
|
||
|
||
else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
|
||
|
||
else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
|
||
|
||
else
|
||
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
|
||
|
||
case REAL_TYPE:
|
||
/* Carefully distinguish all the standard types of C,
|
||
without messing up if the language is not C. */
|
||
|
||
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
|
||
return (qualifiers | 6);
|
||
|
||
else
|
||
return (qualifiers | 7);
|
||
|
||
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
|
||
/* ??? We need to distinguish between double and float complex types,
|
||
but I don't know how yet because I can't reach this code from
|
||
existing front-ends. */
|
||
return (qualifiers | 7); /* Who knows? */
|
||
|
||
case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */
|
||
case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */
|
||
case FILE_TYPE: /* GNU Pascal FILE type. */
|
||
case SET_TYPE: /* GNU Pascal SET type. */
|
||
case LANG_TYPE: /* ? */
|
||
return qualifiers;
|
||
|
||
default:
|
||
abort (); /* Not a type! */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Nested function support. */
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function.
|
||
|
||
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
|
||
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
|
||
(to store insns). This is a bit excessive. Perhaps a different
|
||
mechanism would be better here.
|
||
|
||
Emit enough FLUSH insns to synchronize the data and instruction caches. */
|
||
|
||
void
|
||
sparc_initialize_trampoline (tramp, fnaddr, cxt)
|
||
rtx tramp, fnaddr, cxt;
|
||
{
|
||
rtx high_cxt = expand_shift (RSHIFT_EXPR, SImode, cxt,
|
||
size_int (10), 0, 1);
|
||
rtx high_fn = expand_shift (RSHIFT_EXPR, SImode, fnaddr,
|
||
size_int (10), 0, 1);
|
||
rtx low_cxt = expand_and (cxt, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
|
||
rtx low_fn = expand_and (fnaddr, gen_rtx (CONST_INT, VOIDmode, 0x3ff), 0);
|
||
rtx g1_sethi = gen_rtx (HIGH, SImode,
|
||
gen_rtx (CONST_INT, VOIDmode, 0x03000000));
|
||
rtx g2_sethi = gen_rtx (HIGH, SImode,
|
||
gen_rtx (CONST_INT, VOIDmode, 0x05000000));
|
||
rtx g1_ori = gen_rtx (HIGH, SImode,
|
||
gen_rtx (CONST_INT, VOIDmode, 0x82106000));
|
||
rtx g2_ori = gen_rtx (HIGH, SImode,
|
||
gen_rtx (CONST_INT, VOIDmode, 0x8410A000));
|
||
rtx tem = gen_reg_rtx (SImode);
|
||
emit_move_insn (tem, g1_sethi);
|
||
emit_insn (gen_iorsi3 (high_fn, high_fn, tem));
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 0)), high_fn);
|
||
emit_move_insn (tem, g1_ori);
|
||
emit_insn (gen_iorsi3 (low_fn, low_fn, tem));
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 4)), low_fn);
|
||
emit_move_insn (tem, g2_sethi);
|
||
emit_insn (gen_iorsi3 (high_cxt, high_cxt, tem));
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 8)), high_cxt);
|
||
emit_move_insn (tem, g2_ori);
|
||
emit_insn (gen_iorsi3 (low_cxt, low_cxt, tem));
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (tramp, 16)), low_cxt);
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode, tramp))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode,
|
||
plus_constant (tramp, 8)))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, SImode,
|
||
plus_constant (tramp, 16)))));
|
||
}
|
||
|
||
/* The 64 bit version is simpler because it makes more sense to load the
|
||
values as "immediate" data out of the trampoline. It's also easier since
|
||
we can read the PC without clobbering a register. */
|
||
|
||
void
|
||
sparc64_initialize_trampoline (tramp, fnaddr, cxt)
|
||
rtx tramp, fnaddr, cxt;
|
||
{
|
||
emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 24)), cxt);
|
||
emit_move_insn (gen_rtx (MEM, DImode, plus_constant (tramp, 32)), fnaddr);
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode, tramp))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
|
||
plus_constant (tramp, 8)))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
|
||
plus_constant (tramp, 16)))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
|
||
plus_constant (tramp, 24)))));
|
||
emit_insn (gen_flush (validize_mem (gen_rtx (MEM, DImode,
|
||
plus_constant (tramp, 32)))));
|
||
}
|
||
|
||
/* Subroutines to support a flat (single) register window calling
|
||
convention. */
|
||
|
||
/* Single-register window sparc stack frames look like:
|
||
|
||
Before call After call
|
||
+-----------------------+ +-----------------------+
|
||
high | | | |
|
||
mem | caller's temps. | | caller's temps. |
|
||
| | | |
|
||
+-----------------------+ +-----------------------+
|
||
| | | |
|
||
| arguments on stack. | | arguments on stack. |
|
||
| | | |
|
||
+-----------------------+FP+92->+-----------------------+
|
||
| 6 words to save | | 6 words to save |
|
||
| arguments passed | | arguments passed |
|
||
| in registers, even | | in registers, even |
|
||
| if not passed. | | if not passed. |
|
||
SP+68->+-----------------------+FP+68->+-----------------------+
|
||
| 1 word struct addr | | 1 word struct addr |
|
||
+-----------------------+FP+64->+-----------------------+
|
||
| | | |
|
||
| 16 word reg save area | | 16 word reg save area |
|
||
| | | |
|
||
SP->+-----------------------+ FP->+-----------------------+
|
||
| 4 word area for |
|
||
| fp/alu reg moves |
|
||
FP-16->+-----------------------+
|
||
| |
|
||
| local variables |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| fp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| gp register save |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| alloca allocations |
|
||
| |
|
||
+-----------------------+
|
||
| |
|
||
| arguments on stack |
|
||
| |
|
||
SP+92->+-----------------------+
|
||
| 6 words to save |
|
||
| arguments passed |
|
||
| in registers, even |
|
||
low | if not passed. |
|
||
memory SP+68->+-----------------------+
|
||
| 1 word struct addr |
|
||
SP+64->+-----------------------+
|
||
| |
|
||
I 16 word reg save area |
|
||
| |
|
||
SP->+-----------------------+ */
|
||
|
||
/* Structure to be filled in by sparc_flat_compute_frame_size with register
|
||
save masks, and offsets for the current function. */
|
||
|
||
struct sparc_frame_info
|
||
{
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # bytes of extra gunk. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long gmask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
unsigned long reg_offset; /* Offset from new sp to store regs. */
|
||
int initialized; /* Nonzero if frame size already calculated. */
|
||
};
|
||
|
||
/* Current frame information calculated by sparc_flat_compute_frame_size. */
|
||
struct sparc_frame_info current_frame_info;
|
||
|
||
/* Zero structure to initialize current_frame_info. */
|
||
struct sparc_frame_info zero_frame_info;
|
||
|
||
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
|
||
|
||
#define RETURN_ADDR_REGNUM 15
|
||
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
|
||
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
|
||
|
||
#define MUST_SAVE_REGISTER(regno) \
|
||
((regs_ever_live[regno] && !call_used_regs[regno]) \
|
||
|| (regno == FRAME_POINTER_REGNUM && frame_pointer_needed) \
|
||
|| (regno == RETURN_ADDR_REGNUM && regs_ever_live[RETURN_ADDR_REGNUM]))
|
||
|
||
/* Return the bytes needed to compute the frame pointer from the current
|
||
stack pointer. */
|
||
|
||
unsigned long
|
||
sparc_flat_compute_frame_size (size)
|
||
int size; /* # of var. bytes allocated. */
|
||
{
|
||
int regno;
|
||
unsigned long total_size; /* # bytes that the entire frame takes up. */
|
||
unsigned long var_size; /* # bytes that variables take up. */
|
||
unsigned long args_size; /* # bytes that outgoing arguments take up. */
|
||
unsigned long extra_size; /* # extra bytes. */
|
||
unsigned int gp_reg_size; /* # bytes needed to store gp regs. */
|
||
unsigned int fp_reg_size; /* # bytes needed to store fp regs. */
|
||
unsigned long gmask; /* Mask of saved gp registers. */
|
||
unsigned long fmask; /* Mask of saved fp registers. */
|
||
unsigned long reg_offset; /* Offset to register save area. */
|
||
int need_aligned_p; /* 1 if need the save area 8 byte aligned. */
|
||
|
||
/* This is the size of the 16 word reg save area, 1 word struct addr
|
||
area, and 4 word fp/alu register copy area. */
|
||
extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
|
||
var_size = size;
|
||
/* Also include the size needed for the 6 parameter registers. */
|
||
args_size = current_function_outgoing_args_size + 24;
|
||
total_size = var_size + args_size + extra_size;
|
||
gp_reg_size = 0;
|
||
fp_reg_size = 0;
|
||
gmask = 0;
|
||
fmask = 0;
|
||
reg_offset = 0;
|
||
need_aligned_p = 0;
|
||
|
||
/* Calculate space needed for gp registers. */
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if (MUST_SAVE_REGISTER (regno))
|
||
{
|
||
/* If we need to save two regs in a row, ensure there's room to bump
|
||
up the address to align it to a doubleword boundary. */
|
||
if ((regno & 0x1) == 0 && MUST_SAVE_REGISTER (regno+1))
|
||
{
|
||
if (gp_reg_size % 8 != 0)
|
||
gp_reg_size += 4;
|
||
gp_reg_size += 2 * UNITS_PER_WORD;
|
||
gmask |= 3 << regno;
|
||
regno++;
|
||
need_aligned_p = 1;
|
||
}
|
||
else
|
||
{
|
||
gp_reg_size += UNITS_PER_WORD;
|
||
gmask |= 1 << regno;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate space needed for fp registers. */
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if (regs_ever_live[regno] && !call_used_regs[regno])
|
||
{
|
||
fp_reg_size += UNITS_PER_WORD;
|
||
fmask |= 1 << (regno - 32);
|
||
}
|
||
}
|
||
|
||
if (gmask || fmask)
|
||
{
|
||
int n;
|
||
reg_offset = FIRST_PARM_OFFSET(0) + args_size;
|
||
/* Ensure save area is 8 byte aligned if we need it. */
|
||
n = reg_offset % 8;
|
||
if (need_aligned_p && n != 0)
|
||
{
|
||
total_size += 8 - n;
|
||
reg_offset += 8 - n;
|
||
}
|
||
total_size += gp_reg_size + fp_reg_size;
|
||
}
|
||
|
||
/* ??? This looks a little suspicious. Clarify. */
|
||
if (total_size == extra_size)
|
||
total_size = extra_size = 0;
|
||
|
||
total_size = SPARC_STACK_ALIGN (total_size);
|
||
|
||
/* Save other computed information. */
|
||
current_frame_info.total_size = total_size;
|
||
current_frame_info.var_size = var_size;
|
||
current_frame_info.args_size = args_size;
|
||
current_frame_info.extra_size = extra_size;
|
||
current_frame_info.gp_reg_size = gp_reg_size;
|
||
current_frame_info.fp_reg_size = fp_reg_size;
|
||
current_frame_info.gmask = gmask;
|
||
current_frame_info.fmask = fmask;
|
||
current_frame_info.reg_offset = reg_offset;
|
||
current_frame_info.initialized = reload_completed;
|
||
|
||
/* Ok, we're done. */
|
||
return total_size;
|
||
}
|
||
|
||
/* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset
|
||
OFFSET.
|
||
|
||
BASE_REG must be 8 byte aligned. This allows us to test OFFSET for
|
||
appropriate alignment and use DOUBLEWORD_OP when we can. We assume
|
||
[BASE_REG+OFFSET] will always be a valid address.
|
||
|
||
WORD_OP is either "st" for save, "ld" for restore.
|
||
DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */
|
||
|
||
void
|
||
sparc_flat_save_restore (file, base_reg, offset, gmask, fmask, word_op,
|
||
doubleword_op, base_offset)
|
||
FILE *file;
|
||
char *base_reg;
|
||
unsigned int offset;
|
||
unsigned long gmask;
|
||
unsigned long fmask;
|
||
char *word_op;
|
||
char *doubleword_op;
|
||
unsigned long base_offset;
|
||
{
|
||
int regno;
|
||
|
||
if (gmask == 0 && fmask == 0)
|
||
return;
|
||
|
||
/* Save registers starting from high to low. We've already saved the
|
||
previous frame pointer and previous return address for the debugger's
|
||
sake. The debugger allows us to not need a nop in the epilog if at least
|
||
one register is reloaded in addition to return address. */
|
||
|
||
if (gmask)
|
||
{
|
||
for (regno = 1; regno <= 31; regno++)
|
||
{
|
||
if ((gmask & (1L << regno)) != 0)
|
||
{
|
||
if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0))
|
||
{
|
||
/* We can save two registers in a row. If we're not at a
|
||
double word boundary, move to one.
|
||
sparc_flat_compute_frame_size ensures there's room to do
|
||
this. */
|
||
if (offset % 8 != 0)
|
||
offset += UNITS_PER_WORD;
|
||
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
doubleword_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
dwarf2out_reg_save (l, regno, offset + base_offset);
|
||
dwarf2out_reg_save
|
||
(l, regno+1, offset+base_offset + UNITS_PER_WORD);
|
||
}
|
||
}
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
doubleword_op, base_reg, offset,
|
||
reg_names[regno]);
|
||
|
||
offset += 2 * UNITS_PER_WORD;
|
||
regno++;
|
||
}
|
||
else
|
||
{
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", regno, offset + base_offset);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
word_op, base_reg, offset, reg_names[regno]);
|
||
|
||
offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (fmask)
|
||
{
|
||
for (regno = 32; regno <= 63; regno++)
|
||
{
|
||
if ((fmask & (1L << (regno - 32))) != 0)
|
||
{
|
||
if (word_op[0] == 's')
|
||
{
|
||
fprintf (file, "\t%s %s,[%s+%d]\n",
|
||
word_op, reg_names[regno],
|
||
base_reg, offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_reg_save ("", regno, offset + base_offset);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s [%s+%d],%s\n",
|
||
word_op, base_reg, offset, reg_names[regno]);
|
||
|
||
offset += UNITS_PER_WORD;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Set up the stack and frame (if desired) for the function. */
|
||
|
||
void
|
||
sparc_flat_output_function_prologue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
unsigned long gmask = current_frame_info.gmask;
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
|
||
fprintf (file, "\t%s# vars= %d, regs= %d/%d, args= %d, extra= %d\n",
|
||
ASM_COMMENT_START,
|
||
current_frame_info.var_size,
|
||
current_frame_info.gp_reg_size / 4,
|
||
current_frame_info.fp_reg_size / 4,
|
||
current_function_outgoing_args_size,
|
||
current_frame_info.extra_size);
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
size = (! current_frame_info.initialized
|
||
? sparc_flat_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
/* These cases shouldn't happen. Catch them now. */
|
||
if (size == 0 && (gmask || current_frame_info.fmask))
|
||
abort ();
|
||
|
||
/* Allocate our stack frame by decrementing %sp.
|
||
At present, the only algorithm gdb can use to determine if this is a
|
||
flat frame is if we always set %i7 if we set %sp. This can be optimized
|
||
in the future by putting in some sort of debugging information that says
|
||
this is a `flat' function. However, there is still the case of debugging
|
||
code without such debugging information (including cases where most fns
|
||
have such info, but there is one that doesn't). So, always do this now
|
||
so we don't get a lot of code out there that gdb can't handle.
|
||
If the frame pointer isn't needn't then that's ok - gdb won't be able to
|
||
distinguish us from a non-flat function but there won't (and shouldn't)
|
||
be any differences anyway. The return pc is saved (if necessary) right
|
||
after %i7 so gdb won't have to look too far to find it. */
|
||
if (size > 0)
|
||
{
|
||
unsigned int reg_offset = current_frame_info.reg_offset;
|
||
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
char *t1_str = "%g1";
|
||
|
||
/* Things get a little tricky if local variables take up more than ~4096
|
||
bytes and outgoing arguments take up more than ~4096 bytes. When that
|
||
happens, the register save area can't be accessed from either end of
|
||
the frame. Handle this by decrementing %sp to the start of the gp
|
||
register save area, save the regs, update %i7, and then set %sp to its
|
||
final value. Given that we only have one scratch register to play
|
||
with it is the cheapest solution, and it helps gdb out as it won't
|
||
slow down recognition of flat functions.
|
||
Don't change the order of insns emitted here without checking with
|
||
the gdb folk first. */
|
||
|
||
/* Is the entire register save area offsettable from %sp? */
|
||
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
|
||
{
|
||
if (size <= 4096)
|
||
{
|
||
fprintf (file, "\tadd %s,%d,%s\n",
|
||
sp_str, -size, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
fp_str, sp_str, reg_offset);
|
||
fprintf (file, "\tsub %s,%d,%s\t%s# set up frame pointer\n",
|
||
sp_str, -size, fp_str, ASM_COMMENT_START);
|
||
reg_offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
|
||
size, t1_str, sp_str, t1_str, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
fp_str, sp_str, reg_offset);
|
||
fprintf (file, "\tadd %s,%s,%s\t%s# set up frame pointer\n",
|
||
sp_str, t1_str, fp_str, ASM_COMMENT_START);
|
||
reg_offset += 4;
|
||
}
|
||
}
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
|
||
reg_offset - 4 - size);
|
||
dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
|
||
}
|
||
else
|
||
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size);
|
||
}
|
||
if (gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset);
|
||
if (dwarf2out_do_frame ())
|
||
dwarf2out_return_save ("", reg_offset - size);
|
||
reg_offset += 4;
|
||
}
|
||
sparc_flat_save_restore (file, sp_str, reg_offset,
|
||
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"st", "std", -size);
|
||
}
|
||
else
|
||
{
|
||
/* Subtract %sp in two steps, but make sure there is always a
|
||
64 byte register save area, and %sp is properly aligned. */
|
||
/* Amount to decrement %sp by, the first time. */
|
||
unsigned int size1 = ((size - reg_offset + 64) + 15) & -16;
|
||
/* Offset to register save area from %sp. */
|
||
unsigned int offset = size1 - (size - reg_offset);
|
||
|
||
if (size1 <= 4096)
|
||
{
|
||
fprintf (file, "\tadd %s,%d,%s\n",
|
||
sp_str, -size1, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n\tsub %s,%d,%s\t%s# set up frame pointer\n",
|
||
fp_str, sp_str, offset, sp_str, -size1, fp_str,
|
||
ASM_COMMENT_START);
|
||
offset += 4;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
|
||
size1, t1_str, sp_str, t1_str, sp_str);
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n\tadd %s,%s,%s\t%s# set up frame pointer\n",
|
||
fp_str, sp_str, offset, sp_str, t1_str, fp_str,
|
||
ASM_COMMENT_START);
|
||
offset += 4;
|
||
}
|
||
}
|
||
if (dwarf2out_do_frame ())
|
||
{
|
||
char *l = dwarf2out_cfi_label ();
|
||
if (gmask & FRAME_POINTER_MASK)
|
||
{
|
||
dwarf2out_reg_save (l, FRAME_POINTER_REGNUM,
|
||
offset - 4 - size1);
|
||
dwarf2out_def_cfa (l, FRAME_POINTER_REGNUM, 0);
|
||
}
|
||
else
|
||
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1);
|
||
}
|
||
if (gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tst %s,[%s+%d]\n",
|
||
reg_names[RETURN_ADDR_REGNUM], sp_str, offset);
|
||
if (dwarf2out_do_frame ())
|
||
/* offset - size1 == reg_offset - size
|
||
if reg_offset were updated above like offset. */
|
||
dwarf2out_return_save ("", offset - size1);
|
||
offset += 4;
|
||
}
|
||
sparc_flat_save_restore (file, sp_str, offset,
|
||
gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"st", "std", -size1);
|
||
fprintf (file, "\tset %d,%s\n\tsub %s,%s,%s\n",
|
||
size - size1, t1_str, sp_str, t1_str, sp_str);
|
||
if (dwarf2out_do_frame ())
|
||
if (! (gmask & FRAME_POINTER_MASK))
|
||
dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size);
|
||
}
|
||
}
|
||
|
||
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
|
||
}
|
||
|
||
/* Do any necessary cleanup after a function to restore stack, frame,
|
||
and regs. */
|
||
|
||
void
|
||
sparc_flat_output_function_epilogue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
rtx epilogue_delay = current_function_epilogue_delay_list;
|
||
int noepilogue = FALSE;
|
||
|
||
/* This is only for the human reader. */
|
||
fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START);
|
||
|
||
/* The epilogue does not depend on any registers, but the stack
|
||
registers, so we assume that if we have 1 pending nop, it can be
|
||
ignored, and 2 it must be filled (2 nops occur for integer
|
||
multiply and divide). */
|
||
|
||
size = SPARC_STACK_ALIGN (size);
|
||
size = (!current_frame_info.initialized
|
||
? sparc_flat_compute_frame_size (size)
|
||
: current_frame_info.total_size);
|
||
|
||
if (size == 0 && epilogue_delay == 0)
|
||
{
|
||
rtx insn = get_last_insn ();
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write any code
|
||
because a jump (aka return) was put there. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
noepilogue = TRUE;
|
||
}
|
||
|
||
if (!noepilogue)
|
||
{
|
||
unsigned int reg_offset = current_frame_info.reg_offset;
|
||
unsigned int size1;
|
||
char *sp_str = reg_names[STACK_POINTER_REGNUM];
|
||
char *fp_str = reg_names[FRAME_POINTER_REGNUM];
|
||
char *t1_str = "%g1";
|
||
|
||
/* In the reload sequence, we don't need to fill the load delay
|
||
slots for most of the loads, also see if we can fill the final
|
||
delay slot if not otherwise filled by the reload sequence. */
|
||
|
||
if (size > 4095)
|
||
fprintf (file, "\tset %d,%s\n", size, t1_str);
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
if (size > 4095)
|
||
fprintf (file,"\tsub %s,%s,%s\t\t%s# sp not trusted here\n",
|
||
fp_str, t1_str, sp_str, ASM_COMMENT_START);
|
||
else
|
||
fprintf (file,"\tsub %s,%d,%s\t\t%s# sp not trusted here\n",
|
||
fp_str, size, sp_str, ASM_COMMENT_START);
|
||
}
|
||
|
||
/* Is the entire register save area offsettable from %sp? */
|
||
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
|
||
{
|
||
size1 = 0;
|
||
}
|
||
else
|
||
{
|
||
/* Restore %sp in two steps, but make sure there is always a
|
||
64 byte register save area, and %sp is properly aligned. */
|
||
/* Amount to increment %sp by, the first time. */
|
||
size1 = ((reg_offset - 64 - 16) + 15) & -16;
|
||
/* Offset to register save area from %sp. */
|
||
reg_offset = size1 - reg_offset;
|
||
|
||
fprintf (file, "\tset %d,%s\n\tadd %s,%s,%s\n",
|
||
size1, t1_str, sp_str, t1_str, sp_str);
|
||
}
|
||
|
||
/* We must restore the frame pointer and return address reg first
|
||
because they are treated specially by the prologue output code. */
|
||
if (current_frame_info.gmask & FRAME_POINTER_MASK)
|
||
{
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
sp_str, reg_offset, fp_str);
|
||
reg_offset += 4;
|
||
}
|
||
if (current_frame_info.gmask & RETURN_ADDR_MASK)
|
||
{
|
||
fprintf (file, "\tld [%s+%d],%s\n",
|
||
sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]);
|
||
reg_offset += 4;
|
||
}
|
||
|
||
/* Restore any remaining saved registers. */
|
||
sparc_flat_save_restore (file, sp_str, reg_offset,
|
||
current_frame_info.gmask & ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK),
|
||
current_frame_info.fmask,
|
||
"ld", "ldd", 0);
|
||
|
||
/* If we had to increment %sp in two steps, record it so the second
|
||
restoration in the epilogue finishes up. */
|
||
if (size1 > 0)
|
||
{
|
||
size -= size1;
|
||
if (size > 4095)
|
||
fprintf (file, "\tset %d,%s\n",
|
||
size, t1_str);
|
||
}
|
||
|
||
if (current_function_returns_struct)
|
||
fprintf (file, "\tjmp %%o7+12\n");
|
||
else
|
||
fprintf (file, "\tretl\n");
|
||
|
||
/* If the only register saved is the return address, we need a
|
||
nop, unless we have an instruction to put into it. Otherwise
|
||
we don't since reloading multiple registers doesn't reference
|
||
the register being loaded. */
|
||
|
||
if (epilogue_delay)
|
||
{
|
||
if (size)
|
||
abort ();
|
||
final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1);
|
||
}
|
||
|
||
else if (size > 4095)
|
||
fprintf (file, "\tadd %s,%s,%s\n", sp_str, t1_str, sp_str);
|
||
|
||
else if (size > 0)
|
||
fprintf (file, "\tadd %s,%d,%s\n", sp_str, size, sp_str);
|
||
|
||
else
|
||
fprintf (file, "\tnop\n");
|
||
}
|
||
|
||
/* Reset state info for each function. */
|
||
current_frame_info = zero_frame_info;
|
||
}
|
||
|
||
/* Define the number of delay slots needed for the function epilogue.
|
||
|
||
On the sparc, we need a slot if either no stack has been allocated,
|
||
or the only register saved is the return register. */
|
||
|
||
int
|
||
sparc_flat_epilogue_delay_slots ()
|
||
{
|
||
if (!current_frame_info.initialized)
|
||
(void) sparc_flat_compute_frame_size (get_frame_size ());
|
||
|
||
if (current_frame_info.total_size == 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true is TRIAL is a valid insn for the epilogue delay slot.
|
||
Any single length instruction which doesn't reference the stack or frame
|
||
pointer is OK. */
|
||
|
||
int
|
||
sparc_flat_eligible_for_epilogue_delay (trial, slot)
|
||
rtx trial;
|
||
int slot;
|
||
{
|
||
rtx pat = PATTERN (trial);
|
||
|
||
if (get_attr_length (trial) != 1)
|
||
return 0;
|
||
|
||
/* If %g0 is live, there are lots of things we can't handle.
|
||
Rather than trying to find them all now, let's punt and only
|
||
optimize things as necessary. */
|
||
if (TARGET_LIVE_G0)
|
||
return 0;
|
||
|
||
if (! reg_mentioned_p (stack_pointer_rtx, pat)
|
||
&& ! reg_mentioned_p (frame_pointer_rtx, pat))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Adjust the cost of a scheduling dependency. Return the new cost of
|
||
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
|
||
|
||
int
|
||
supersparc_adjust_cost (insn, link, dep_insn, cost)
|
||
rtx insn;
|
||
rtx link;
|
||
rtx dep_insn;
|
||
int cost;
|
||
{
|
||
enum attr_type insn_type;
|
||
|
||
if (! recog_memoized (insn))
|
||
return 0;
|
||
|
||
insn_type = get_attr_type (insn);
|
||
|
||
if (REG_NOTE_KIND (link) == 0)
|
||
{
|
||
/* Data dependency; DEP_INSN writes a register that INSN reads some
|
||
cycles later. */
|
||
|
||
/* if a load, then the dependence must be on the memory address;
|
||
add an extra 'cycle'. Note that the cost could be two cycles
|
||
if the reg was written late in an instruction group; we can't tell
|
||
here. */
|
||
if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
|
||
return cost + 3;
|
||
|
||
/* Get the delay only if the address of the store is the dependence. */
|
||
if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
|
||
{
|
||
rtx pat = PATTERN(insn);
|
||
rtx dep_pat = PATTERN (dep_insn);
|
||
|
||
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
||
return cost; /* This shouldn't happen! */
|
||
|
||
/* The dependency between the two instructions was on the data that
|
||
is being stored. Assume that this implies that the address of the
|
||
store is not dependent. */
|
||
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
|
||
return cost;
|
||
|
||
return cost + 3; /* An approximation. */
|
||
}
|
||
|
||
/* A shift instruction cannot receive its data from an instruction
|
||
in the same cycle; add a one cycle penalty. */
|
||
if (insn_type == TYPE_SHIFT)
|
||
return cost + 3; /* Split before cascade into shift. */
|
||
}
|
||
else
|
||
{
|
||
/* Anti- or output- dependency; DEP_INSN reads/writes a register that
|
||
INSN writes some cycles later. */
|
||
|
||
/* These are only significant for the fpu unit; writing a fp reg before
|
||
the fpu has finished with it stalls the processor. */
|
||
|
||
/* Reusing an integer register causes no problems. */
|
||
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
|
||
return 0;
|
||
}
|
||
|
||
return cost;
|
||
}
|