mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-08 20:02:47 +01:00
3098 lines
79 KiB
C
3098 lines
79 KiB
C
/* Subroutines for insn-output.c for Hitachi H8/300.
|
||
Copyright (C) 1992, 93, 94, 95, 96, 1997 Free Software Foundation, Inc.
|
||
Contributed by Steve Chamberlain (sac@cygnus.com),
|
||
Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include <stdio.h>
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "real.h"
|
||
#include "insn-config.h"
|
||
#include "conditions.h"
|
||
#include "insn-flags.h"
|
||
#include "output.h"
|
||
#include "insn-attr.h"
|
||
#include "flags.h"
|
||
#include "recog.h"
|
||
#include "expr.h"
|
||
#include "tree.h"
|
||
#include "obstack.h"
|
||
|
||
/* Forward declarations. */
|
||
void print_operand_address ();
|
||
char *index ();
|
||
|
||
static int h8300_interrupt_function_p PROTO ((tree));
|
||
static int h8300_monitor_function_p PROTO ((tree));
|
||
static int h8300_os_task_function_p PROTO ((tree));
|
||
|
||
/* CPU_TYPE, says what cpu we're compiling for. */
|
||
int cpu_type;
|
||
|
||
/* True if the current function is an interrupt handler
|
||
(either via #pragma or an attribute specification). */
|
||
int interrupt_handler;
|
||
|
||
/* True if the current function is an OS Task
|
||
(via an attribute specification). */
|
||
int os_task;
|
||
|
||
/* True if the current function is a monitor
|
||
(via an attribute specification). */
|
||
int monitor;
|
||
|
||
/* True if a #pragma saveall has been seen for the current function. */
|
||
int pragma_saveall;
|
||
|
||
static char *names_big[] =
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7"};
|
||
|
||
static char *names_extended[] =
|
||
{"er0", "er1", "er2", "er3", "er4", "er5", "er6", "er7"};
|
||
|
||
static char *names_upper_extended[] =
|
||
{"e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7"};
|
||
|
||
/* Points to one of the above. */
|
||
/* ??? The above could be put in an array indexed by CPU_TYPE. */
|
||
char **h8_reg_names;
|
||
|
||
/* Various operations needed by the following, indexed by CPU_TYPE. */
|
||
|
||
static char *h8_push_ops[2] =
|
||
{"push", "push.l"};
|
||
static char *h8_pop_ops[2] =
|
||
{"pop", "pop.l"};
|
||
static char *h8_mov_ops[2] =
|
||
{"mov.w", "mov.l"};
|
||
|
||
char *h8_push_op, *h8_pop_op, *h8_mov_op;
|
||
|
||
/* Initialize various cpu specific globals at start up. */
|
||
|
||
void
|
||
h8300_init_once ()
|
||
{
|
||
if (TARGET_H8300)
|
||
{
|
||
cpu_type = (int) CPU_H8300;
|
||
h8_reg_names = names_big;
|
||
}
|
||
else
|
||
{
|
||
/* For this we treat the H8/300 and H8/S the same. */
|
||
cpu_type = (int) CPU_H8300H;
|
||
h8_reg_names = names_extended;
|
||
}
|
||
h8_push_op = h8_push_ops[cpu_type];
|
||
h8_pop_op = h8_pop_ops[cpu_type];
|
||
h8_mov_op = h8_mov_ops[cpu_type];
|
||
}
|
||
|
||
char *
|
||
byte_reg (x, b)
|
||
rtx x;
|
||
int b;
|
||
{
|
||
static char *names_small[] =
|
||
{"r0l", "r0h", "r1l", "r1h", "r2l", "r2h", "r3l", "r3h",
|
||
"r4l", "r4h", "r5l", "r5h", "r6l", "r6h", "r7l", "r7h"};
|
||
|
||
return names_small[REGNO (x) * 2 + b];
|
||
}
|
||
|
||
/* REGNO must be saved/restored across calls if this macro is true. */
|
||
|
||
#define WORD_REG_USED(regno) \
|
||
(regno < 7 && \
|
||
(interrupt_handler \
|
||
|| pragma_saveall \
|
||
|| (regno == FRAME_POINTER_REGNUM && regs_ever_live[regno]) \
|
||
|| (regs_ever_live[regno] & !call_used_regs[regno])))
|
||
|
||
/* Output assembly language to FILE for the operation OP with operand size
|
||
SIZE to adjust the stack pointer. */
|
||
|
||
static void
|
||
dosize (file, op, size)
|
||
FILE *file;
|
||
char *op;
|
||
unsigned int size;
|
||
{
|
||
/* On the h8300h and h8300s, for sizes <= 8 bytes it is as good or
|
||
better to use adds/subs insns rather than add.l/sub.l
|
||
with an immediate value. */
|
||
if (size > 4 && size <= 8 && (TARGET_H8300H || TARGET_H8300S))
|
||
{
|
||
/* Crank the size down to <= 4 */
|
||
fprintf (file, "\t%ss\t#%d,sp\n", op, 4);
|
||
size -= 4;
|
||
}
|
||
|
||
switch (size)
|
||
{
|
||
case 4:
|
||
if (TARGET_H8300H || TARGET_H8300S)
|
||
{
|
||
fprintf (file, "\t%ss\t#%d,sp\n", op, 4);
|
||
size = 0;
|
||
break;
|
||
}
|
||
case 3:
|
||
fprintf (file, "\t%ss\t#%d,sp\n", op, 2);
|
||
size -= 2;
|
||
/* Fall through... */
|
||
case 2:
|
||
case 1:
|
||
fprintf (file, "\t%ss\t#%d,sp\n", op, size);
|
||
size = 0;
|
||
break;
|
||
case 0:
|
||
break;
|
||
default:
|
||
if (TARGET_H8300)
|
||
{
|
||
if (current_function_needs_context
|
||
&& strcmp (op, "sub") == 0)
|
||
{
|
||
/* Egad. We don't have a temporary to hold the
|
||
size of the frame in the prologue! Just inline
|
||
the bastard since this shouldn't happen often. */
|
||
while (size >= 2)
|
||
{
|
||
fprintf (file, "\tsubs\t#2,sp\n");
|
||
size -= 2;
|
||
}
|
||
|
||
if (size)
|
||
fprintf (file, "\tsubs\t#1,sp\n");
|
||
|
||
size = 0;
|
||
}
|
||
else
|
||
fprintf (file, "\tmov.w\t#%d,r3\n\t%s.w\tr3,sp\n", size, op);
|
||
}
|
||
else
|
||
fprintf (file, "\t%s\t#%d,sp\n", op, size);
|
||
size = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Output assembly language code for the function prologue. */
|
||
static int push_order[FIRST_PSEUDO_REGISTER] =
|
||
{0, 1, 2, 3, 4, 5, 6, -1, -1, -1};
|
||
static int pop_order[FIRST_PSEUDO_REGISTER] =
|
||
{6, 5, 4, 3, 2, 1, 0, -1, -1, -1};
|
||
|
||
/* This is what the stack looks like after the prolog of
|
||
a function with a frame has been set up:
|
||
|
||
<args>
|
||
PC
|
||
FP <- fp
|
||
<locals>
|
||
<saved registers> <- sp
|
||
|
||
This is what the stack looks like after the prolog of
|
||
a function which doesn't have a frame:
|
||
|
||
<args>
|
||
PC
|
||
<locals>
|
||
<saved registers> <- sp
|
||
*/
|
||
|
||
void
|
||
function_prologue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
register int mask = 0;
|
||
int fsize = (size + STACK_BOUNDARY / 8 - 1) & -STACK_BOUNDARY / 8;
|
||
int idx;
|
||
|
||
/* Note a function with the interrupt attribute and set interrupt_handler
|
||
accordingly. */
|
||
if (h8300_interrupt_function_p (current_function_decl))
|
||
interrupt_handler = 1;
|
||
|
||
/* If the current function has the OS_Task attribute set, then
|
||
we have a naked prologue. */
|
||
if (h8300_os_task_function_p (current_function_decl))
|
||
{
|
||
fprintf (file, ";OS_Task prologue\n");
|
||
os_task = 1;
|
||
return;
|
||
}
|
||
|
||
if (h8300_monitor_function_p (current_function_decl))
|
||
{
|
||
/* My understanding of monitor functions is they act just
|
||
like interrupt functions, except the prologue must
|
||
mask interrupts. */
|
||
fprintf (file, ";monitor prologue\n");
|
||
interrupt_handler = 1;
|
||
monitor = 1;
|
||
if (TARGET_H8300)
|
||
{
|
||
fprintf (file, "\tsubs\t#2,sp\n");
|
||
fprintf (file, "\tpush\tr0\n");
|
||
fprintf (file, "\tstc\tccr,r0l\n");
|
||
fprintf (file, "\torc\t#128,ccr\n");
|
||
fprintf (file, "\tmov.b\tr0l,@(4,sp)\n");
|
||
}
|
||
else
|
||
{
|
||
fprintf (file, "\tpush\ter0\n");
|
||
fprintf (file, "\tstc\tccr,r0l\n");
|
||
fprintf (file, "\torc\t#128,ccr\n");
|
||
fprintf (file, "\tmov.b\tr0l,@(4,sp)\n");
|
||
}
|
||
}
|
||
|
||
if (frame_pointer_needed)
|
||
{
|
||
/* Push fp */
|
||
fprintf (file, "\t%s\t%s\n", h8_push_op,
|
||
h8_reg_names[FRAME_POINTER_REGNUM]);
|
||
fprintf (file, "\t%s\t%s,%s\n", h8_mov_op,
|
||
h8_reg_names[STACK_POINTER_REGNUM],
|
||
h8_reg_names[FRAME_POINTER_REGNUM]);
|
||
}
|
||
|
||
/* leave room for locals */
|
||
dosize (file, "sub", fsize);
|
||
|
||
/* Push the rest of the registers */
|
||
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
|
||
{
|
||
int regno = push_order[idx];
|
||
|
||
if (regno >= 0
|
||
&& WORD_REG_USED (regno)
|
||
&& (!frame_pointer_needed || regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
if (TARGET_H8300S)
|
||
{
|
||
/* Try to push multiple registers. */
|
||
if (regno == 0 || regno == 4)
|
||
{
|
||
int second_regno = push_order[idx + 1];
|
||
int third_regno = push_order[idx + 2];
|
||
int fourth_regno = push_order[idx + 3];
|
||
|
||
if (fourth_regno >= 0
|
||
&& WORD_REG_USED (fourth_regno)
|
||
&& (!frame_pointer_needed
|
||
|| fourth_regno != FRAME_POINTER_REGNUM)
|
||
&& third_regno >= 0
|
||
&& WORD_REG_USED (third_regno)
|
||
&& (!frame_pointer_needed
|
||
|| third_regno != FRAME_POINTER_REGNUM)
|
||
&& second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tstm.l %s-%s,@-sp\n",
|
||
h8_reg_names[regno],
|
||
h8_reg_names[fourth_regno]);
|
||
idx += 3;
|
||
continue;
|
||
}
|
||
}
|
||
if (regno == 0 || regno == 4)
|
||
{
|
||
int second_regno = push_order[idx + 1];
|
||
int third_regno = push_order[idx + 2];
|
||
|
||
if (third_regno >= 0
|
||
&& WORD_REG_USED (third_regno)
|
||
&& (!frame_pointer_needed
|
||
|| third_regno != FRAME_POINTER_REGNUM)
|
||
&& second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tstm.l %s-%s,@-sp\n",
|
||
h8_reg_names[regno],
|
||
h8_reg_names[third_regno]);
|
||
idx += 2;
|
||
continue;
|
||
}
|
||
}
|
||
if (regno == 0 || regno == 2 || regno == 4 || regno == 6)
|
||
{
|
||
int second_regno = push_order[idx + 1];
|
||
|
||
if (second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tstm.l %s-%s,@-sp\n",
|
||
h8_reg_names[regno],
|
||
h8_reg_names[second_regno]);
|
||
idx += 1;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
fprintf (file, "\t%s\t%s\n", h8_push_op, h8_reg_names[regno]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Output assembly language code for the function epilogue. */
|
||
|
||
void
|
||
function_epilogue (file, size)
|
||
FILE *file;
|
||
int size;
|
||
{
|
||
register int regno;
|
||
register int mask = 0;
|
||
int fsize = (size + STACK_BOUNDARY / 8 - 1) & -STACK_BOUNDARY / 8;
|
||
int idx;
|
||
rtx insn = get_last_insn ();
|
||
|
||
if (os_task)
|
||
{
|
||
/* OS_Task epilogues are nearly naked -- they just have an
|
||
rts instruction. */
|
||
fprintf (file, ";OS_task epilogue\n");
|
||
fprintf (file, "\trts\n");
|
||
goto out;
|
||
}
|
||
|
||
/* monitor epilogues are the same as interrupt function epilogues.
|
||
Just make a note that we're in an monitor epilogue. */
|
||
if (monitor)
|
||
fprintf(file, ";monitor epilogue\n");
|
||
|
||
/* If the last insn was a BARRIER, we don't have to write any code. */
|
||
if (GET_CODE (insn) == NOTE)
|
||
insn = prev_nonnote_insn (insn);
|
||
if (insn && GET_CODE (insn) == BARRIER)
|
||
return;
|
||
|
||
/* Pop the saved registers. */
|
||
for (idx = 0; idx < FIRST_PSEUDO_REGISTER; idx++)
|
||
{
|
||
int regno = pop_order[idx];
|
||
|
||
if (regno >= 0
|
||
&& WORD_REG_USED (regno)
|
||
&& (!frame_pointer_needed || regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
if (TARGET_H8300S)
|
||
{
|
||
/* Try to pop multiple registers. */
|
||
if (regno == 7 || regno == 3)
|
||
{
|
||
int second_regno = pop_order[idx + 1];
|
||
int third_regno = pop_order[idx + 2];
|
||
int fourth_regno = pop_order[idx + 3];
|
||
|
||
if (fourth_regno >= 0
|
||
&& WORD_REG_USED (fourth_regno)
|
||
&& (!frame_pointer_needed
|
||
|| fourth_regno != FRAME_POINTER_REGNUM)
|
||
&& third_regno >= 0
|
||
&& WORD_REG_USED (third_regno)
|
||
&& (!frame_pointer_needed
|
||
|| third_regno != FRAME_POINTER_REGNUM)
|
||
&& second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tldm.l @sp+,%s-%s\n",
|
||
h8_reg_names[fourth_regno],
|
||
h8_reg_names[regno]);
|
||
idx += 3;
|
||
continue;
|
||
}
|
||
}
|
||
if (regno == 6 || regno == 2)
|
||
{
|
||
int second_regno = pop_order[idx + 1];
|
||
int third_regno = pop_order[idx + 2];
|
||
|
||
if (third_regno >= 0
|
||
&& WORD_REG_USED (third_regno)
|
||
&& (!frame_pointer_needed
|
||
|| third_regno != FRAME_POINTER_REGNUM)
|
||
&& second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tldm.l @sp+,%s-%s\n",
|
||
h8_reg_names[third_regno],
|
||
h8_reg_names[regno]);
|
||
idx += 2;
|
||
continue;
|
||
}
|
||
}
|
||
if (regno == 7 || regno == 5 || regno == 3 || regno == 1)
|
||
{
|
||
int second_regno = pop_order[idx + 1];
|
||
|
||
if (second_regno >= 0
|
||
&& WORD_REG_USED (second_regno)
|
||
&& (!frame_pointer_needed
|
||
|| second_regno != FRAME_POINTER_REGNUM))
|
||
{
|
||
fprintf (file, "\tldm.l @sp+,%s-%s\n",
|
||
h8_reg_names[second_regno],
|
||
h8_reg_names[regno]);
|
||
idx += 1;
|
||
continue;
|
||
}
|
||
}
|
||
}
|
||
fprintf (file, "\t%s\t%s\n", h8_pop_op, h8_reg_names[regno]);
|
||
}
|
||
}
|
||
|
||
/* deallocate locals */
|
||
dosize (file, "add", fsize);
|
||
|
||
/* pop frame pointer if we had one. */
|
||
if (frame_pointer_needed)
|
||
fprintf (file, "\t%s\t%s\n", h8_pop_op, h8_reg_names[FRAME_POINTER_REGNUM]);
|
||
|
||
/* If this is a monitor function, there is one register still left on
|
||
the stack. */
|
||
if (monitor)
|
||
fprintf (file, "\t%s\t%s\n", h8_pop_op, h8_reg_names[0]);
|
||
|
||
if (interrupt_handler)
|
||
fprintf (file, "\trte\n");
|
||
else
|
||
fprintf (file, "\trts\n");
|
||
|
||
out:
|
||
interrupt_handler = 0;
|
||
os_task = 0;
|
||
monitor = 0;
|
||
pragma_saveall = 0;
|
||
}
|
||
|
||
/* Output assembly code for the start of the file. */
|
||
|
||
asm_file_start (file)
|
||
FILE *file;
|
||
{
|
||
fprintf (file, ";\tGCC For the Hitachi H8/300\n");
|
||
fprintf (file, ";\tBy Hitachi America Ltd and Cygnus Support\n");
|
||
fprintf (file, ";\trelease F-1\n");
|
||
if (optimize)
|
||
fprintf (file, "; -O%d\n", optimize);
|
||
if (TARGET_H8300H)
|
||
fprintf (file, "\n\t.h8300h\n");
|
||
else if (TARGET_H8300S)
|
||
fprintf (file, "\n\t.h8300s\n");
|
||
else
|
||
fprintf (file, "\n\n");
|
||
output_file_directive (file, main_input_filename);
|
||
}
|
||
|
||
/* Output assembly language code for the end of file. */
|
||
|
||
void
|
||
asm_file_end (file)
|
||
FILE *file;
|
||
{
|
||
fprintf (file, "\t.end\n");
|
||
}
|
||
|
||
/* Return true if VALUE is a valid constant for constraint 'P'.
|
||
IE: VALUE is a power of two <= 2**15. */
|
||
|
||
int
|
||
small_power_of_two (value)
|
||
int value;
|
||
{
|
||
switch (value)
|
||
{
|
||
case 1:
|
||
case 2:
|
||
case 4:
|
||
case 8:
|
||
case 16:
|
||
case 32:
|
||
case 64:
|
||
case 128:
|
||
case 256:
|
||
case 512:
|
||
case 1024:
|
||
case 2048:
|
||
case 4096:
|
||
case 8192:
|
||
case 16384:
|
||
case 32768:
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if VALUE is a valid constant for constraint 'O', which
|
||
means that the constant would be ok to use as a bit for a bclr
|
||
instruction. */
|
||
|
||
int
|
||
ok_for_bclr (value)
|
||
int value;
|
||
{
|
||
return small_power_of_two ((~value) & 0xff);
|
||
}
|
||
|
||
/* Return true is OP is a valid source operand for an integer move
|
||
instruction. */
|
||
|
||
int
|
||
general_operand_src (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == POST_INC)
|
||
return 1;
|
||
return general_operand (op, mode);
|
||
}
|
||
|
||
/* Return true if OP is a valid destination operand for an integer move
|
||
instruction. */
|
||
|
||
int
|
||
general_operand_dst (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == PRE_DEC)
|
||
return 1;
|
||
return general_operand (op, mode);
|
||
}
|
||
|
||
/* Return true if OP is a const valid for a bit clear instruction. */
|
||
|
||
int
|
||
o_operand (operand, mode)
|
||
rtx operand;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (operand) == CONST_INT
|
||
&& CONST_OK_FOR_O (INTVAL (operand)));
|
||
}
|
||
|
||
/* Return true if OP is a const valid for a bit set or bit xor instruction. */
|
||
|
||
int
|
||
p_operand (operand, mode)
|
||
rtx operand;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (operand) == CONST_INT
|
||
&& CONST_OK_FOR_P (INTVAL (operand)));
|
||
}
|
||
|
||
/* Return true if OP is a valid call operand. */
|
||
|
||
int
|
||
call_insn_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == MEM)
|
||
{
|
||
rtx inside = XEXP (op, 0);
|
||
if (register_operand (inside, Pmode))
|
||
return 1;
|
||
if (CONSTANT_ADDRESS_P (inside))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
adds_subs_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == CONST_INT)
|
||
{
|
||
if (INTVAL (op) <= 4 && INTVAL (op) >= 0)
|
||
return 1;
|
||
if (INTVAL (op) >= -4 && INTVAL (op) <= 0)
|
||
return 1;
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& INTVAL (op) != 7
|
||
&& (INTVAL (op) <= 8 && INTVAL (op) >= 0))
|
||
return 1;
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& INTVAL (op) != -7
|
||
&& (INTVAL (op) >= -8 && INTVAL (op) <= 0))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if op is an adds/subs operand which only requires
|
||
one insn to implement. It is assumed that OP is already an adds/subs
|
||
operand. */
|
||
int
|
||
one_insn_adds_subs_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
int val = INTVAL (op);
|
||
|
||
if (val == 1 || val == -1
|
||
|| val == 2 || val == -2
|
||
|| ((TARGET_H8300H || TARGET_H8300S)
|
||
&& (val == 4 || val == -4)))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
char *
|
||
output_adds_subs (operands)
|
||
rtx *operands;
|
||
{
|
||
int val = INTVAL (operands[2]);
|
||
|
||
/* First get the value into the range -4..4 inclusive.
|
||
|
||
The only way it can be out of this range is when TARGET_H8300H
|
||
or TARGET_H8300S is true, thus it is safe to use adds #4 and subs #4. */
|
||
if (val > 4)
|
||
{
|
||
output_asm_insn ("adds #4,%A0", operands);
|
||
val -= 4;
|
||
}
|
||
|
||
if (val < -4)
|
||
{
|
||
output_asm_insn ("subs #4,%A0", operands);
|
||
val += 4;
|
||
}
|
||
|
||
/* Handle case were val == 4 or val == -4 and we're compiling
|
||
for TARGET_H8300H or TARGET_H8300S. */
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& val == 4)
|
||
return "adds #4,%A0";
|
||
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& val == -4)
|
||
return "subs #4,%A0";
|
||
|
||
if (val > 2)
|
||
{
|
||
output_asm_insn ("adds #2,%A0", operands);
|
||
val -= 2;
|
||
}
|
||
|
||
if (val < -2)
|
||
{
|
||
output_asm_insn ("subs #2,%A0", operands);
|
||
val += 2;
|
||
}
|
||
|
||
/* val should be one or two now. */
|
||
if (val == 2)
|
||
return "adds #2,%A0";
|
||
|
||
if (val == -2)
|
||
return "subs #2,%A0";
|
||
|
||
/* val should be one now. */
|
||
if (val == 1)
|
||
return "adds #1,%A0";
|
||
|
||
if (val == -1)
|
||
return "subs #1,%A0";
|
||
|
||
/* If not optimizing, we might be asked to add 0. */
|
||
if (val == 0)
|
||
return "";
|
||
|
||
/* In theory, this can't happen. */
|
||
abort ();
|
||
}
|
||
|
||
/* Return true if OP is a valid call operand, and OP represents
|
||
an operand for a small call (4 bytes instead of 6 bytes). */
|
||
|
||
int
|
||
small_call_insn_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == MEM)
|
||
{
|
||
rtx inside = XEXP (op, 0);
|
||
|
||
/* Register indirect is a small call. */
|
||
if (register_operand (inside, Pmode))
|
||
return 1;
|
||
|
||
/* A call through the function vector is a small
|
||
call too. */
|
||
if (GET_CODE (inside) == SYMBOL_REF
|
||
&& SYMBOL_REF_FLAG (inside))
|
||
return 1;
|
||
}
|
||
/* Otherwise it's a large call. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if OP is a valid jump operand. */
|
||
|
||
int
|
||
jump_address_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
if (GET_CODE (op) == REG)
|
||
return mode == Pmode;
|
||
|
||
if (GET_CODE (op) == MEM)
|
||
{
|
||
rtx inside = XEXP (op, 0);
|
||
if (register_operand (inside, Pmode))
|
||
return 1;
|
||
if (CONSTANT_ADDRESS_P (inside))
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Recognize valid operands for bitfield instructions. */
|
||
|
||
extern int rtx_equal_function_value_matters;
|
||
|
||
int
|
||
bit_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
/* We can except any general operand, expept that MEM operands must
|
||
be limited to those that use addresses valid for the 'U' constraint. */
|
||
if (!general_operand (op, mode))
|
||
return 0;
|
||
|
||
/* Accept any mem during RTL generation. Otherwise, the code that does
|
||
insv and extzv will think that we can not handle memory. However,
|
||
to avoid reload problems, we only accept 'U' MEM operands after RTL
|
||
generation. This means that any named pattern which uses this predicate
|
||
must force its operands to match 'U' before emitting RTL. */
|
||
|
||
if (GET_CODE (op) == REG)
|
||
return 1;
|
||
if (GET_CODE (op) == SUBREG)
|
||
return 1;
|
||
if (!rtx_equal_function_value_matters)
|
||
{
|
||
/* We're building rtl */
|
||
return GET_CODE (op) == MEM;
|
||
}
|
||
else
|
||
{
|
||
return (GET_CODE (op) == MEM
|
||
&& EXTRA_CONSTRAINT (op, 'U'));
|
||
}
|
||
}
|
||
|
||
int
|
||
bit_memory_operand (op, mode)
|
||
rtx op;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (op) == MEM
|
||
&& EXTRA_CONSTRAINT (op, 'U'));
|
||
}
|
||
|
||
/* Recognize valid operators for bit test. */
|
||
|
||
int
|
||
eq_operator (x, mode)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
{
|
||
return (GET_CODE (x) == EQ || GET_CODE (x) == NE);
|
||
}
|
||
|
||
/* Handle machine specific pragmas for compatibility with existing
|
||
compilers for the H8/300.
|
||
|
||
pragma saveall generates prolog/epilog code which saves and
|
||
restores all the registers on function entry.
|
||
|
||
pragma interrupt saves and restores all registers, and exits with
|
||
an rte instruction rather than an rts. A pointer to a function
|
||
with this attribute may be safely used in an interrupt vector. */
|
||
|
||
int
|
||
handle_pragma (file, t)
|
||
FILE *file;
|
||
tree t;
|
||
{
|
||
int retval = 0;
|
||
register char *pname;
|
||
|
||
if (TREE_CODE (t) != IDENTIFIER_NODE)
|
||
return 0;
|
||
|
||
pname = IDENTIFIER_POINTER (t);
|
||
if (strcmp (pname, "interrupt") == 0)
|
||
interrupt_handler = retval = 1;
|
||
else if (strcmp (pname, "saveall") == 0)
|
||
pragma_saveall = retval = 1;
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* If the next arg with MODE and TYPE is to be passed in a register, return
|
||
the rtx to represent where it is passed. CUM represents the state after
|
||
the last argument. NAMED is not used. */
|
||
|
||
static char *hand_list[] =
|
||
{
|
||
"__main",
|
||
"__cmpsi2",
|
||
"__divhi3",
|
||
"__modhi3",
|
||
"__udivhi3",
|
||
"__umodhi3",
|
||
"__divsi3",
|
||
"__modsi3",
|
||
"__udivsi3",
|
||
"__umodsi3",
|
||
"__mulhi3",
|
||
"__mulsi3",
|
||
"__reg_memcpy",
|
||
"__reg_memset",
|
||
"__ucmpsi2",
|
||
0,
|
||
};
|
||
|
||
/* Return an RTX to represent where a value with mode MODE will be returned
|
||
from a function. If the result is 0, the argument is pushed. */
|
||
|
||
rtx
|
||
function_arg (cum, mode, type, named)
|
||
CUMULATIVE_ARGS *cum;
|
||
enum machine_mode mode;
|
||
tree type;
|
||
int named;
|
||
{
|
||
rtx result = 0;
|
||
char *fname;
|
||
int regpass = 0;
|
||
|
||
/* Never pass unnamed arguments in registers. */
|
||
if (!named)
|
||
return 0;
|
||
|
||
/* Pass 3 regs worth of data in regs when user asked on the command line. */
|
||
if (TARGET_QUICKCALL)
|
||
regpass = 3;
|
||
|
||
/* If calling hand written assembler, use 4 regs of args. */
|
||
|
||
if (cum->libcall)
|
||
{
|
||
char **p;
|
||
|
||
fname = XSTR (cum->libcall, 0);
|
||
|
||
/* See if this libcall is one of the hand coded ones. */
|
||
|
||
for (p = hand_list; *p && strcmp (*p, fname) != 0; p++)
|
||
;
|
||
|
||
if (*p)
|
||
regpass = 4;
|
||
}
|
||
|
||
if (regpass)
|
||
{
|
||
int size;
|
||
|
||
if (mode == BLKmode)
|
||
size = int_size_in_bytes (type);
|
||
else
|
||
size = GET_MODE_SIZE (mode);
|
||
|
||
if (size + cum->nbytes > regpass * UNITS_PER_WORD)
|
||
{
|
||
result = 0;
|
||
}
|
||
else
|
||
{
|
||
switch (cum->nbytes / UNITS_PER_WORD)
|
||
{
|
||
case 0:
|
||
result = gen_rtx (REG, mode, 0);
|
||
break;
|
||
case 1:
|
||
result = gen_rtx (REG, mode, 1);
|
||
break;
|
||
case 2:
|
||
result = gen_rtx (REG, mode, 2);
|
||
break;
|
||
case 3:
|
||
result = gen_rtx (REG, mode, 3);
|
||
break;
|
||
default:
|
||
result = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Return the cost of the rtx R with code CODE. */
|
||
|
||
int
|
||
const_costs (r, c)
|
||
rtx r;
|
||
enum rtx_code c;
|
||
{
|
||
switch (c)
|
||
{
|
||
case CONST_INT:
|
||
switch (INTVAL (r))
|
||
{
|
||
case 0:
|
||
case 1:
|
||
case 2:
|
||
case -1:
|
||
case -2:
|
||
return 0;
|
||
case 4:
|
||
case -4:
|
||
if (TARGET_H8300H || TARGET_H8300S)
|
||
return 0;
|
||
else
|
||
return 1;
|
||
default:
|
||
return 1;
|
||
}
|
||
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
return 3;
|
||
|
||
case CONST_DOUBLE:
|
||
return 20;
|
||
|
||
default:
|
||
return 4;
|
||
}
|
||
}
|
||
|
||
/* Documentation for the machine specific operand escapes:
|
||
|
||
'A' print rn in h8/300 mode, erN in H8/300H mode
|
||
'C' print (operand - 2).
|
||
'E' like s but negative.
|
||
'F' like t but negative.
|
||
'G' constant just the negative
|
||
'L' fake label, changed after used twice.
|
||
'M' turn a 'M' constant into its negative mod 2.
|
||
'P' if operand is incing/decing sp, print .w, otherwise .b.
|
||
'R' print operand as a byte:8 address if appropriate, else fall back to
|
||
'X' handling.
|
||
'S' print operand as a long word
|
||
'T' print operand as a word
|
||
'U' if operand is incing/decing sp, print l, otherwise nothing.
|
||
'V' find the set bit, and print its number.
|
||
'W' find the clear bit, and print its number.
|
||
'X' print operand as a byte
|
||
'Y' print either l or h depending on whether last 'Z' operand < 8 or >= 8.
|
||
If this operand isn't a register, fall back to 'R' handling.
|
||
'Z' print int & 7.
|
||
'b' print the bit opcode
|
||
'c' print the ibit opcode
|
||
'd' bcc if EQ, bcs if NE
|
||
'e' first word of 32 bit value - if reg, then least reg. if mem
|
||
then least. if const then most sig word
|
||
'f' second word of 32 bit value - if reg, then biggest reg. if mem
|
||
then +2. if const then least sig word
|
||
'g' bcs if EQ, bcc if NE
|
||
'j' print operand as condition code.
|
||
'k' print operand as reverse condition code.
|
||
's' print as low byte of 16 bit value
|
||
't' print as high byte of 16 bit value
|
||
'w' print as low byte of 32 bit value
|
||
'x' print as 2nd byte of 32 bit value
|
||
'y' print as 3rd byte of 32 bit value
|
||
'z' print as msb of 32 bit value
|
||
*/
|
||
|
||
/* Return assembly language string which identifies a comparison type. */
|
||
|
||
static char *
|
||
cond_string (code)
|
||
enum rtx_code code;
|
||
{
|
||
switch (code)
|
||
{
|
||
case NE:
|
||
return "ne";
|
||
case EQ:
|
||
return "eq";
|
||
case GE:
|
||
return "ge";
|
||
case GT:
|
||
return "gt";
|
||
case LE:
|
||
return "le";
|
||
case LT:
|
||
return "lt";
|
||
case GEU:
|
||
return "hs";
|
||
case GTU:
|
||
return "hi";
|
||
case LEU:
|
||
return "ls";
|
||
case LTU:
|
||
return "lo";
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* Print operand X using operand code CODE to assembly language output file
|
||
FILE. */
|
||
|
||
void
|
||
print_operand (file, x, code)
|
||
FILE *file;
|
||
rtx x;
|
||
int code;
|
||
{
|
||
/* This is used to general unique labels for the 'L' code. */
|
||
static int lab = 1000;
|
||
|
||
/* This is used for communication between the 'P' and 'U' codes. */
|
||
static char *last_p;
|
||
|
||
/* This is used for communication between codes V,W,Z and Y. */
|
||
static int bitint;
|
||
|
||
switch (code)
|
||
{
|
||
case 'A':
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", h8_reg_names[REGNO (x)]);
|
||
else
|
||
goto def;
|
||
break;
|
||
case 'C':
|
||
fprintf (file, "#%d", INTVAL (x) - 2);
|
||
break;
|
||
case 'E':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
fprintf (file, "%sl", names_big[REGNO (x)]);
|
||
break;
|
||
case CONST_INT:
|
||
fprintf (file, "#%d", (-INTVAL (x)) & 0xff);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'F':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
fprintf (file, "%sh", names_big[REGNO (x)]);
|
||
break;
|
||
case CONST_INT:
|
||
fprintf (file, "#%d", ((-INTVAL (x)) & 0xff00) >> 8);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'G':
|
||
if (GET_CODE (x) != CONST_INT)
|
||
abort ();
|
||
fprintf (file, "#%d", 0xff & (-INTVAL (x)));
|
||
break;
|
||
case 'L':
|
||
/* 'L' must always be used twice in a single pattern. It generates
|
||
the same label twice, and then will generate a unique label the
|
||
next time it is used. */
|
||
asm_fprintf (file, "tl%d", (lab++) / 2);
|
||
break;
|
||
case 'M':
|
||
/* For 3/-3 and 4/-4, the other 2 is handled separately. */
|
||
switch (INTVAL (x))
|
||
{
|
||
case 2:
|
||
case 4:
|
||
case -2:
|
||
case -4:
|
||
fprintf (file, "#2");
|
||
break;
|
||
case 1:
|
||
case 3:
|
||
case -1:
|
||
case -3:
|
||
fprintf (file, "#1");
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'P':
|
||
if (REGNO (XEXP (XEXP (x, 0), 0)) == STACK_POINTER_REGNUM)
|
||
{
|
||
last_p = "";
|
||
fprintf (file, ".w");
|
||
}
|
||
else
|
||
{
|
||
last_p = "l";
|
||
fprintf (file, ".b");
|
||
}
|
||
break;
|
||
case 'S':
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", names_extended[REGNO (x)]);
|
||
else
|
||
goto def;
|
||
break;
|
||
case 'T':
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", names_big[REGNO (x)]);
|
||
else
|
||
goto def;
|
||
break;
|
||
case 'U':
|
||
fprintf (file, "%s%s", names_big[REGNO (x)], last_p);
|
||
break;
|
||
case 'V':
|
||
bitint = exact_log2 (INTVAL (x));
|
||
if (bitint == -1)
|
||
abort ();
|
||
fprintf (file, "#%d", bitint & 7);
|
||
break;
|
||
case 'W':
|
||
bitint = exact_log2 ((~INTVAL (x)) & 0xff);
|
||
if (bitint == -1)
|
||
abort ();
|
||
fprintf (file, "#%d", bitint & 7);
|
||
break;
|
||
case 'R':
|
||
case 'X':
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s", byte_reg (x, 0));
|
||
else
|
||
goto def;
|
||
break;
|
||
case 'Y':
|
||
if (bitint == -1)
|
||
abort ();
|
||
if (GET_CODE (x) == REG)
|
||
fprintf (file, "%s%c", names_big[REGNO (x)], bitint > 7 ? 'h' : 'l');
|
||
else
|
||
print_operand (file, x, 'R');
|
||
bitint = -1;
|
||
break;
|
||
case 'Z':
|
||
bitint = INTVAL (x);
|
||
fprintf (file, "#%d", bitint & 7);
|
||
break;
|
||
case 'b':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR:
|
||
fprintf (file, "bor");
|
||
break;
|
||
case XOR:
|
||
fprintf (file, "bxor");
|
||
break;
|
||
case AND:
|
||
fprintf (file, "band");
|
||
break;
|
||
}
|
||
break;
|
||
case 'c':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case IOR:
|
||
fprintf (file, "bior");
|
||
break;
|
||
case XOR:
|
||
fprintf (file, "bixor");
|
||
break;
|
||
case AND:
|
||
fprintf (file, "biand");
|
||
break;
|
||
}
|
||
break;
|
||
case 'd':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case EQ:
|
||
fprintf (file, "bcc");
|
||
break;
|
||
case NE:
|
||
fprintf (file, "bcs");
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'e':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
if (TARGET_H8300)
|
||
fprintf (file, "%s", names_big[REGNO (x)]);
|
||
else
|
||
fprintf (file, "%s", names_upper_extended[REGNO (x)]);
|
||
break;
|
||
case MEM:
|
||
x = adj_offsettable_operand (x, 0);
|
||
print_operand (file, x, 0);
|
||
break;
|
||
case CONST_INT:
|
||
fprintf (file, "#%d", ((INTVAL (x) >> 16) & 0xffff));
|
||
break;
|
||
default:
|
||
abort ();
|
||
break;
|
||
}
|
||
break;
|
||
case 'f':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
if (TARGET_H8300)
|
||
fprintf (file, "%s", names_big[REGNO (x) + 1]);
|
||
else
|
||
fprintf (file, "%s", names_big[REGNO (x)]);
|
||
break;
|
||
case MEM:
|
||
x = adj_offsettable_operand (x, 2);
|
||
print_operand (file, x, 0);
|
||
break;
|
||
case CONST_INT:
|
||
fprintf (file, "#%d", INTVAL (x) & 0xffff);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'g':
|
||
switch (GET_CODE (x))
|
||
{
|
||
case NE:
|
||
fprintf (file, "bcc");
|
||
break;
|
||
case EQ:
|
||
fprintf (file, "bcs");
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
case 'j':
|
||
asm_fprintf (file, cond_string (GET_CODE (x)));
|
||
break;
|
||
case 'k':
|
||
asm_fprintf (file, cond_string (reverse_condition (GET_CODE (x))));
|
||
break;
|
||
case 's':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", (INTVAL (x)) & 0xff);
|
||
else
|
||
fprintf (file, "%s", byte_reg (x, 0));
|
||
break;
|
||
case 't':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", (INTVAL (x) >> 8) & 0xff);
|
||
else
|
||
fprintf (file, "%s", byte_reg (x, 1));
|
||
break;
|
||
case 'u':
|
||
if (GET_CODE (x) != CONST_INT)
|
||
abort ();
|
||
fprintf (file, "%d", INTVAL (x));
|
||
break;
|
||
case 'w':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", INTVAL (x) & 0xff);
|
||
else
|
||
fprintf (file, "%s",
|
||
byte_reg (x, TARGET_H8300 ? 2 : 0));
|
||
break;
|
||
case 'x':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", (INTVAL (x) >> 8) & 0xff);
|
||
else
|
||
fprintf (file, "%s",
|
||
byte_reg (x, TARGET_H8300 ? 3 : 1));
|
||
break;
|
||
case 'y':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", (INTVAL (x) >> 16) & 0xff);
|
||
else
|
||
fprintf (file, "%s", byte_reg (x, 0));
|
||
break;
|
||
case 'z':
|
||
if (GET_CODE (x) == CONST_INT)
|
||
fprintf (file, "#%d", (INTVAL (x) >> 24) & 0xff);
|
||
else
|
||
fprintf (file, "%s", byte_reg (x, 1));
|
||
break;
|
||
|
||
default:
|
||
def:
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
switch (GET_MODE (x))
|
||
{
|
||
case QImode:
|
||
#if 0 /* Is it asm ("mov.b %0,r2l", ...) */
|
||
fprintf (file, "%s", byte_reg (x, 0));
|
||
#else /* ... or is it asm ("mov.b %0l,r2l", ...) */
|
||
fprintf (file, "%s", names_big[REGNO (x)]);
|
||
#endif
|
||
break;
|
||
case HImode:
|
||
fprintf (file, "%s", names_big[REGNO (x)]);
|
||
break;
|
||
case SImode:
|
||
case SFmode:
|
||
fprintf (file, "%s", names_extended[REGNO (x)]);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
fprintf (file, "@");
|
||
output_address (XEXP (x, 0));
|
||
|
||
/* If this is an 'R' operand (reference into the 8-bit area),
|
||
then specify a symbolic address as "foo:8". */
|
||
if (code == 'R'
|
||
&& GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
||
&& SYMBOL_REF_FLAG (XEXP (x, 0)))
|
||
fprintf (file, ":8");
|
||
if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
||
&& TINY_DATA_NAME_P (XSTR (XEXP (x, 0), 0)))
|
||
fprintf (file, ":16");
|
||
break;
|
||
|
||
case CONST_INT:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
case LABEL_REF:
|
||
fprintf (file, "#");
|
||
print_operand_address (file, x);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Output assembly language output for the address ADDR to FILE. */
|
||
|
||
void
|
||
print_operand_address (file, addr)
|
||
FILE *file;
|
||
rtx addr;
|
||
{
|
||
switch (GET_CODE (addr))
|
||
{
|
||
case REG:
|
||
fprintf (file, "%s", h8_reg_names[REGNO (addr)]);
|
||
break;
|
||
|
||
case PRE_DEC:
|
||
fprintf (file, "-%s", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case POST_INC:
|
||
fprintf (file, "%s+", h8_reg_names[REGNO (XEXP (addr, 0))]);
|
||
break;
|
||
|
||
case PLUS:
|
||
fprintf (file, "(");
|
||
if (GET_CODE (XEXP (addr, 0)) == REG)
|
||
{
|
||
/* reg,foo */
|
||
print_operand_address (file, XEXP (addr, 1));
|
||
fprintf (file, ",");
|
||
print_operand_address (file, XEXP (addr, 0));
|
||
}
|
||
else
|
||
{
|
||
/* foo+k */
|
||
print_operand_address (file, XEXP (addr, 0));
|
||
fprintf (file, "+");
|
||
print_operand_address (file, XEXP (addr, 1));
|
||
}
|
||
fprintf (file, ")");
|
||
break;
|
||
|
||
case CONST_INT:
|
||
{
|
||
/* Since the h8/300 only has 16 bit pointers, negative values are also
|
||
those >= 32768. This happens for example with pointer minus a
|
||
constant. We don't want to turn (char *p - 2) into
|
||
(char *p + 65534) because loop unrolling can build upon this
|
||
(IE: char *p + 131068). */
|
||
int n = INTVAL (addr);
|
||
if (TARGET_H8300)
|
||
n = (int) (short) n;
|
||
if (n < 0)
|
||
/* ??? Why the special case for -ve values? */
|
||
fprintf (file, "-%d", -n);
|
||
else
|
||
fprintf (file, "%d", n);
|
||
break;
|
||
}
|
||
|
||
default:
|
||
output_addr_const (file, addr);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Output all insn addresses and their sizes into the assembly language
|
||
output file. This is helpful for debugging whether the length attributes
|
||
in the md file are correct. This is not meant to be a user selectable
|
||
option. */
|
||
|
||
void
|
||
final_prescan_insn (insn, operand, num_operands)
|
||
rtx insn, *operand;
|
||
int num_operands;
|
||
{
|
||
/* This holds the last insn address. */
|
||
static int last_insn_address = 0;
|
||
|
||
int uid = INSN_UID (insn);
|
||
|
||
if (TARGET_RTL_DUMP)
|
||
{
|
||
fprintf (asm_out_file, "\n****************");
|
||
print_rtl (asm_out_file, PATTERN (insn));
|
||
fprintf (asm_out_file, "\n");
|
||
}
|
||
|
||
if (TARGET_ADDRESSES)
|
||
{
|
||
fprintf (asm_out_file, "; 0x%x %d\n", insn_addresses[uid],
|
||
insn_addresses[uid] - last_insn_address);
|
||
last_insn_address = insn_addresses[uid];
|
||
}
|
||
}
|
||
|
||
/* Prepare for an SI sized move. */
|
||
|
||
int
|
||
do_movsi (operands)
|
||
rtx operands[];
|
||
{
|
||
rtx src = operands[1];
|
||
rtx dst = operands[0];
|
||
if (!reload_in_progress && !reload_completed)
|
||
{
|
||
if (!register_operand (dst, GET_MODE (dst)))
|
||
{
|
||
rtx tmp = gen_reg_rtx (GET_MODE (dst));
|
||
emit_move_insn (tmp, src);
|
||
operands[1] = tmp;
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Function for INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET).
|
||
Define the offset between two registers, one to be eliminated, and the other
|
||
its replacement, at the start of a routine. */
|
||
|
||
int
|
||
initial_offset (from, to)
|
||
{
|
||
int offset = 0;
|
||
|
||
if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
|
||
offset = UNITS_PER_WORD + frame_pointer_needed * UNITS_PER_WORD;
|
||
else
|
||
{
|
||
int regno;
|
||
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if ((regs_ever_live[regno]
|
||
&& (!call_used_regs[regno] || regno == FRAME_POINTER_REGNUM)))
|
||
offset += UNITS_PER_WORD;
|
||
|
||
/* See the comments for get_frame_size. We need to round it up to
|
||
STACK_BOUNDARY. */
|
||
|
||
offset += ((get_frame_size () + STACK_BOUNDARY / BITS_PER_UNIT - 1)
|
||
& ~(STACK_BOUNDARY / BITS_PER_UNIT - 1));
|
||
|
||
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
||
offset += UNITS_PER_WORD; /* Skip saved PC */
|
||
}
|
||
return offset;
|
||
}
|
||
|
||
/* Update the condition code from the insn. */
|
||
|
||
int
|
||
notice_update_cc (body, insn)
|
||
rtx body;
|
||
rtx insn;
|
||
{
|
||
switch (get_attr_cc (insn))
|
||
{
|
||
case CC_NONE:
|
||
/* Insn does not affect CC at all. */
|
||
break;
|
||
|
||
case CC_NONE_0HIT:
|
||
/* Insn does not change CC, but the 0'th operand has been changed. */
|
||
if (cc_status.value1 != 0
|
||
&& reg_overlap_mentioned_p (recog_operand[0], cc_status.value1))
|
||
cc_status.value1 = 0;
|
||
break;
|
||
|
||
case CC_SET_ZN:
|
||
/* Insn sets the Z,N flags of CC to recog_operand[0].
|
||
The V flag is unusable. The C flag may or may not be known but
|
||
that's ok because alter_cond will change tests to use EQ/NE. */
|
||
CC_STATUS_INIT;
|
||
cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
|
||
cc_status.value1 = recog_operand[0];
|
||
break;
|
||
|
||
case CC_SET_ZNV:
|
||
/* Insn sets the Z,N,V flags of CC to recog_operand[0].
|
||
The C flag may or may not be known but that's ok because
|
||
alter_cond will change tests to use EQ/NE. */
|
||
CC_STATUS_INIT;
|
||
cc_status.flags |= CC_NO_CARRY;
|
||
cc_status.value1 = recog_operand[0];
|
||
break;
|
||
|
||
case CC_COMPARE:
|
||
/* The insn is a compare instruction. */
|
||
CC_STATUS_INIT;
|
||
cc_status.value1 = SET_SRC (body);
|
||
break;
|
||
|
||
case CC_CLOBBER:
|
||
/* Insn doesn't leave CC in a usable state. */
|
||
CC_STATUS_INIT;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Recognize valid operators for bit instructions */
|
||
|
||
int
|
||
bit_operator (x, mode)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
return (code == XOR
|
||
|| code == AND
|
||
|| code == IOR);
|
||
}
|
||
|
||
/* Shifts.
|
||
|
||
We devote a fair bit of code to getting efficient shifts since we can only
|
||
shift one bit at a time on the H8/300 and H8/300H and only one or two
|
||
bits at a time on the H8/S.
|
||
|
||
The basic shift methods:
|
||
|
||
* loop shifts -- emit a loop using one (or two on H8/S) bit shifts;
|
||
this is the default. SHIFT_LOOP
|
||
|
||
* inlined shifts -- emit straight line code for the shift; this is
|
||
used when a straight line shift is about the same size or smaller
|
||
than a loop. We allow the inline version to be slightly longer in
|
||
some cases as it saves a register. SHIFT_INLINE
|
||
|
||
* rotate + and -- rotate the value the opposite direction, then
|
||
mask off the values we don't need. This is used when only a few
|
||
of the bits in the original value will survive in the shifted value.
|
||
Again, this is used when it's about the same size or smaller than
|
||
a loop. We allow this version to be slightly longer as it is usually
|
||
much faster than a loop. SHIFT_ROT_AND
|
||
|
||
* swap (+ shifts) -- often it's possible to swap bytes/words to
|
||
simulate a shift by 8/16. Once swapped a few inline shifts can be
|
||
added if the shift count is slightly more than 8 or 16. This is used
|
||
when it's about the same size or smaller than a loop. We allow this
|
||
version to be slightly longer as it is usually much faster than a loop.
|
||
SHIFT_SPECIAL
|
||
|
||
* There other oddballs. Not worth explaining. SHIFT_SPECIAL
|
||
|
||
|
||
Here are some thoughts on what the absolutely positively best code is.
|
||
"Best" here means some rational trade-off between code size and speed,
|
||
where speed is more preferred but not at the expense of generating 20 insns.
|
||
|
||
A trailing '*' after the shift count indicates the "best" mode isn't
|
||
implemented.
|
||
|
||
H8/300 QImode shifts
|
||
1-4 - do them inline
|
||
5-6 - ASHIFT | LSHIFTRT: rotate, mask off other bits
|
||
ASHIFTRT: loop
|
||
7 - ASHIFT | LSHIFTRT: rotate, mask off other bits
|
||
ASHIFTRT: shll, subx (propagate carry bit to all bits)
|
||
|
||
H8/300 HImode shifts
|
||
1-4 - do them inline
|
||
5-6 - loop
|
||
7 - shift 2nd half other way into carry.
|
||
copy 1st half into 2nd half
|
||
rotate 2nd half other way with carry
|
||
rotate 1st half other way (no carry)
|
||
mask off bits in 1st half (ASHIFT | LSHIFTRT).
|
||
sign extend 1st half (ASHIFTRT)
|
||
8 - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
|
||
9-12 - do shift by 8, inline remaining shifts
|
||
13-14* - ASHIFT | LSHIFTRT: rotate 3/2, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: loop
|
||
15 - ASHIFT | LSHIFTRT: rotate 1, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: shll, subx, set other byte
|
||
|
||
H8/300 SImode shifts
|
||
1-2 - do them inline
|
||
3-6 - loop
|
||
7* - shift other way once, move bytes into place,
|
||
move carry into place (possibly with sign extension)
|
||
8 - move bytes into place, zero or sign extend other
|
||
9-14 - loop
|
||
15* - shift other way once, move word into place, move carry into place
|
||
16 - move word, zero or sign extend other
|
||
17-23 - loop
|
||
24* - move bytes into place, zero or sign extend other
|
||
25-27 - loop
|
||
28-30* - ASHIFT | LSHIFTRT: rotate top byte, mask, move byte into place,
|
||
zero others
|
||
ASHIFTRT: loop
|
||
31 - ASHIFT | LSHIFTRT: rotate top byte, mask, byte byte into place,
|
||
zero others
|
||
ASHIFTRT: shll top byte, subx, copy to other bytes
|
||
|
||
H8/300H QImode shifts (same as H8/300 QImode shifts)
|
||
1-4 - do them inline
|
||
5-6 - ASHIFT | LSHIFTRT: rotate, mask off other bits
|
||
ASHIFTRT: loop
|
||
7 - ASHIFT | LSHIFTRT: rotate, mask off other bits
|
||
ASHIFTRT: shll, subx (propagate carry bit to all bits)
|
||
|
||
|
||
H8/300H HImode shifts
|
||
1-4 - do them inline
|
||
5-6 - loop
|
||
7 - shift 2nd half other way into carry.
|
||
copy 1st half into 2nd half
|
||
rotate entire word other way using carry
|
||
mask off remaining bits (ASHIFT | LSHIFTRT)
|
||
sign extend remaining bits (ASHIFTRT)
|
||
8 - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
|
||
9-12 - do shift by 8, inline remaining shifts
|
||
13-14 - ASHIFT | LSHIFTRT: rotate 3/2, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: loop
|
||
15 - ASHIFT | LSHIFTRT: rotate 1, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: shll, subx, set other byte
|
||
|
||
H8/300H SImode shifts
|
||
(These are complicated by the fact that we don't have byte level access to
|
||
the top word.)
|
||
A word is: bytes 3,2,1,0 (msb -> lsb), word 1,0 (msw -> lsw)
|
||
1-4 - do them inline
|
||
5-14 - loop
|
||
15* - shift other way once, move word into place, move carry into place
|
||
(with sign extension for ASHIFTRT)
|
||
16 - move word into place, zero or sign extend other
|
||
17-20 - do 16bit shift, then inline remaining shifts
|
||
20-23 - loop
|
||
24* - ASHIFT: move byte 0(msb) to byte 1, zero byte 0,
|
||
move word 0 to word 1, zero word 0
|
||
LSHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
|
||
zero word 1, zero byte 1
|
||
ASHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
|
||
sign extend byte 0, sign extend word 0
|
||
25-27* - either loop, or
|
||
do 24 bit shift, inline rest
|
||
28-30 - ASHIFT: rotate 4/3/2, mask
|
||
LSHIFTRT: rotate 4/3/2, mask
|
||
ASHIFTRT: loop
|
||
31 - shll, subx byte 0, sign extend byte 0, sign extend word 0
|
||
|
||
H8/S QImode shifts
|
||
1-6 - do them inline
|
||
7 - ASHIFT | LSHIFTRT: rotate, mask off other bits
|
||
ASHIFTRT: shll, subx (propagate carry bit to all bits)
|
||
|
||
H8/S HImode shifts
|
||
1-7 - do them inline
|
||
8 - move byte, zero (ASHIFT | LSHIFTRT) or sign extend other (ASHIFTRT)
|
||
9-12 - do shift by 8, inline remaining shifts
|
||
13-14 - ASHIFT | LSHIFTRT: rotate 3/2, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: loop
|
||
15 - ASHIFT | LSHIFTRT: rotate 1, mask, move byte, set other byte to 0
|
||
- ASHIFTRT: shll, subx, set other byte
|
||
|
||
H8/S SImode shifts
|
||
(These are complicated by the fact that we don't have byte level access to
|
||
the top word.)
|
||
A word is: bytes 3,2,1,0 (msb -> lsb), word 1,0 (msw -> lsw)
|
||
1-10 - do them inline
|
||
11-14 - loop
|
||
15* - shift other way once, move word into place, move carry into place
|
||
(with sign extension for ASHIFTRT)
|
||
16 - move word into place, zero or sign extend other
|
||
17-20 - do 16bit shift, then inline remaining shifts
|
||
20-23 - loop
|
||
24* - ASHIFT: move byte 0(msb) to byte 1, zero byte 0,
|
||
move word 0 to word 1, zero word 0
|
||
LSHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
|
||
zero word 1, zero byte 1
|
||
ASHIFTRT: move word 1 to word 0, move byte 1 to byte 0,
|
||
sign extend byte 0, sign extend word 0
|
||
25-27* - either loop, or
|
||
do 24 bit shift, inline rest
|
||
28-30 - ASHIFT: rotate 4/3/2, mask
|
||
LSHIFTRT: rotate 4/3/2, mask
|
||
ASHIFTRT: loop
|
||
31 - shll, subx byte 0, sign extend byte 0, sign extend word 0
|
||
|
||
Panic!!! */
|
||
|
||
int
|
||
nshift_operator (x, mode)
|
||
rtx x;
|
||
enum machine_mode mode;
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case ASHIFTRT:
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
return 1;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Called from the .md file to emit code to do shifts.
|
||
Returns a boolean indicating success
|
||
(currently this is always TRUE). */
|
||
|
||
int
|
||
expand_a_shift (mode, code, operands)
|
||
enum machine_mode mode;
|
||
int code;
|
||
rtx operands[];
|
||
{
|
||
emit_move_insn (operands[0], operands[1]);
|
||
|
||
/* need a loop to get all the bits we want - we generate the
|
||
code at emit time, but need to allocate a scratch reg now */
|
||
|
||
emit_insn (gen_rtx
|
||
(PARALLEL, VOIDmode,
|
||
gen_rtvec (2,
|
||
gen_rtx (SET, VOIDmode, operands[0],
|
||
gen_rtx (code, mode, operands[0], operands[2])),
|
||
gen_rtx (CLOBBER, VOIDmode, gen_rtx (SCRATCH, QImode, 0)))));
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Shift algorithm determination.
|
||
|
||
There are various ways of doing a shift:
|
||
SHIFT_INLINE: If the amount is small enough, just generate as many one-bit
|
||
shifts as we need.
|
||
SHIFT_ROT_AND: If the amount is large but close to either end, rotate the
|
||
necessary bits into position and then set the rest to zero.
|
||
SHIFT_SPECIAL: Hand crafted assembler.
|
||
SHIFT_LOOP: If the above methods fail, just loop. */
|
||
|
||
enum shift_alg
|
||
{
|
||
SHIFT_INLINE,
|
||
SHIFT_ROT_AND,
|
||
SHIFT_SPECIAL,
|
||
SHIFT_LOOP,
|
||
SHIFT_MAX
|
||
};
|
||
|
||
/* Symbols of the various shifts which can be used as indices. */
|
||
|
||
enum shift_type
|
||
{
|
||
SHIFT_ASHIFT, SHIFT_LSHIFTRT, SHIFT_ASHIFTRT
|
||
};
|
||
|
||
/* Symbols of the various modes which can be used as indices. */
|
||
|
||
enum shift_mode
|
||
{
|
||
QIshift, HIshift, SIshift
|
||
};
|
||
|
||
/* For single bit shift insns, record assembler and what bits of the
|
||
condition code are valid afterwards (represented as various CC_FOO
|
||
bits, 0 means CC isn't left in a usable state). */
|
||
|
||
struct shift_insn
|
||
{
|
||
char *assembler;
|
||
int cc_valid;
|
||
};
|
||
|
||
/* Assembler instruction shift table.
|
||
|
||
These tables are used to look up the basic shifts.
|
||
They are indexed by cpu, shift_type, and mode.
|
||
*/
|
||
|
||
static const struct shift_insn shift_one[2][3][3] =
|
||
{
|
||
/* H8/300 */
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
{ "shll\t%X0", CC_NO_CARRY },
|
||
{ "add.w\t%T0,%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "add.w\t%f0,%f0\n\taddx\t%y0,%y0\n\taddx\t%z0,%z0", 0 }
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
{ "shlr\t%X0", CC_NO_CARRY },
|
||
{ "shlr\t%t0\n\trotxr\t%s0", 0 },
|
||
{ "shlr\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", 0 }
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
{ "shar\t%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "shar\t%t0\n\trotxr\t%s0", 0 },
|
||
{ "shar\t%z0\n\trotxr\t%y0\n\trotxr\t%x0\n\trotxr\t%w0", 0 }
|
||
}
|
||
},
|
||
/* H8/300H */
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
{ "shll.b\t%X0", CC_NO_CARRY },
|
||
{ "shll.w\t%T0", CC_NO_CARRY },
|
||
{ "shll.l\t%S0", CC_NO_CARRY }
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
{ "shlr.b\t%X0", CC_NO_CARRY },
|
||
{ "shlr.w\t%T0", CC_NO_CARRY },
|
||
{ "shlr.l\t%S0", CC_NO_CARRY }
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
{ "shar.b\t%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "shar.w\t%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "shar.l\t%S0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY }
|
||
}
|
||
}
|
||
};
|
||
|
||
static const struct shift_insn shift_two[3][3] =
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
{ "shll.b\t#2,%X0", CC_NO_CARRY },
|
||
{ "shll.w\t#2,%T0", CC_NO_CARRY },
|
||
{ "shll.l\t#2,%S0", CC_NO_CARRY }
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
{ "shlr.b\t#2,%X0", CC_NO_CARRY },
|
||
{ "shlr.w\t#2,%T0", CC_NO_CARRY },
|
||
{ "shlr.l\t#2,%S0", CC_NO_CARRY }
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
{ "shar.b\t#2,%X0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "shar.w\t#2,%T0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY },
|
||
{ "shar.l\t#2,%S0", CC_OVERFLOW_UNUSABLE | CC_NO_CARRY }
|
||
}
|
||
};
|
||
|
||
/* Rotates are organized by which shift they'll be used in implementing.
|
||
There's no need to record whether the cc is valid afterwards because
|
||
it is the AND insn that will decide this. */
|
||
|
||
static const char *const rotate_one[2][3][3] =
|
||
{
|
||
/* H8/300 */
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
"rotr\t%X0",
|
||
"shlr\t%t0\n\trotxr\t%s0\n\tbst\t#7,%t0",
|
||
0
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
"rotl\t%X0",
|
||
"shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
|
||
0
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
"rotl\t%X0",
|
||
"shll\t%s0\n\trotxl\t%t0\n\tbst\t#0,%s0",
|
||
0
|
||
}
|
||
},
|
||
/* H8/300H */
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
"rotr.b\t%X0",
|
||
"rotr.w\t%T0",
|
||
"rotr.l\t%S0"
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
"rotl.b\t%X0",
|
||
"rotl.w\t%T0",
|
||
"rotl.l\t%S0"
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
"rotl.b\t%X0",
|
||
"rotl.w\t%T0",
|
||
"rotl.l\t%S0"
|
||
}
|
||
}
|
||
};
|
||
|
||
static const char *const rotate_two[3][3] =
|
||
{
|
||
/* SHIFT_ASHIFT */
|
||
{
|
||
"rotr.b\t#2,%X0",
|
||
"rotr.w\t#2,%T0",
|
||
"rotr.l\t#2,%S0"
|
||
},
|
||
/* SHIFT_LSHIFTRT */
|
||
{
|
||
"rotl.b\t#2,%X0",
|
||
"rotl.w\t#2,%T0",
|
||
"rotl.l\t#2,%S0"
|
||
},
|
||
/* SHIFT_ASHIFTRT */
|
||
{
|
||
"rotl.b\t#2,%X0",
|
||
"rotl.w\t#2,%T0",
|
||
"rotl.l\t#2,%S0"
|
||
}
|
||
};
|
||
|
||
/* Given CPU, MODE, SHIFT_TYPE, and shift count COUNT, determine the best
|
||
algorithm for doing the shift. The assembler code is stored in ASSEMBLER.
|
||
We don't achieve maximum efficiency in all cases, but the hooks are here
|
||
to do so.
|
||
|
||
For now we just use lots of switch statements. Since we don't even come
|
||
close to supporting all the cases, this is simplest. If this function ever
|
||
gets too big, perhaps resort to a more table based lookup. Of course,
|
||
at this point you may just wish to do it all in rtl.
|
||
|
||
WARNING: The constraints on insns shiftbyn_QI/HI/SI assume shifts of
|
||
1,2,3,4 will be inlined (1,2 for SI). */
|
||
|
||
static enum shift_alg
|
||
get_shift_alg (cpu, shift_type, mode, count, assembler_p,
|
||
assembler2_p, cc_valid_p)
|
||
enum attr_cpu cpu;
|
||
enum shift_type shift_type;
|
||
enum machine_mode mode;
|
||
int count;
|
||
const char **assembler_p;
|
||
const char **assembler2_p;
|
||
int *cc_valid_p;
|
||
{
|
||
/* The default is to loop. */
|
||
enum shift_alg alg = SHIFT_LOOP;
|
||
enum shift_mode shift_mode;
|
||
|
||
/* We don't handle negative shifts or shifts greater than the word size,
|
||
they should have been handled already. */
|
||
|
||
if (count < 0 || count > GET_MODE_BITSIZE (mode))
|
||
abort ();
|
||
|
||
switch (mode)
|
||
{
|
||
case QImode:
|
||
shift_mode = QIshift;
|
||
break;
|
||
case HImode:
|
||
shift_mode = HIshift;
|
||
break;
|
||
case SImode:
|
||
shift_mode = SIshift;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
/* Assume either SHIFT_LOOP or SHIFT_INLINE.
|
||
It is up to the caller to know that looping clobbers cc. */
|
||
*assembler_p = shift_one[cpu][shift_type][shift_mode].assembler;
|
||
if (TARGET_H8300S)
|
||
*assembler2_p = shift_two[shift_type][shift_mode].assembler;
|
||
else
|
||
*assembler2_p = NULL;
|
||
*cc_valid_p = shift_one[cpu][shift_type][shift_mode].cc_valid;
|
||
|
||
/* Now look for cases we want to optimize. */
|
||
|
||
switch (shift_mode)
|
||
{
|
||
case QIshift:
|
||
if (count <= 4)
|
||
return SHIFT_INLINE;
|
||
else
|
||
{
|
||
/* Shift by 5/6 are only 3 insns on the H8/S, so it's just as
|
||
fast as SHIFT_ROT_AND, plus CC is valid. */
|
||
if (TARGET_H8300S && count <= 6)
|
||
return SHIFT_INLINE;
|
||
|
||
/* For ASHIFTRT by 7 bits, the sign bit is simply replicated
|
||
through the entire value. */
|
||
if (shift_type == SHIFT_ASHIFTRT && count == 7)
|
||
{
|
||
*assembler_p = "shll\t%X0\n\tsubx\t%X0,%X0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
|
||
/* Other ASHIFTRTs are too much of a pain. */
|
||
if (shift_type == SHIFT_ASHIFTRT)
|
||
return SHIFT_LOOP;
|
||
|
||
/* Other shifts by 5, 6, or 7 bits use SHIFT_ROT_AND. */
|
||
*assembler_p = rotate_one[cpu][shift_type][shift_mode];
|
||
if (TARGET_H8300S)
|
||
*assembler2_p = rotate_two[shift_type][shift_mode];
|
||
*cc_valid_p = 0;
|
||
return SHIFT_ROT_AND;
|
||
}
|
||
|
||
case HIshift:
|
||
if (count <= 4)
|
||
return SHIFT_INLINE;
|
||
else if (TARGET_H8300S && count <= 7)
|
||
return SHIFT_INLINE;
|
||
else if (count == 7)
|
||
{
|
||
if (shift_type == SHIFT_ASHIFT && TARGET_H8300)
|
||
{
|
||
*assembler_p = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.b\t%t0\n\trotr.b\t%s0\n\tand.b\t#0x80,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
|
||
if (shift_type == SHIFT_ASHIFT && TARGET_H8300H)
|
||
{
|
||
*assembler_p = "shar.b\t%t0\n\tmov.b\t%s0,%t0\n\trotxr.w\t%T0\n\tand.b\t#0x80,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
|
||
if (shift_type == SHIFT_LSHIFTRT && TARGET_H8300)
|
||
{
|
||
*assembler_p = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\trotl.b\t%t0\n\tand.b\t#0x01,%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
|
||
if (shift_type == SHIFT_LSHIFTRT && TARGET_H8300H)
|
||
{
|
||
*assembler_p = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.w\t%T0\n\tand.b\t#0x01,%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
|
||
if (shift_type == SHIFT_ASHIFTRT)
|
||
{
|
||
*assembler_p = "shal.b\t%s0\n\tmov.b\t%t0,%s0\n\trotxl.b\t%s0\n\tsubx\t%t0,%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 8)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tshll\t%t0\n\tsubx\t%t0,%t0\t";
|
||
else
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 9)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0\n\tshar.b\t%s0";
|
||
else
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 10)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t#2,%t0\n\t";
|
||
else
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t%t0\n\tshal.b\t%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t#2,%s0";
|
||
else
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t%s0\n\tshlr.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300H)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.b\t#2,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 11)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t#2,%t0\n\tshal.b\t%t0";
|
||
else
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t%t0\n\tshal.b\t%t0\n\tshal.b\t%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t#2,%s0\n\tshlr.b\t%s0";
|
||
else
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t%s0\n\tshlr.b\t%s0\n\tshlr.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300H)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\texts.w\t%T0\n\tshar.b\t#2,%s0\n\tshar.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 12)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t#2,%t0\n\tshal.b\t#2,%t0";
|
||
else
|
||
*assembler_p = "mov.b\t%s0,%t0\n\tsub.b\t%s0,%s0\n\tshal.b\t%t0\n\tshal.b\t%t0\n\tshal.b\t%t0\n\tshal.b\t%t0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t#2,%s0\n\tshlr.b\t#2,%s0";
|
||
else
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tsub.b\t%t0,%t0\n\tshlr.b\t%s0\n\tshlr.b\t%s0\n\tshlr.b\t%s0\n\tshlr.b\t%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\tbld\t#7,%s0\n\tsubx\t%t0,%t0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300H)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\textw.w\t%T0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0\n\tshar.b\t%s0";
|
||
else if (TARGET_H8300S)
|
||
*assembler_p = "mov.b\t%t0,%s0\n\textw.w\t%T0\n\tshar.b\t#2,%s0\n\tshar.b\t#2,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (!TARGET_H8300 && (count == 13 || count == 14)
|
||
|| count == 15)
|
||
{
|
||
if (count == 15 && shift_type == SHIFT_ASHIFTRT)
|
||
{
|
||
*assembler_p = "shll\t%t0,%t0\n\tsubx\t%t0,%t0\n\tmov.b\t%t0,%s0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
else if (shift_type != SHIFT_ASHIFTRT)
|
||
{
|
||
*assembler_p = rotate_one[cpu][shift_type][shift_mode];
|
||
if (TARGET_H8300S)
|
||
*assembler2_p = rotate_two[shift_type][shift_mode];
|
||
else
|
||
*assembler2_p = NULL;
|
||
*cc_valid_p = 0;
|
||
return SHIFT_ROT_AND;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case SIshift:
|
||
if (count <= (TARGET_H8300 ? 2 : 4))
|
||
return SHIFT_INLINE;
|
||
else if (TARGET_H8300S && count <= 10)
|
||
return SHIFT_INLINE;
|
||
else if (count == 8 && TARGET_H8300)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.b\t%y0,%z0n\tmov.b\t%x0,%y0\n\tmov.b\t%w0,%x0\n\tsub.b\t%w0,%w0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tsub.b\t%z0,%z0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
*assembler_p = "mov.b\t%x0,%w0\n\tmov.b\t%y0,%x0\n\tmov.b\t%z0,%y0\n\tshll\t%z0\n\tsubx\t%z0,%z0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 16)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300)
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tshll\t%z0\n\tsubx\t%z0,%z0\n\tmov.b\t%z0,%y0";
|
||
else
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 17 && !TARGET_H8300)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 18 && !TARGET_H8300)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t#2,%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t%S0\n\tshll.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t#2,%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t%S0\n\tshlr.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t#2,%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t%S0\n\tshar.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 19 && !TARGET_H8300)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t#2,%S0\n\tshll.l\t%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t%S0\n\tshll.l\t%S0\n\tshll.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t#2,%S0\n\tshlr.l\t%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t%S0\n\tshlr.l\t%S0\n\tshlr.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
if (TARGET_H8300S)
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t#2,%S0\n\tshar.l\t%S0";
|
||
else
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t%S0\n\tshar.l\t%S0\n\tshar.l\t%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count == 20 && TARGET_H8300S)
|
||
{
|
||
switch (shift_type)
|
||
{
|
||
case SHIFT_ASHIFT:
|
||
*assembler_p = "mov.w\t%f0,%e0\n\tsub.w\t%f0,%f0\n\tshll.l\t#2,%S0\n\tshll.l\t#2,%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_LSHIFTRT:
|
||
*assembler_p = "mov.w\t%e0,%f0\n\tsub.w\t%e0,%e0\n\tshlr.l\t#2,%S0\n\tshlr.l\t#2,%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
case SHIFT_ASHIFTRT:
|
||
*assembler_p = "mov.w\t%e0,%f0\n\texts.l\t%S0\n\tshar.l\t#2,%S0\n\tshar.l\t#2,%S0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
}
|
||
else if (count >= 28 && count <= 30 && !TARGET_H8300)
|
||
{
|
||
if (shift_type == SHIFT_ASHIFTRT)
|
||
{
|
||
return SHIFT_LOOP;
|
||
}
|
||
else
|
||
{
|
||
*assembler_p = rotate_one[cpu][shift_type][shift_mode];
|
||
if (TARGET_H8300S)
|
||
*assembler2_p = rotate_two[shift_type][shift_mode];
|
||
else
|
||
*assembler2_p = NULL;
|
||
*cc_valid_p = 0;
|
||
return SHIFT_ROT_AND;
|
||
}
|
||
}
|
||
else if (count == 31)
|
||
{
|
||
if (shift_type == SHIFT_ASHIFTRT)
|
||
{
|
||
if (TARGET_H8300)
|
||
*assembler_p = "shll\t%z0\n\tsubx %w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
|
||
else
|
||
*assembler_p = "shll\t%e0\n\tsubx\t%w0,%w0\n\tmov.b\t%w0,%x0\n\tmov.w\t%f0,%e0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
else
|
||
{
|
||
if (TARGET_H8300)
|
||
{
|
||
if (shift_type == SHIFT_ASHIFT)
|
||
*assembler_p = "sub.w\t%e0,%e0\n\tshlr\t%w0\n\tmov.w\t%e0,%f0\n\trotxr\t%z0";
|
||
else
|
||
*assembler_p = "sub.w\t%f0,%f0\n\tshll\t%z0\n\tmov.w\t%f0,%e0\n\trotxl\t%w0";
|
||
*cc_valid_p = 0;
|
||
return SHIFT_SPECIAL;
|
||
}
|
||
else
|
||
{
|
||
*assembler_p = rotate_one[cpu][shift_type][shift_mode];
|
||
if (TARGET_H8300S)
|
||
*assembler2_p = rotate_two[shift_type][shift_mode];
|
||
else
|
||
*assembler2_p = NULL;
|
||
*cc_valid_p = 0;
|
||
return SHIFT_ROT_AND;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
return alg;
|
||
}
|
||
|
||
/* Emit the assembler code for doing shifts. */
|
||
|
||
char *
|
||
emit_a_shift (insn, operands)
|
||
rtx insn;
|
||
rtx *operands;
|
||
{
|
||
static int loopend_lab;
|
||
char *assembler;
|
||
char *assembler2;
|
||
int cc_valid;
|
||
rtx inside = PATTERN (insn);
|
||
rtx shift = operands[3];
|
||
enum machine_mode mode = GET_MODE (shift);
|
||
enum rtx_code code = GET_CODE (shift);
|
||
enum shift_type shift_type;
|
||
enum shift_mode shift_mode;
|
||
|
||
loopend_lab++;
|
||
|
||
switch (mode)
|
||
{
|
||
case QImode:
|
||
shift_mode = QIshift;
|
||
break;
|
||
case HImode:
|
||
shift_mode = HIshift;
|
||
break;
|
||
case SImode:
|
||
shift_mode = SIshift;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case ASHIFTRT:
|
||
shift_type = SHIFT_ASHIFTRT;
|
||
break;
|
||
case LSHIFTRT:
|
||
shift_type = SHIFT_LSHIFTRT;
|
||
break;
|
||
case ASHIFT:
|
||
shift_type = SHIFT_ASHIFT;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
if (GET_CODE (operands[2]) != CONST_INT)
|
||
{
|
||
/* Indexing by reg, so have to loop and test at top */
|
||
output_asm_insn ("mov.b %X2,%X4", operands);
|
||
fprintf (asm_out_file, "\tble .Lle%d\n", loopend_lab);
|
||
|
||
/* Get the assembler code to do one shift. */
|
||
get_shift_alg (cpu_type, shift_type, mode, 1, &assembler,
|
||
&assembler2, &cc_valid);
|
||
}
|
||
else
|
||
{
|
||
int n = INTVAL (operands[2]);
|
||
enum shift_alg alg;
|
||
|
||
/* If the count is negative, make it 0. */
|
||
if (n < 0)
|
||
n = 0;
|
||
/* If the count is too big, truncate it.
|
||
ANSI says shifts of GET_MODE_BITSIZE are undefined - we choose to
|
||
do the intuitive thing. */
|
||
else if (n > GET_MODE_BITSIZE (mode))
|
||
n = GET_MODE_BITSIZE (mode);
|
||
|
||
alg = get_shift_alg (cpu_type, shift_type, mode, n, &assembler,
|
||
&assembler2, &cc_valid);
|
||
|
||
switch (alg)
|
||
{
|
||
case SHIFT_INLINE:
|
||
/* Emit two bit shifts first. */
|
||
while (n > 1 && assembler2 != NULL)
|
||
{
|
||
output_asm_insn (assembler2, operands);
|
||
n -= 2;
|
||
}
|
||
|
||
/* Now emit one bit shifts for any residual. */
|
||
while (n > 0)
|
||
{
|
||
output_asm_insn (assembler, operands);
|
||
n -= 1;
|
||
}
|
||
|
||
/* Keep track of CC. */
|
||
if (cc_valid)
|
||
{
|
||
cc_status.value1 = operands[0];
|
||
cc_status.flags |= cc_valid;
|
||
}
|
||
return "";
|
||
|
||
case SHIFT_ROT_AND:
|
||
{
|
||
int m = GET_MODE_BITSIZE (mode) - n;
|
||
int mask = (shift_type == SHIFT_ASHIFT
|
||
? ((1 << GET_MODE_BITSIZE (mode) - n) - 1) << n
|
||
: (1 << GET_MODE_BITSIZE (mode) - n) - 1);
|
||
char insn_buf[200];
|
||
/* Not all possibilities of rotate are supported. They shouldn't
|
||
be generated, but let's watch for 'em. */
|
||
if (assembler == 0)
|
||
abort ();
|
||
|
||
/* Emit two bit rotates first. */
|
||
while (m > 1 && assembler2 != NULL)
|
||
{
|
||
output_asm_insn (assembler2, operands);
|
||
m -= 2;
|
||
}
|
||
|
||
/* Now single bit rotates for any residual. */
|
||
while (m > 0)
|
||
{
|
||
output_asm_insn (assembler, operands);
|
||
m -= 1;
|
||
}
|
||
|
||
/* Now mask off the high bits. */
|
||
if (TARGET_H8300)
|
||
{
|
||
switch (mode)
|
||
{
|
||
case QImode:
|
||
sprintf (insn_buf, "and #%d,%%X0",
|
||
mask, n);
|
||
cc_status.value1 = operands[0];
|
||
cc_status.flags |= CC_NO_CARRY;
|
||
break;
|
||
case HImode:
|
||
sprintf (insn_buf, "and #%d,%%s0\n\tand #%d,%%t0",
|
||
mask & 255, mask >> 8, n);
|
||
break;
|
||
case SImode:
|
||
abort ();
|
||
}
|
||
}
|
||
else
|
||
{
|
||
sprintf (insn_buf, "and.%c #%d,%%%c0",
|
||
"bwl"[shift_mode], mask,
|
||
mode == QImode ? 'X' : mode == HImode ? 'T' : 'S');
|
||
cc_status.value1 = operands[0];
|
||
cc_status.flags |= CC_NO_CARRY;
|
||
}
|
||
output_asm_insn (insn_buf, operands);
|
||
return "";
|
||
}
|
||
case SHIFT_SPECIAL:
|
||
output_asm_insn (assembler, operands);
|
||
return "";
|
||
}
|
||
|
||
/* A loop to shift by a "large" constant value.
|
||
If we have shift-by-2 insns, use them. */
|
||
if (assembler2 != NULL)
|
||
{
|
||
fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n / 2,
|
||
names_big[REGNO (operands[4])]);
|
||
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
|
||
output_asm_insn (assembler2, operands);
|
||
output_asm_insn ("add #0xff,%X4", operands);
|
||
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
|
||
if (n % 2)
|
||
output_asm_insn (assembler, operands);
|
||
return "";
|
||
}
|
||
else
|
||
{
|
||
fprintf (asm_out_file, "\tmov.b #%d,%sl\n", n,
|
||
names_big[REGNO (operands[4])]);
|
||
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
|
||
output_asm_insn (assembler, operands);
|
||
output_asm_insn ("add #0xff,%X4", operands);
|
||
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
|
||
return "";
|
||
}
|
||
}
|
||
|
||
fprintf (asm_out_file, ".Llt%d:\n", loopend_lab);
|
||
output_asm_insn (assembler, operands);
|
||
output_asm_insn ("add #0xff,%X4", operands);
|
||
fprintf (asm_out_file, "\tbne .Llt%d\n", loopend_lab);
|
||
fprintf (asm_out_file, ".Lle%d:\n", loopend_lab);
|
||
|
||
return "";
|
||
}
|
||
|
||
/* Fix the operands of a gen_xxx so that it could become a bit
|
||
operating insn. */
|
||
|
||
int
|
||
fix_bit_operand (operands, what, type)
|
||
rtx *operands;
|
||
char what;
|
||
enum rtx_code type;
|
||
{
|
||
/* The bit_operand predicate accepts any memory during RTL generation, but
|
||
only 'U' memory afterwards, so if this is a MEM operand, we must force
|
||
it to be valid for 'U' by reloading the address. */
|
||
|
||
if (GET_CODE (operands[2]) == CONST_INT)
|
||
{
|
||
if (CONST_OK_FOR_LETTER_P (INTVAL (operands[2]), what))
|
||
{
|
||
/* Ok to have a memory dest. */
|
||
if (GET_CODE (operands[0]) == MEM && !EXTRA_CONSTRAINT (operands[0], 'U'))
|
||
{
|
||
rtx mem;
|
||
mem = gen_rtx (MEM, GET_MODE (operands[0]),
|
||
copy_to_mode_reg (Pmode, XEXP (operands[0], 0)));
|
||
RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (operands[0]);
|
||
MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (operands[0]);
|
||
MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (operands[0]);
|
||
operands[0] = mem;
|
||
}
|
||
|
||
if (GET_CODE (operands[1]) == MEM && !EXTRA_CONSTRAINT (operands[1], 'U'))
|
||
{
|
||
rtx mem;
|
||
mem = gen_rtx (MEM, GET_MODE (operands[1]),
|
||
copy_to_mode_reg (Pmode, XEXP (operands[1], 0)));
|
||
RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (operands[1]);
|
||
MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (operands[1]);
|
||
MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (operands[1]);
|
||
operands[1] = mem;
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Dest and src op must be register. */
|
||
|
||
operands[1] = force_reg (QImode, operands[1]);
|
||
{
|
||
rtx res = gen_reg_rtx (QImode);
|
||
emit_insn (gen_rtx (SET, VOIDmode, res, gen_rtx (type, QImode, operands[1], operands[2])));
|
||
emit_insn (gen_rtx (SET, VOIDmode, operands[0], res));
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Return nonzero if FUNC is an interrupt function as specified
|
||
by the "interrupt" attribute. */
|
||
|
||
static int
|
||
h8300_interrupt_function_p (func)
|
||
tree func;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (func) != FUNCTION_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("interrupt_handler", DECL_MACHINE_ATTRIBUTES (func));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if FUNC is an OS_Task function as specified
|
||
by the "OS_Task" attribute. */
|
||
|
||
static int
|
||
h8300_os_task_function_p (func)
|
||
tree func;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (func) != FUNCTION_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("OS_Task", DECL_MACHINE_ATTRIBUTES (func));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if FUNC is a monitor function as specified
|
||
by the "monitor" attribute. */
|
||
|
||
static int
|
||
h8300_monitor_function_p (func)
|
||
tree func;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (func) != FUNCTION_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("monitor", DECL_MACHINE_ATTRIBUTES (func));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if FUNC is a function that should be called
|
||
through the function vector. */
|
||
|
||
int
|
||
h8300_funcvec_function_p (func)
|
||
tree func;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (func) != FUNCTION_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("function_vector", DECL_MACHINE_ATTRIBUTES (func));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if DECL is a variable that's in the eight bit
|
||
data area. */
|
||
|
||
int
|
||
h8300_eightbit_data_p (decl)
|
||
tree decl;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (decl) != VAR_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("eightbit_data", DECL_MACHINE_ATTRIBUTES (decl));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if DECL is a variable that's in the tiny
|
||
data area. */
|
||
|
||
int
|
||
h8300_tiny_data_p (decl)
|
||
tree decl;
|
||
{
|
||
tree a;
|
||
|
||
if (TREE_CODE (decl) != VAR_DECL)
|
||
return 0;
|
||
|
||
a = lookup_attribute ("tiny_data", DECL_MACHINE_ATTRIBUTES (decl));
|
||
return a != NULL_TREE;
|
||
}
|
||
|
||
/* Return nonzero if ATTR is a valid attribute for DECL.
|
||
ATTRIBUTES are any existing attributes and ARGS are the arguments
|
||
supplied with ATTR.
|
||
|
||
Supported attributes:
|
||
|
||
interrupt_handler: output a prologue and epilogue suitable for an
|
||
interrupt handler.
|
||
|
||
function_vector: This function should be called through the
|
||
function vector.
|
||
|
||
eightbit_data: This variable lives in the 8-bit data area and can
|
||
be referenced with 8-bit absolute memory addresses.
|
||
|
||
tiny_data: This variable lives in the tiny data area and can be
|
||
referenced with 16-bit absolute memory references. */
|
||
|
||
int
|
||
h8300_valid_machine_decl_attribute (decl, attributes, attr, args)
|
||
tree decl;
|
||
tree attributes;
|
||
tree attr;
|
||
tree args;
|
||
{
|
||
if (args != NULL_TREE)
|
||
return 0;
|
||
|
||
if (is_attribute_p ("interrupt_handler", attr)
|
||
|| is_attribute_p ("OS_Task", attr)
|
||
|| is_attribute_p ("monitor", attr)
|
||
|| is_attribute_p ("function_vector", attr))
|
||
return TREE_CODE (decl) == FUNCTION_DECL;
|
||
|
||
if (is_attribute_p ("eightbit_data", attr)
|
||
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
|
||
{
|
||
if (DECL_INITIAL (decl) == NULL_TREE)
|
||
{
|
||
warning ("Only initialized variables can be placed into the 8-bit area.");
|
||
return 0;
|
||
}
|
||
DECL_SECTION_NAME (decl) = build_string (7, ".eight");
|
||
return 1;
|
||
}
|
||
|
||
if (is_attribute_p ("tiny_data", attr)
|
||
&& (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
|
||
{
|
||
if (DECL_INITIAL (decl) == NULL_TREE)
|
||
{
|
||
warning ("Only initialized variables can be placed into the 8-bit area.");
|
||
return 0;
|
||
}
|
||
DECL_SECTION_NAME (decl) = build_string (6, ".tiny");
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
extern struct obstack *saveable_obstack;
|
||
|
||
h8300_encode_label (decl)
|
||
tree decl;
|
||
{
|
||
char *str = XSTR (XEXP (DECL_RTL (decl), 0), 0);
|
||
int len = strlen (str);
|
||
char *newstr;
|
||
|
||
newstr = obstack_alloc (saveable_obstack, len + 2);
|
||
|
||
strcpy (newstr + 1, str);
|
||
*newstr = '*';
|
||
XSTR (XEXP (DECL_RTL (decl), 0), 0) = newstr;
|
||
}
|
||
|
||
char *
|
||
output_simode_bld (bild, log2, operands)
|
||
int bild;
|
||
int log2;
|
||
rtx operands[];
|
||
{
|
||
/* Clear the destination register. */
|
||
if (TARGET_H8300H || TARGET_H8300S)
|
||
output_asm_insn ("sub.l\t%S0,%S0", operands);
|
||
else
|
||
output_asm_insn ("sub.w\t%e0,%e0\n\tsub.w\t%f0,%f0", operands);
|
||
|
||
/* Get the bit number we want to load. */
|
||
if (log2)
|
||
operands[2] = GEN_INT (exact_log2 (INTVAL (operands[2])));
|
||
|
||
/* Now output the bit load or bit inverse load, and store it in
|
||
the destination. */
|
||
if (bild)
|
||
output_asm_insn ("bild\t%Z2,%Y1\n\tbst\t#0,%w0", operands);
|
||
else
|
||
output_asm_insn ("bld\t%Z2,%Y1\n\tbst\t#0,%w0", operands);
|
||
|
||
/* All done. */
|
||
return "";
|
||
}
|
||
|
||
/* Given INSN and it's current length LENGTH, return the adjustment
|
||
(in bytes) to correctly compute INSN's length.
|
||
|
||
We use this to get the lengths of various memory references correct. */
|
||
|
||
h8300_adjust_insn_length (insn, length)
|
||
rtx insn;
|
||
int length;
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
|
||
/* Adjust length for reg->mem and mem->reg copies. */
|
||
if (GET_CODE (pat) == SET
|
||
&& (GET_CODE (SET_SRC (pat)) == MEM
|
||
|| GET_CODE (SET_DEST (pat)) == MEM))
|
||
{
|
||
/* This insn might need a length adjustment. */
|
||
rtx addr;
|
||
|
||
if (GET_CODE (SET_SRC (pat)) == MEM)
|
||
addr = XEXP (SET_SRC (pat), 0);
|
||
else
|
||
addr = XEXP (SET_DEST (pat), 0);
|
||
|
||
/* On the H8/300, only one adjustment is necessary; if the
|
||
address mode is register indirect, then this insn is two
|
||
bytes shorter than indicated in the machine description. */
|
||
if (TARGET_H8300 && GET_CODE (addr) == REG)
|
||
return -2;
|
||
|
||
/* On the H8/300H and H8/S, register indirect is 6 bytes shorter than
|
||
indicated in the machine description. */
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& GET_CODE (addr) == REG)
|
||
return -6;
|
||
|
||
/* On the H8/300H and H8/300S, reg + d, for small displacements is 4
|
||
bytes shorter than indicated in the machine description. */
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& GET_CODE (addr) == PLUS
|
||
&& GET_CODE (XEXP (addr, 0)) == REG
|
||
&& GET_CODE (XEXP (addr, 1)) == CONST_INT
|
||
&& INTVAL (XEXP (addr, 1)) > -32768
|
||
&& INTVAL (XEXP (addr, 1)) < 32767)
|
||
return -4;
|
||
|
||
/* On the H8/300H and H8/300S, abs:16 is two bytes shorter than the
|
||
more general abs:24. */
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& GET_CODE (addr) == SYMBOL_REF
|
||
&& TINY_DATA_NAME_P (XSTR (addr, 0)))
|
||
return -2;
|
||
}
|
||
|
||
/* Loading some constants needs adjustment. */
|
||
if (GET_CODE (pat) == SET
|
||
&& GET_CODE (SET_SRC (pat)) == CONST_INT
|
||
&& GET_MODE (SET_DEST (pat)) == SImode
|
||
&& INTVAL (SET_SRC (pat)) != 0)
|
||
{
|
||
if (TARGET_H8300
|
||
&& ((INTVAL (SET_SRC (pat)) & 0xffff) == 0
|
||
|| ((INTVAL (SET_SRC (pat)) >> 16) & 0xffff) == 0))
|
||
return -2;
|
||
|
||
if (TARGET_H8300H || TARGET_H8300S)
|
||
{
|
||
int val = INTVAL (SET_SRC (pat));
|
||
|
||
if (val == (val & 0xff)
|
||
|| val == (val & 0xff00))
|
||
return -6;
|
||
|
||
if (val == -4 || val == -2 || val == -1)
|
||
return -6;
|
||
}
|
||
}
|
||
|
||
/* Shifts need various adjustments. */
|
||
if (GET_CODE (pat) == PARALLEL
|
||
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
|
||
&& (GET_CODE (SET_SRC (XVECEXP (pat, 0, 0))) == ASHIFTRT
|
||
|| GET_CODE (SET_SRC (XVECEXP (pat, 0, 0))) == LSHIFTRT
|
||
|| GET_CODE (SET_SRC (XVECEXP (pat, 0, 0))) == ASHIFT))
|
||
{
|
||
rtx src = SET_SRC (XVECEXP (pat, 0, 0));
|
||
enum machine_mode mode = GET_MODE (src);
|
||
|
||
if (GET_CODE (XEXP (src, 1)) != CONST_INT)
|
||
return 0;
|
||
|
||
/* QImode shifts by small constants take one insn
|
||
per shift. So the adjustment is 20 (md length) -
|
||
# shifts * 2. */
|
||
if (mode == QImode && INTVAL (XEXP (src, 1)) <= 4)
|
||
return -(20 - INTVAL (XEXP (src, 1)) * 2);
|
||
|
||
/* Similarly for HImode and SImode shifts by
|
||
small constants on the H8/300H and H8/300S. */
|
||
if ((TARGET_H8300H || TARGET_H8300S)
|
||
&& (mode == HImode || mode == SImode)
|
||
&& INTVAL (XEXP (src, 1)) <= 4)
|
||
return -(20 - INTVAL (XEXP (src, 1)) * 2);
|
||
|
||
/* HImode shifts by small constants for the H8/300. */
|
||
if (mode == HImode
|
||
&& INTVAL (XEXP (src, 1)) <= 4)
|
||
return -(20 - (INTVAL (XEXP (src, 1))
|
||
* (GET_CODE (src) == ASHIFT ? 2 : 4)));
|
||
|
||
/* SImode shifts by small constants for the H8/300. */
|
||
if (mode == SImode
|
||
&& INTVAL (XEXP (src, 1)) <= 2)
|
||
return -(20 - (INTVAL (XEXP (src, 1))
|
||
* (GET_CODE (src) == ASHIFT ? 6 : 8)));
|
||
|
||
/* XXX ??? Could check for more shift/rotate cases here. */
|
||
}
|
||
|
||
return 0;
|
||
}
|