mirror of
https://github.com/pmret/gcc-papermario.git
synced 2024-11-08 20:02:47 +01:00
1048 lines
36 KiB
C++
1048 lines
36 KiB
C++
/* Definitions of target machine for GNU compiler. AT&T we32000 version.
|
||
Copyright (C) 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.
|
||
Contributed by John Wehle (john@feith1.uucp)
|
||
|
||
This file is part of GNU CC.
|
||
|
||
GNU CC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 1, or (at your option)
|
||
any later version.
|
||
|
||
GNU CC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU CC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
|
||
/* Names to predefine in the preprocessor for this target machine. */
|
||
|
||
#define CPP_PREDEFINES "-Dwe32000 -Du3b2 -Dunix -Asystem(unix) -Acpu(we32000) -Amachine(we32000)"
|
||
|
||
/* Print subsidiary information on the compiler version in use. */
|
||
|
||
#define TARGET_VERSION fprintf (stderr, " (we32000)");
|
||
|
||
/* Run-time compilation parameters selecting different hardware subsets. */
|
||
|
||
extern int target_flags;
|
||
|
||
/* Macros used in the machine description to test the flags. */
|
||
|
||
/* Macro to define tables used to set the flags.
|
||
This is a list in braces of pairs in braces,
|
||
each pair being { "NAME", VALUE }
|
||
where VALUE is the bits to set or minus the bits to clear.
|
||
An empty string NAME is used to identify the default VALUE. */
|
||
|
||
#define TARGET_SWITCHES \
|
||
{ { "", TARGET_DEFAULT}}
|
||
|
||
#define TARGET_DEFAULT 0
|
||
|
||
|
||
/* target machine storage layout */
|
||
|
||
/* Define this if most significant bit is lowest numbered
|
||
in instructions that operate on numbered bit-fields. */
|
||
#define BITS_BIG_ENDIAN 0
|
||
|
||
/* Define this if most significant byte of a word is the lowest numbered. */
|
||
/* That is true on the we32000. */
|
||
#define BYTES_BIG_ENDIAN 1
|
||
|
||
/* Define this if most significant word of a multiword is lowest numbered. */
|
||
/* For we32000 we can decide arbitrarily
|
||
since there are no machine instructions for them. */
|
||
#define WORDS_BIG_ENDIAN 1
|
||
|
||
/* number of bits in an addressable storage unit */
|
||
#define BITS_PER_UNIT 8
|
||
|
||
/* Width in bits of a "word", which is the contents of a machine register.
|
||
Note that this is not necessarily the width of data type `int';
|
||
if using 16-bit ints on a we32000, this would still be 32.
|
||
But on a machine with 16-bit registers, this would be 16. */
|
||
#define BITS_PER_WORD 32
|
||
|
||
/* Width of a word, in units (bytes). */
|
||
#define UNITS_PER_WORD 4
|
||
|
||
/* Width in bits of a pointer.
|
||
See also the macro `Pmode' defined below. */
|
||
#define POINTER_SIZE 32
|
||
|
||
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
||
#define PARM_BOUNDARY 32
|
||
|
||
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
||
#define STACK_BOUNDARY 32
|
||
|
||
/* Allocation boundary (in *bits*) for the code of a function. */
|
||
#define FUNCTION_BOUNDARY 32
|
||
|
||
/* Alignment of field after `int : 0' in a structure. */
|
||
#define EMPTY_FIELD_BOUNDARY 32
|
||
|
||
/* No data type wants to be aligned rounder than this. */
|
||
#define BIGGEST_ALIGNMENT 32
|
||
|
||
/* Every structure's size must be a multiple of this. */
|
||
#define STRUCTURE_SIZE_BOUNDARY 32
|
||
|
||
/* Define this if move instructions will actually fail to work
|
||
when given unaligned data. */
|
||
#define STRICT_ALIGNMENT 1
|
||
|
||
/* Define number of bits in most basic integer type.
|
||
(If undefined, default is BITS_PER_WORD). */
|
||
#define INT_TYPE_SIZE 32
|
||
|
||
/* Integer bit fields should have the same size and alignment
|
||
as actual integers */
|
||
#define PCC_BITFIELD_TYPE_MATTERS 1
|
||
|
||
/* Specify the size_t type. */
|
||
#define SIZE_TYPE "unsigned int"
|
||
|
||
/* Standard register usage. */
|
||
|
||
/* Number of actual hardware registers.
|
||
The hardware registers are assigned numbers for the compiler
|
||
from 0 to just below FIRST_PSEUDO_REGISTER.
|
||
All registers that the compiler knows about must be given numbers,
|
||
even those that are not normally considered general registers. */
|
||
#define FIRST_PSEUDO_REGISTER 16
|
||
|
||
/* 1 for registers that have pervasive standard uses
|
||
and are not available for the register allocator. */
|
||
#define FIXED_REGISTERS \
|
||
{0, 0, 0, 0, 0, 0, 0, 0, \
|
||
0, 1, 1, 1, 1, 1, 1, 1, }
|
||
|
||
/* 1 for registers not available across function calls.
|
||
These must include the FIXED_REGISTERS and also any
|
||
registers that can be used without being saved.
|
||
The latter must include the registers where values are returned
|
||
and the register where structure-value addresses are passed.
|
||
Aside from that, you can include as many other registers as you like. */
|
||
#define CALL_USED_REGISTERS \
|
||
{1, 1, 1, 0, 0, 0, 0, 0, \
|
||
0, 1, 1, 1, 1, 1, 1, 1, }
|
||
|
||
/* Make sure everything's fine if we *don't* have a given processor.
|
||
This assumes that putting a register in fixed_regs will keep the
|
||
compilers mitt's completely off it. We don't bother to zero it out
|
||
of register classes. */
|
||
/* #define CONDITIONAL_REGISTER_USAGE */
|
||
|
||
/* Return number of consecutive hard regs needed starting at reg REGNO
|
||
to hold something of mode MODE.
|
||
This is ordinarily the length in words of a value of mode MODE
|
||
but can be less for certain modes in special long registers. */
|
||
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
|
||
#define HARD_REGNO_MODE_OK(REGNO, MODE) 1
|
||
|
||
/* Value is 1 if it is a good idea to tie two pseudo registers
|
||
when one has mode MODE1 and one has mode MODE2.
|
||
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
||
for any hard reg, then this must be 0 for correct output. */
|
||
#define MODES_TIEABLE_P(MODE1, MODE2) 0
|
||
|
||
/* Specify the registers used for certain standard purposes.
|
||
The values of these macros are register numbers. */
|
||
|
||
/* Register used for the program counter */
|
||
#define PC_REGNUM 15
|
||
|
||
/* Register to use for pushing function arguments. */
|
||
#define STACK_POINTER_REGNUM 12
|
||
|
||
/* Base register for access to local variables of the function. */
|
||
#define FRAME_POINTER_REGNUM 9
|
||
|
||
/* Value should be nonzero if functions must have frame pointers.
|
||
Zero means the frame pointer need not be set up (and parms
|
||
may be accessed via the stack pointer) in functions that seem suitable.
|
||
This is computed in `reload', in reload1.c. */
|
||
#define FRAME_POINTER_REQUIRED 1
|
||
|
||
/* Base register for access to arguments of the function. */
|
||
#define ARG_POINTER_REGNUM 10
|
||
|
||
/* Register in which static-chain is passed to a function. */
|
||
#define STATIC_CHAIN_REGNUM 8
|
||
|
||
/* Register in which address to store a structure value
|
||
is passed to a function. */
|
||
#define STRUCT_VALUE_REGNUM 2
|
||
|
||
/* Order in which to allocate registers. */
|
||
#define REG_ALLOC_ORDER \
|
||
{0, 1, 8, 7, 6, 5, 4, 3}
|
||
|
||
/* Define the classes of registers for register constraints in the
|
||
machine description. Also define ranges of constants.
|
||
|
||
One of the classes must always be named ALL_REGS and include all hard regs.
|
||
If there is more than one class, another class must be named NO_REGS
|
||
and contain no registers.
|
||
|
||
The name GENERAL_REGS must be the name of a class (or an alias for
|
||
another name such as ALL_REGS). This is the class of registers
|
||
that is allowed by "g" or "r" in a register constraint.
|
||
Also, registers outside this class are allocated only when
|
||
instructions express preferences for them.
|
||
|
||
The classes must be numbered in nondecreasing order; that is,
|
||
a larger-numbered class must never be contained completely
|
||
in a smaller-numbered class.
|
||
|
||
For any two classes, it is very desirable that there be another
|
||
class that represents their union. */
|
||
|
||
enum reg_class { NO_REGS, GENERAL_REGS,
|
||
ALL_REGS, LIM_REG_CLASSES };
|
||
|
||
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
||
|
||
/* Give names of register classes as strings for dump file. */
|
||
|
||
#define REG_CLASS_NAMES \
|
||
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS" }
|
||
|
||
/* Define which registers fit in which classes.
|
||
This is an initializer for a vector of HARD_REG_SET
|
||
of length N_REG_CLASSES. */
|
||
|
||
#define REG_CLASS_CONTENTS \
|
||
{ \
|
||
0, /* NO_REGS */ \
|
||
0x000017ff, /* GENERAL_REGS */ \
|
||
0x0000ffff, /* ALL_REGS */ \
|
||
}
|
||
|
||
/* The same information, inverted:
|
||
Return the class number of the smallest class containing
|
||
reg number REGNO. This could be a conditional expression
|
||
or could index an array. */
|
||
|
||
#define REGNO_REG_CLASS(REGNO) \
|
||
(((REGNO) < 11 || (REGNO) == 12) ? GENERAL_REGS : ALL_REGS)
|
||
|
||
/* The class value for index registers, and the one for base regs. */
|
||
|
||
#define INDEX_REG_CLASS NO_REGS
|
||
#define BASE_REG_CLASS GENERAL_REGS
|
||
|
||
/* Get reg_class from a letter such as appears in the machine description.
|
||
We do a trick here to modify the effective constraints on the
|
||
machine description; we zorch the constraint letters that aren't
|
||
appropriate for a specific target. This allows us to guarantee
|
||
that a specific kind of register will not be used for a given target
|
||
without fiddling with the register classes above. */
|
||
|
||
#define REG_CLASS_FROM_LETTER(C) \
|
||
((C) == 'r' ? GENERAL_REGS : NO_REGS)
|
||
|
||
/* The letters I, J, K, L and M in a register constraint string
|
||
can be used to stand for particular ranges of immediate operands.
|
||
This macro defines what the ranges are.
|
||
C is the letter, and VALUE is a constant value.
|
||
Return 1 if VALUE is in the range specified by C. */
|
||
|
||
#define CONST_OK_FOR_LETTER_P(VALUE, C) 0
|
||
|
||
/*
|
||
*/
|
||
|
||
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 0
|
||
|
||
/* Given an rtx X being reloaded into a reg required to be
|
||
in class CLASS, return the class of reg to actually use.
|
||
In general this is just CLASS; but on some machines
|
||
in some cases it is preferable to use a more restrictive class. */
|
||
|
||
#define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
|
||
|
||
/* Return the maximum number of consecutive registers
|
||
needed to represent mode MODE in a register of class CLASS. */
|
||
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
||
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
||
|
||
/* Stack layout; function entry, exit and calling. */
|
||
|
||
/* Define this if pushing a word on the stack
|
||
makes the stack pointer a smaller address. */
|
||
/* #define STACK_GROWS_DOWNWARD */
|
||
|
||
/* Define this if the nominal address of the stack frame
|
||
is at the high-address end of the local variables;
|
||
that is, each additional local variable allocated
|
||
goes at a more negative offset in the frame. */
|
||
/* #define FRAME_GROWS_DOWNWARD */
|
||
|
||
/* Offset within stack frame to start allocating local variables at.
|
||
If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
|
||
first local allocated. Otherwise, it is the offset to the BEGINNING
|
||
of the first local allocated. */
|
||
#define STARTING_FRAME_OFFSET 0
|
||
|
||
/* If we generate an insn to push BYTES bytes,
|
||
this says how many the stack pointer really advances by. */
|
||
#define PUSH_ROUNDING(BYTES) (((BYTES) + 3) & ~3)
|
||
|
||
/* Offset of first parameter from the argument pointer register value. */
|
||
#define FIRST_PARM_OFFSET(FNDECL) 0
|
||
|
||
/* Value is 1 if returning from a function call automatically
|
||
pops the arguments described by the number-of-args field in the call.
|
||
FUNDECL is the declaration node of the function (as a tree),
|
||
FUNTYPE is the data type of the function (as a tree),
|
||
or for a library call it is an identifier node for the subroutine name. */
|
||
|
||
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) (SIZE)
|
||
|
||
/* Define how to find the value returned by a function.
|
||
VALTYPE is the data type of the value (as a tree).
|
||
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
||
otherwise, FUNC is 0. */
|
||
|
||
/* On the we32000 the return value is in r0 regardless. */
|
||
|
||
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
||
gen_rtx (REG, TYPE_MODE (VALTYPE), 0)
|
||
|
||
/* Define how to find the value returned by a library function
|
||
assuming the value has mode MODE. */
|
||
|
||
/* On the we32000 the return value is in r0 regardless. */
|
||
|
||
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
|
||
|
||
/* 1 if N is a possible register number for a function value.
|
||
On the we32000, r0 is the only register thus used. */
|
||
|
||
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
|
||
|
||
/* Define this if PCC uses the nonreentrant convention for returning
|
||
structure and union values. */
|
||
|
||
/* #define PCC_STATIC_STRUCT_RETURN */
|
||
|
||
/* 1 if N is a possible register number for function argument passing.
|
||
On the we32000, no registers are used in this way. */
|
||
|
||
#define FUNCTION_ARG_REGNO_P(N) 0
|
||
|
||
/* Define a data type for recording info about an argument list
|
||
during the scan of that argument list. This data type should
|
||
hold all necessary information about the function itself
|
||
and about the args processed so far, enough to enable macros
|
||
such as FUNCTION_ARG to determine where the next arg should go.
|
||
|
||
On the we32k, this is a single integer, which is a number of bytes
|
||
of arguments scanned so far. */
|
||
|
||
#define CUMULATIVE_ARGS int
|
||
|
||
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
||
for a call to a function whose data type is FNTYPE.
|
||
For a library call, FNTYPE is 0.
|
||
|
||
On the we32k, the offset starts at 0. */
|
||
|
||
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
|
||
((CUM) = 0)
|
||
|
||
/* Update the data in CUM to advance over an argument
|
||
of mode MODE and data type TYPE.
|
||
(TYPE is null for libcalls where that information may not be available.) */
|
||
|
||
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
||
((CUM) += ((MODE) != BLKmode \
|
||
? (GET_MODE_SIZE (MODE) + 3) & ~3 \
|
||
: (int_size_in_bytes (TYPE) + 3) & ~3))
|
||
|
||
/* Define where to put the arguments to a function.
|
||
Value is zero to push the argument on the stack,
|
||
or a hard register in which to store the argument.
|
||
|
||
MODE is the argument's machine mode.
|
||
TYPE is the data type of the argument (as a tree).
|
||
This is null for libcalls where that information may
|
||
not be available.
|
||
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
||
the preceding args and about the function being called.
|
||
NAMED is nonzero if this argument is a named parameter
|
||
(otherwise it is an extra parameter matching an ellipsis). */
|
||
|
||
/* On the we32000 all args are pushed */
|
||
|
||
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* For an arg passed partly in registers and partly in memory,
|
||
this is the number of registers used.
|
||
For args passed entirely in registers or entirely in memory, zero. */
|
||
|
||
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
|
||
|
||
/* This macro generates the assembly code for function entry.
|
||
FILE is a stdio stream to output the code to.
|
||
SIZE is an int: how many units of temporary storage to allocate.
|
||
Refer to the array `regs_ever_live' to determine which registers
|
||
to save; `regs_ever_live[I]' is nonzero if register number I
|
||
is ever used in the function. This macro is responsible for
|
||
knowing which registers should not be saved even if used. */
|
||
|
||
#define FUNCTION_PROLOGUE(FILE, SIZE) \
|
||
{ register int nregs_to_save; \
|
||
register int regno; \
|
||
extern char call_used_regs[]; \
|
||
nregs_to_save = 0; \
|
||
for (regno = 8; regno > 2; regno--) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
nregs_to_save = (9 - regno); \
|
||
fprintf (FILE, "\tsave &%d\n", nregs_to_save); \
|
||
if (SIZE) \
|
||
fprintf (FILE, "\taddw2 &%d,%%sp\n", ((SIZE) + 3) & ~3); }
|
||
|
||
/* Output assembler code to FILE to increment profiler label # LABELNO
|
||
for profiling a function entry. */
|
||
|
||
#define FUNCTION_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tmovw &.LP%d,%%r0\n\tjsb _mcount\n", (LABELNO))
|
||
|
||
/* Output assembler code to FILE to initialize this source file's
|
||
basic block profiling info, if that has not already been done. */
|
||
|
||
#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
|
||
fprintf (FILE, "\tcmpw .LPBX0,&0\n\tjne .LPI%d\n\tpushw &.LPBX0\n\tcall &1,__bb_init_func\n.LPI%d:\n", \
|
||
LABELNO, LABELNO);
|
||
|
||
/* Output assembler code to FILE to increment the entry-count for
|
||
the BLOCKNO'th basic block in this source file. */
|
||
|
||
#define BLOCK_PROFILER(FILE, BLOCKNO) \
|
||
fprintf (FILE, "\taddw2 &1,.LPBX2+%d\n", 4 * BLOCKNO)
|
||
|
||
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
||
the stack pointer does not matter. The value is tested only in
|
||
functions that have frame pointers.
|
||
No definition is equivalent to always zero. */
|
||
|
||
#define EXIT_IGNORE_STACK 0
|
||
|
||
/* This macro generates the assembly code for function exit,
|
||
on machines that need it. If FUNCTION_EPILOGUE is not defined
|
||
then individual return instructions are generated for each
|
||
return statement. Args are same as for FUNCTION_PROLOGUE.
|
||
|
||
The function epilogue should not depend on the current stack pointer!
|
||
It should use the frame pointer only. This is mandatory because
|
||
of alloca; we also take advantage of it to omit stack adjustments
|
||
before returning. */
|
||
|
||
#define FUNCTION_EPILOGUE(FILE, SIZE) \
|
||
{ register int nregs_to_restore; \
|
||
register int regno; \
|
||
extern char call_used_regs[]; \
|
||
nregs_to_restore = 0; \
|
||
for (regno = 8; regno > 2; regno--) \
|
||
if (regs_ever_live[regno] && ! call_used_regs[regno]) \
|
||
nregs_to_restore = (9 - regno); \
|
||
fprintf (FILE, "\tret &%d\n", nregs_to_restore); }
|
||
|
||
/* Store in the variable DEPTH the initial difference between the
|
||
frame pointer reg contents and the stack pointer reg contents,
|
||
as of the start of the function body. This depends on the layout
|
||
of the fixed parts of the stack frame and on how registers are saved.
|
||
|
||
On the we32k, FRAME_POINTER_REQUIRED is always 1, so the definition of this
|
||
macro doesn't matter. But it must be defined. */
|
||
|
||
#define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
|
||
|
||
/* Output assembler code for a block containing the constant parts
|
||
of a trampoline, leaving space for the variable parts. */
|
||
|
||
/* On the we32k, the trampoline contains two instructions:
|
||
mov #STATIC,%r8
|
||
jmp #FUNCTION */
|
||
|
||
#define TRAMPOLINE_TEMPLATE(FILE) \
|
||
{ \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x844f)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_CHAR (FILE, gen_rtx (CONST_INT, VOIDmode, 0x48)); \
|
||
ASM_OUTPUT_SHORT (FILE, gen_rtx (CONST_INT, VOIDmode, 0x247f)); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
ASM_OUTPUT_SHORT (FILE, const0_rtx); \
|
||
}
|
||
|
||
/* Length in units of the trampoline for entering a nested function. */
|
||
|
||
#define TRAMPOLINE_SIZE 13
|
||
|
||
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
||
FNADDR is an RTX for the address of the function's pure code.
|
||
CXT is an RTX for the static chain value for the function. */
|
||
|
||
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
||
{ \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 2)), CXT); \
|
||
emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 9)), FNADDR); \
|
||
}
|
||
|
||
/* Generate calls to memcpy() and memset() rather
|
||
than bcopy() and bzero() */
|
||
#define TARGET_MEM_FUNCTIONS
|
||
|
||
/* Addressing modes, and classification of registers for them. */
|
||
|
||
/* #define HAVE_POST_INCREMENT */
|
||
/* #define HAVE_POST_DECREMENT */
|
||
|
||
/* #define HAVE_PRE_DECREMENT */
|
||
/* #define HAVE_PRE_INCREMENT */
|
||
|
||
/* Macros to check register numbers against specific register classes. */
|
||
|
||
/* These assume that REGNO is a hard or pseudo reg number.
|
||
They give nonzero only if REGNO is a hard reg of the suitable class
|
||
or a pseudo reg currently allocated to a suitable hard reg.
|
||
Since they use reg_renumber, they are safe only once reg_renumber
|
||
has been allocated, which happens in local-alloc.c. */
|
||
|
||
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
|
||
|
||
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
||
((REGNO) < 11 || (REGNO) == 12 || \
|
||
(unsigned)reg_renumber[REGNO] < 11 || (unsigned)reg_renumber[REGNO] == 12)
|
||
|
||
/* Maximum number of registers that can appear in a valid memory address. */
|
||
|
||
#define MAX_REGS_PER_ADDRESS 1
|
||
|
||
/* Recognize any constant value that is a valid address. */
|
||
|
||
#define CONSTANT_ADDRESS_P(X) \
|
||
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
|
||
|| GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
|
||
|| GET_CODE (X) == HIGH)
|
||
|
||
/* Nonzero if the constant value X is a legitimate general operand.
|
||
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
|
||
|
||
#define LEGITIMATE_CONSTANT_P(X) 1
|
||
|
||
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
||
and check its validity for a certain class.
|
||
We have two alternate definitions for each of them.
|
||
The usual definition accepts all pseudo regs; the other rejects
|
||
them unless they have been allocated suitable hard regs.
|
||
The symbol REG_OK_STRICT causes the latter definition to be used.
|
||
|
||
Most source files want to accept pseudo regs in the hope that
|
||
they will get allocated to the class that the insn wants them to be in.
|
||
Source files for reload pass need to be strict.
|
||
After reload, it makes no difference, since pseudo regs have
|
||
been eliminated by then. */
|
||
|
||
#ifndef REG_OK_STRICT
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_INDEX_P(X) 0
|
||
|
||
/* Nonzero if X is a hard reg that can be used as a base reg
|
||
or if it is a pseudo reg. */
|
||
#define REG_OK_FOR_BASE_P(X) \
|
||
(REGNO(X) < 11 || REGNO(X) == 12 || REGNO(X) >= FIRST_PSEUDO_REGISTER)
|
||
|
||
#else
|
||
|
||
/* Nonzero if X is a hard reg that can be used as an index. */
|
||
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
|
||
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
||
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
|
||
|
||
#endif
|
||
|
||
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
||
that is a valid memory address for an instruction.
|
||
The MODE argument is the machine mode for the MEM expression
|
||
that wants to use this address. */
|
||
|
||
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
||
{ register rtx Addr = X; \
|
||
if ((MODE) == QImode || (MODE) == HImode || \
|
||
(MODE) == PSImode || (MODE) == SImode || (MODE) == SFmode) \
|
||
if (GET_CODE(Addr) == MEM) \
|
||
Addr = XEXP(Addr, 0); \
|
||
if (CONSTANT_ADDRESS_P(Addr)) \
|
||
goto LABEL; \
|
||
if (REG_P(Addr) && REG_OK_FOR_BASE_P(Addr)) \
|
||
goto LABEL; \
|
||
if (GET_CODE(Addr) == PLUS && \
|
||
((REG_P(XEXP(Addr, 0)) && REG_OK_FOR_BASE_P(XEXP(Addr, 0)) && \
|
||
CONSTANT_ADDRESS_P(XEXP(Addr, 1))) || \
|
||
(REG_P(XEXP(Addr, 1)) && REG_OK_FOR_BASE_P(XEXP(Addr, 1)) && \
|
||
CONSTANT_ADDRESS_P(XEXP(Addr, 0))))) \
|
||
goto LABEL; \
|
||
}
|
||
|
||
/* Try machine-dependent ways of modifying an illegitimate address
|
||
to be legitimate. If we find one, return the new, valid address.
|
||
This macro is used in only one place: `memory_address' in explow.c.
|
||
|
||
OLDX is the address as it was before break_out_memory_refs was called.
|
||
In some cases it is useful to look at this to decide what needs to be done.
|
||
|
||
MODE and WIN are passed so that this macro can use
|
||
GO_IF_LEGITIMATE_ADDRESS.
|
||
|
||
It is always safe for this macro to do nothing. It exists to recognize
|
||
opportunities to optimize the output. */
|
||
|
||
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) { }
|
||
|
||
/* Go to LABEL if ADDR (a legitimate address expression)
|
||
has an effect that depends on the machine mode it is used for. */
|
||
|
||
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) { }
|
||
|
||
/* Specify the machine mode that this machine uses
|
||
for the index in the tablejump instruction. */
|
||
#define CASE_VECTOR_MODE SImode
|
||
|
||
/* Define this if the tablejump instruction expects the table
|
||
to contain offsets from the address of the table.
|
||
Do not define this if the table should contain absolute addresses. */
|
||
/* #define CASE_VECTOR_PC_RELATIVE */
|
||
|
||
/* Specify the tree operation to be used to convert reals to integers. */
|
||
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
|
||
|
||
/* This is the kind of divide that is easiest to do in the general case. */
|
||
#define EASY_DIV_EXPR TRUNC_DIV_EXPR
|
||
|
||
/* Define this as 1 if `char' should by default be signed; else as 0. */
|
||
#define DEFAULT_SIGNED_CHAR 0
|
||
|
||
/* Max number of bytes we can move from memory to memory
|
||
in one reasonably fast instruction. */
|
||
#define MOVE_MAX 4
|
||
|
||
/* Define this if zero-extension is slow (more than one real instruction). */
|
||
/* #define SLOW_ZERO_EXTEND */
|
||
|
||
/* Nonzero if access to memory by bytes is slow and undesirable. */
|
||
#define SLOW_BYTE_ACCESS 0
|
||
|
||
/* Define this to be nonzero if shift instructions ignore all but the low-order
|
||
few bits. */
|
||
#define SHIFT_COUNT_TRUNCATED 1
|
||
|
||
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
|
||
is done just by pretending it is already truncated. */
|
||
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
|
||
|
||
/* We assume that the store-condition-codes instructions store 0 for false
|
||
and some other value for true. This is the value stored for true. */
|
||
|
||
#define STORE_FLAG_VALUE -1
|
||
|
||
/* When a prototype says `char' or `short', really pass an `int'. */
|
||
#define PROMOTE_PROTOTYPES
|
||
|
||
/* Specify the machine mode that pointers have.
|
||
After generation of rtl, the compiler makes no further distinction
|
||
between pointers and any other objects of this machine mode. */
|
||
#define Pmode SImode
|
||
|
||
/* A function address in a call instruction
|
||
is a byte address (for indexing purposes)
|
||
so give the MEM rtx a byte's mode. */
|
||
#define FUNCTION_MODE QImode
|
||
|
||
/* Compute the cost of computing a constant rtl expression RTX
|
||
whose rtx-code is CODE. The body of this macro is a portion
|
||
of a switch statement. If the code is computed here,
|
||
return it with a return statement. Otherwise, break from the switch. */
|
||
|
||
#define CONST_COSTS(RTX,CODE, OUTER_CODE) \
|
||
case CONST_INT: \
|
||
if (INTVAL (RTX) >= -16 && INTVAL (RTX) <= 63) return 0; \
|
||
if (INTVAL (RTX) >= -128 && INTVAL (RTX) <= 127) return 1; \
|
||
if (INTVAL (RTX) >= -32768 && INTVAL (RTX) <= 32767) return 2; \
|
||
case CONST: \
|
||
case LABEL_REF: \
|
||
case SYMBOL_REF: \
|
||
return 3; \
|
||
case CONST_DOUBLE: \
|
||
return 5;
|
||
|
||
/* Tell final.c how to eliminate redundant test instructions. */
|
||
|
||
/* Here we define machine-dependent flags and fields in cc_status
|
||
(see `conditions.h'). */
|
||
|
||
#define NOTICE_UPDATE_CC(EXP, INSN) \
|
||
{ \
|
||
{ CC_STATUS_INIT; } \
|
||
}
|
||
|
||
/* Control the assembler format that we output. */
|
||
|
||
/* Use crt1.o as a startup file and crtn.o as a closing file. */
|
||
|
||
#define STARTFILE_SPEC "%{pg:gcrt1.o%s}%{!pg:%{p:mcrt1.o%s}%{!p:crt1.o%s}}"
|
||
|
||
#define ENDFILE_SPEC "crtn.o%s"
|
||
|
||
/* The .file command should always begin the output. */
|
||
|
||
#define ASM_FILE_START(FILE) output_file_directive ((FILE), main_input_filename)
|
||
|
||
/* Output to assembler file text saying following lines
|
||
may contain character constants, extra white space, comments, etc. */
|
||
|
||
#define ASM_APP_ON "#APP\n"
|
||
|
||
/* Output to assembler file text saying following lines
|
||
no longer contain unusual constructs. */
|
||
|
||
#define ASM_APP_OFF "#NO_APP\n"
|
||
|
||
/* Output before code. */
|
||
|
||
#define TEXT_SECTION_ASM_OP ".text"
|
||
|
||
/* Output before writable data. */
|
||
|
||
#define DATA_SECTION_ASM_OP ".data"
|
||
|
||
/* Read-only data goes in the data section because
|
||
AT&T's assembler doesn't guarantee the proper alignment
|
||
of data in the text section even if an align statement
|
||
is used. */
|
||
|
||
#define READONLY_DATA_SECTION() data_section()
|
||
|
||
/* How to refer to registers in assembler output.
|
||
This sequence is indexed by compiler's hard-register-number (see above). */
|
||
|
||
#define REGISTER_NAMES \
|
||
{"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
||
"r8", "fp", "ap", "psw", "sp", "pcbp", "isp", "pc" }
|
||
|
||
/* How to renumber registers for dbx and gdb. */
|
||
|
||
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)
|
||
|
||
/* Output SDB debugging info in response to the -g option. */
|
||
|
||
#define SDB_DEBUGGING_INFO
|
||
|
||
/* This is how to output the definition of a user-level label named NAME,
|
||
such as the label on a static function or variable NAME. */
|
||
|
||
#define ASM_OUTPUT_LABEL(FILE,NAME) \
|
||
do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
|
||
|
||
/* This is how to output a command to make the user-level label named NAME
|
||
defined for reference from other files. */
|
||
|
||
#define ASM_GLOBALIZE_LABEL(FILE,NAME) \
|
||
do { \
|
||
fputs (".globl ", FILE); \
|
||
assemble_name (FILE, NAME); \
|
||
fputs ("\n", FILE); \
|
||
} while (0)
|
||
|
||
/* The prefix to add to user-visible assembler symbols. */
|
||
|
||
#define USER_LABEL_PREFIX ""
|
||
|
||
/* This is how to output an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class. */
|
||
|
||
#define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
|
||
fprintf (FILE, ".%s%d:\n", PREFIX, NUM)
|
||
|
||
/* This is how to store into the string LABEL
|
||
the symbol_ref name of an internal numbered label where
|
||
PREFIX is the class of label and NUM is the number within the class.
|
||
This is suitable for output with `assemble_name'. */
|
||
|
||
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
|
||
sprintf (LABEL, ".%s%d", PREFIX, NUM)
|
||
|
||
/* This is how to output an internal numbered label which
|
||
labels a jump table. */
|
||
|
||
#define ASM_OUTPUT_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
|
||
do { \
|
||
ASM_OUTPUT_ALIGN (FILE, 2); \
|
||
ASM_OUTPUT_INTERNAL_LABEL (FILE, PREFIX, NUM); \
|
||
} while (0)
|
||
|
||
/* Assembler pseudo to introduce byte constants. */
|
||
|
||
#define ASM_BYTE_OP "\t.byte"
|
||
|
||
/* This is how to output an assembler line defining a `double' constant. */
|
||
|
||
/* This is how to output an assembler line defining a `float' constant. */
|
||
|
||
/* AT&T's assembler can't handle floating constants written as floating.
|
||
However, when cross-compiling, always use that in case format differs. */
|
||
|
||
#ifdef CROSS_COMPILER
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.double 0r%.20g\n", (VALUE))
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
fprintf (FILE, "\t.float 0r%.10g\n", (VALUE))
|
||
|
||
#else
|
||
|
||
#define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
|
||
do { union { double d; long l[2];} tem; \
|
||
tem.d = (VALUE); \
|
||
fprintf (FILE, "\t.word 0x%x, 0x%x\n", tem.l[0], tem.l[1]);\
|
||
} while (0)
|
||
|
||
#define ASM_OUTPUT_FLOAT(FILE,VALUE) \
|
||
do { union { float f; long l;} tem; \
|
||
tem.f = (VALUE); \
|
||
fprintf (FILE, "\t.word 0x%x\n", tem.l); \
|
||
} while (0)
|
||
|
||
#endif /* not CROSS_COMPILER */
|
||
|
||
/* This is how to output an assembler line defining an `int' constant. */
|
||
|
||
#define ASM_OUTPUT_INT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.word "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* Likewise for `char' and `short' constants. */
|
||
|
||
#define ASM_OUTPUT_SHORT(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.half "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
#define ASM_OUTPUT_CHAR(FILE,VALUE) \
|
||
( fprintf (FILE, "\t.byte "), \
|
||
output_addr_const (FILE, (VALUE)), \
|
||
fprintf (FILE, "\n"))
|
||
|
||
/* This is how to output an assembler line for a numeric constant byte. */
|
||
|
||
#define ASM_OUTPUT_BYTE(FILE,VALUE) \
|
||
fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
|
||
|
||
#define ASM_OUTPUT_ASCII(FILE,PTR,LEN) \
|
||
do { \
|
||
unsigned char *s; \
|
||
int i; \
|
||
for (i = 0, s = (unsigned char *)(PTR); i < (LEN); s++, i++) \
|
||
{ \
|
||
if ((i % 8) == 0) \
|
||
fprintf ((FILE),"%s\t.byte\t",(i?"\n":"")); \
|
||
fprintf ((FILE), "%s0x%x", (i%8?",":""), (unsigned)*s); \
|
||
} \
|
||
fputs ("\n", (FILE)); \
|
||
} while (0)
|
||
|
||
/* This is how to output an insn to push a register on the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
|
||
fprintf (FILE, "\tpushw %s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an insn to pop a register from the stack.
|
||
It need not be very fast code. */
|
||
|
||
#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
|
||
fprintf (FILE, "\tPOPW %s\n", reg_names[REGNO])
|
||
|
||
/* This is how to output an element of a case-vector that is absolute. */
|
||
|
||
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
|
||
fprintf (FILE, "\t.word .L%d\n", VALUE)
|
||
|
||
/* This is how to output an element of a case-vector that is relative. */
|
||
|
||
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
|
||
fprintf (FILE, "\t.word .L%d-.L%d\n", VALUE, REL)
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter
|
||
to a multiple of 2**LOG bytes. */
|
||
|
||
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
||
if ((LOG) != 0) \
|
||
fprintf (FILE, "\t.align %d\n", 1 << (LOG))
|
||
|
||
/* This is how to output an assembler line
|
||
that says to advance the location counter by SIZE bytes. */
|
||
|
||
/* The `space' pseudo in the text segment outputs nop insns rather than 0s,
|
||
so we must output 0s explicitly in the text segment. */
|
||
|
||
#define ASM_OUTPUT_SKIP(FILE,SIZE) \
|
||
if (in_text_section ()) \
|
||
{ \
|
||
int i; \
|
||
for (i = 0; i < (SIZE) - 20; i += 20) \
|
||
fprintf (FILE, "\t.byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n"); \
|
||
if (i < (SIZE)) \
|
||
{ \
|
||
fprintf (FILE, "\t.byte 0"); \
|
||
i++; \
|
||
for (; i < (SIZE); i++) \
|
||
fprintf (FILE, ",0"); \
|
||
fprintf (FILE, "\n"); \
|
||
} \
|
||
} \
|
||
else \
|
||
fprintf ((FILE), "\t.set .,.+%u\n", (SIZE))
|
||
|
||
/* This says how to output an assembler line
|
||
to define a global common symbol. */
|
||
|
||
#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
|
||
do { \
|
||
data_section(); \
|
||
fputs ("\t.comm ", (FILE)); \
|
||
assemble_name ((FILE), (NAME)); \
|
||
fprintf ((FILE), ",%u\n", (SIZE)); \
|
||
} while (0)
|
||
|
||
/* This says how to output an assembler line
|
||
to define a local common symbol. */
|
||
|
||
#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
|
||
do { \
|
||
data_section(); \
|
||
ASM_OUTPUT_ALIGN ((FILE), 2); \
|
||
ASM_OUTPUT_LABEL ((FILE), (NAME)); \
|
||
fprintf ((FILE), "\t.zero %u\n", (SIZE)); \
|
||
} while (0)
|
||
|
||
/* Store in OUTPUT a string (made with alloca) containing
|
||
an assembler-name for a local static variable named NAME.
|
||
LABELNO is an integer which is different for each call. */
|
||
|
||
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
|
||
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
|
||
sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
|
||
|
||
/* Output #ident as a .ident. */
|
||
|
||
#define ASM_OUTPUT_IDENT(FILE, NAME) fprintf (FILE, "\t.ident \"%s\"\n", NAME)
|
||
|
||
/* Define the parentheses used to group arithmetic operations
|
||
in assembler code. */
|
||
|
||
#define ASM_OPEN_PAREN "("
|
||
#define ASM_CLOSE_PAREN ")"
|
||
|
||
/* Define results of standard character escape sequences. */
|
||
#define TARGET_BELL 007
|
||
#define TARGET_BS 010
|
||
#define TARGET_TAB 011
|
||
#define TARGET_NEWLINE 012
|
||
#define TARGET_VT 013
|
||
#define TARGET_FF 014
|
||
#define TARGET_CR 015
|
||
|
||
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
||
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
||
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
||
|
||
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
|
||
|
||
#define PRINT_OPERAND(FILE, X, CODE) \
|
||
{ int i; \
|
||
if (GET_CODE (X) == REG) \
|
||
fprintf (FILE, "%%%s", reg_names[REGNO (X)]); \
|
||
else if (GET_CODE (X) == MEM) \
|
||
output_address (XEXP (X, 0)); \
|
||
else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
|
||
{ \
|
||
union { double d; long l[2]; } dtem; \
|
||
union { float f; long l; } ftem; \
|
||
\
|
||
dtem.l[0] = CONST_DOUBLE_LOW (X); \
|
||
dtem.l[1] = CONST_DOUBLE_HIGH (X); \
|
||
ftem.f = dtem.d; \
|
||
fprintf(FILE, "&0x%lx", ftem.l); \
|
||
} \
|
||
else { putc ('&', FILE); output_addr_const (FILE, X); }}
|
||
|
||
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
|
||
{ register rtx Addr = ADDR; \
|
||
rtx offset; \
|
||
rtx reg; \
|
||
if (GET_CODE (Addr) == MEM) { \
|
||
putc ('*', FILE); \
|
||
Addr = XEXP (Addr, 0); \
|
||
if (GET_CODE (Addr) == REG) \
|
||
putc ('0', FILE); \
|
||
} \
|
||
switch (GET_CODE (Addr)) \
|
||
{ \
|
||
case REG: \
|
||
fprintf (FILE, "(%%%s)", reg_names[REGNO (Addr)]); \
|
||
break; \
|
||
\
|
||
case PLUS: \
|
||
offset = NULL; \
|
||
if (CONSTANT_ADDRESS_P (XEXP (Addr, 0))) \
|
||
{ \
|
||
offset = XEXP (Addr, 0); \
|
||
Addr = XEXP (Addr, 1); \
|
||
} \
|
||
else if (CONSTANT_ADDRESS_P (XEXP (Addr, 1))) \
|
||
{ \
|
||
offset = XEXP (Addr, 1); \
|
||
Addr = XEXP (Addr, 0); \
|
||
} \
|
||
else \
|
||
abort(); \
|
||
if (REG_P (Addr)) \
|
||
reg = Addr; \
|
||
else \
|
||
abort(); \
|
||
output_addr_const(FILE, offset); \
|
||
fprintf(FILE, "(%%%s)", reg_names[REGNO(reg)]); \
|
||
break; \
|
||
\
|
||
default: \
|
||
if ( !CONSTANT_ADDRESS_P(Addr)) \
|
||
abort(); \
|
||
output_addr_const (FILE, Addr); \
|
||
}}
|
||
|
||
/*
|
||
Local variables:
|
||
version-control: t
|
||
End:
|
||
*/
|