Introduce llvm.experimental.widenable_condition intrinsic
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
2018-12-07 15:39:46 +01:00
|
|
|
//===- MakeGuardsExplicit.cpp - Turn guard intrinsics into guard branches -===//
|
|
|
|
//
|
2019-01-19 09:50:56 +01:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
Introduce llvm.experimental.widenable_condition intrinsic
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
2018-12-07 15:39:46 +01:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This pass lowers the @llvm.experimental.guard intrinsic to the new form of
|
|
|
|
// guard represented as widenable explicit branch to the deopt block. The
|
|
|
|
// difference between this pass and LowerGuardIntrinsic is that after this pass
|
|
|
|
// the guard represented as intrinsic:
|
|
|
|
//
|
|
|
|
// call void(i1, ...) @llvm.experimental.guard(i1 %old_cond) [ "deopt"() ]
|
|
|
|
//
|
|
|
|
// transforms to a guard represented as widenable explicit branch:
|
|
|
|
//
|
|
|
|
// %widenable_cond = call i1 @llvm.experimental.widenable.condition()
|
|
|
|
// br i1 (%old_cond & %widenable_cond), label %guarded, label %deopt
|
|
|
|
//
|
|
|
|
// Here:
|
|
|
|
// - The semantics of @llvm.experimental.widenable.condition allows to replace
|
|
|
|
// %widenable_cond with the construction (%widenable_cond & %any_other_cond)
|
|
|
|
// without loss of correctness;
|
|
|
|
// - %guarded is the lower part of old guard intrinsic's parent block split by
|
|
|
|
// the intrinsic call;
|
|
|
|
// - %deopt is a block containing a sole call to @llvm.experimental.deoptimize
|
|
|
|
// intrinsic.
|
|
|
|
//
|
|
|
|
// Therefore, this branch preserves the property of widenability.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/Transforms/Scalar/MakeGuardsExplicit.h"
|
|
|
|
#include "llvm/Analysis/GuardUtils.h"
|
Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 22:15:01 +01:00
|
|
|
#include "llvm/IR/IRBuilder.h"
|
Introduce llvm.experimental.widenable_condition intrinsic
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
2018-12-07 15:39:46 +01:00
|
|
|
#include "llvm/IR/InstIterator.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/IR/Intrinsics.h"
|
Sink all InitializePasses.h includes
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
2019-11-13 22:15:01 +01:00
|
|
|
#include "llvm/InitializePasses.h"
|
Introduce llvm.experimental.widenable_condition intrinsic
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
2018-12-07 15:39:46 +01:00
|
|
|
#include "llvm/Pass.h"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Transforms/Utils/GuardUtils.h"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
struct MakeGuardsExplicitLegacyPass : public FunctionPass {
|
|
|
|
static char ID;
|
|
|
|
MakeGuardsExplicitLegacyPass() : FunctionPass(ID) {
|
|
|
|
initializeMakeGuardsExplicitLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
static void turnToExplicitForm(CallInst *Guard, Function *DeoptIntrinsic) {
|
|
|
|
// Replace the guard with an explicit branch (just like in GuardWidening).
|
2019-11-21 04:18:45 +01:00
|
|
|
BasicBlock *OriginalBB = Guard->getParent();
|
|
|
|
(void)OriginalBB;
|
2019-11-20 21:51:37 +01:00
|
|
|
makeGuardControlFlowExplicit(DeoptIntrinsic, Guard, true);
|
2019-11-21 04:18:45 +01:00
|
|
|
assert(isWidenableBranch(OriginalBB->getTerminator()) && "should hold");
|
Introduce llvm.experimental.widenable_condition intrinsic
This patch introduces a new instinsic `@llvm.experimental.widenable_condition`
that allows explicit representation for guards. It is an alternative to using
`@llvm.experimental.guard` intrinsic that does not contain implicit control flow.
We keep finding places where `@llvm.experimental.guard` is not supported or
treated too conservatively, and there are 2 reasons to that:
- `@llvm.experimental.guard` has memory write side effect to model implicit control flow,
and this sometimes confuses passes and analyzes that work with memory;
- Not all passes and analysis are aware of the semantics of guards. These passes treat them
as regular throwing call and have no idea that the condition of guard may be used to prove
something. One well-known place which had caused us troubles in the past is explicit loop
iteration count calculation in SCEV. Another example is new loop unswitching which is not
aware of guards. Whenever a new pass appears, we potentially have this problem there.
Rather than go and fix all these places (and commit to keep track of them and add support
in future), it seems more reasonable to leverage the existing optimizer's logic as much as possible.
The only significant difference between guards and regular explicit branches is that guard's condition
can be widened. It means that a guard contains (explicitly or implicitly) a `deopt` block successor,
and it is always legal to go there no matter what the guard condition is. The other successor is
a guarded block, and it is only legal to go there if the condition is true.
This patch introduces a new explicit form of guards alternative to `@llvm.experimental.guard`
intrinsic. Now a widenable guard can be represented in the CFG explicitly like this:
%widenable_condition = call i1 @llvm.experimental.widenable.condition()
%new_condition = and i1 %cond, %widenable_condition
br i1 %new_condition, label %guarded, label %deopt
guarded:
; Guarded instructions
deopt:
call type @llvm.experimental.deoptimize(<args...>) [ "deopt"(<deopt_args...>) ]
The new intrinsic `@llvm.experimental.widenable.condition` has semantics of an
`undef`, but the intrinsic prevents the optimizer from folding it early. This form
should exploit all optimization boons provided to `br` instuction, and it still can be
widened by replacing the result of `@llvm.experimental.widenable.condition()`
with `and` with any arbitrary boolean value (as long as the branch that is taken when
it is `false` has a deopt and has no side-effects).
For more motivation, please check llvm-dev discussion "[llvm-dev] Giving up using
implicit control flow in guards".
This patch introduces this new intrinsic with respective LangRef changes and a pass
that converts old-style guards (expressed as intrinsics) into the new form.
The naming discussion is still ungoing. Merging this to unblock further items. We can
later change the name of this intrinsic.
Reviewed By: reames, fedor.sergeev, sanjoy
Differential Revision: https://reviews.llvm.org/D51207
llvm-svn: 348593
2018-12-07 15:39:46 +01:00
|
|
|
|
|
|
|
Guard->eraseFromParent();
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool explicifyGuards(Function &F) {
|
|
|
|
// Check if we can cheaply rule out the possibility of not having any work to
|
|
|
|
// do.
|
|
|
|
auto *GuardDecl = F.getParent()->getFunction(
|
|
|
|
Intrinsic::getName(Intrinsic::experimental_guard));
|
|
|
|
if (!GuardDecl || GuardDecl->use_empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
SmallVector<CallInst *, 8> GuardIntrinsics;
|
|
|
|
for (auto &I : instructions(F))
|
|
|
|
if (isGuard(&I))
|
|
|
|
GuardIntrinsics.push_back(cast<CallInst>(&I));
|
|
|
|
|
|
|
|
if (GuardIntrinsics.empty())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
auto *DeoptIntrinsic = Intrinsic::getDeclaration(
|
|
|
|
F.getParent(), Intrinsic::experimental_deoptimize, {F.getReturnType()});
|
|
|
|
DeoptIntrinsic->setCallingConv(GuardDecl->getCallingConv());
|
|
|
|
|
|
|
|
for (auto *Guard : GuardIntrinsics)
|
|
|
|
turnToExplicitForm(Guard, DeoptIntrinsic);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool MakeGuardsExplicitLegacyPass::runOnFunction(Function &F) {
|
|
|
|
return explicifyGuards(F);
|
|
|
|
}
|
|
|
|
|
|
|
|
char MakeGuardsExplicitLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS(MakeGuardsExplicitLegacyPass, "make-guards-explicit",
|
|
|
|
"Lower the guard intrinsic to explicit control flow form",
|
|
|
|
false, false)
|
|
|
|
|
|
|
|
PreservedAnalyses MakeGuardsExplicitPass::run(Function &F,
|
|
|
|
FunctionAnalysisManager &) {
|
|
|
|
if (explicifyGuards(F))
|
|
|
|
return PreservedAnalyses::none();
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|