1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-23 13:02:52 +02:00
llvm-mirror/lib/Transforms/Scalar/NewGVN.cpp

2753 lines
109 KiB
C++
Raw Normal View History

//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the new LLVM's Global Value Numbering pass.
/// GVN partitions values computed by a function into congruence classes.
/// Values ending up in the same congruence class are guaranteed to be the same
/// for every execution of the program. In that respect, congruency is a
/// compile-time approximation of equivalence of values at runtime.
/// The algorithm implemented here uses a sparse formulation and it's based
/// on the ideas described in the paper:
/// "A Sparse Algorithm for Predicated Global Value Numbering" from
/// Karthik Gargi.
///
/// A brief overview of the algorithm: The algorithm is essentially the same as
/// the standard RPO value numbering algorithm (a good reference is the paper
/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
/// The RPO algorithm proceeds, on every iteration, to process every reachable
/// block and every instruction in that block. This is because the standard RPO
/// algorithm does not track what things have the same value number, it only
/// tracks what the value number of a given operation is (the mapping is
/// operation -> value number). Thus, when a value number of an operation
/// changes, it must reprocess everything to ensure all uses of a value number
/// get updated properly. In constrast, the sparse algorithm we use *also*
/// tracks what operations have a given value number (IE it also tracks the
/// reverse mapping from value number -> operations with that value number), so
/// that it only needs to reprocess the instructions that are affected when
/// something's value number changes. The rest of the algorithm is devoted to
/// performing symbolic evaluation, forward propagation, and simplification of
/// operations based on the value numbers deduced so far.
///
/// We also do not perform elimination by using any published algorithm. All
/// published algorithms are O(Instructions). Instead, we use a technique that
/// is O(number of operations with the same value number), enabling us to skip
/// trying to eliminate things that have unique value numbers.
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/NewGVN.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFGPrinter.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Transforms/Utils/PredicateInfo.h"
#include <unordered_map>
#include <utility>
#include <vector>
using namespace llvm;
using namespace PatternMatch;
using namespace llvm::GVNExpression;
#define DEBUG_TYPE "newgvn"
STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
STATISTIC(NumGVNMaxIterations,
"Maximum Number of iterations it took to converge GVN");
STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
STATISTIC(NumGVNAvoidedSortedLeaderChanges,
"Number of avoided sorted leader changes");
STATISTIC(NumGVNNotMostDominatingLeader,
"Number of times a member dominated it's new classes' leader");
STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
DEBUG_COUNTER(VNCounter, "newgvn-vn",
"Controls which instructions are value numbered")
//===----------------------------------------------------------------------===//
// GVN Pass
//===----------------------------------------------------------------------===//
// Anchor methods.
namespace llvm {
namespace GVNExpression {
Expression::~Expression() = default;
BasicExpression::~BasicExpression() = default;
CallExpression::~CallExpression() = default;
LoadExpression::~LoadExpression() = default;
StoreExpression::~StoreExpression() = default;
AggregateValueExpression::~AggregateValueExpression() = default;
PHIExpression::~PHIExpression() = default;
}
}
// Congruence classes represent the set of expressions/instructions
// that are all the same *during some scope in the function*.
// That is, because of the way we perform equality propagation, and
// because of memory value numbering, it is not correct to assume
// you can willy-nilly replace any member with any other at any
// point in the function.
//
// For any Value in the Member set, it is valid to replace any dominated member
// with that Value.
//
// Every congruence class has a leader, and the leader is used to
// symbolize instructions in a canonical way (IE every operand of an
// instruction that is a member of the same congruence class will
// always be replaced with leader during symbolization).
// To simplify symbolization, we keep the leader as a constant if class can be
// proved to be a constant value.
// Otherwise, the leader is a randomly chosen member of the value set, it does
// not matter which one is chosen.
// Each congruence class also has a defining expression,
// though the expression may be null. If it exists, it can be used for forward
// propagation and reassociation of values.
//
struct CongruenceClass {
using MemberSet = SmallPtrSet<Value *, 4>;
unsigned ID;
// Representative leader.
2016-12-28 20:17:17 +01:00
Value *RepLeader = nullptr;
2017-01-20 22:04:30 +01:00
// If this is represented by a store, the value.
Value *RepStoredValue = nullptr;
// If this class contains MemoryDefs, what is the represented memory state.
MemoryAccess *RepMemoryAccess = nullptr;
// Defining Expression.
2016-12-28 20:17:17 +01:00
const Expression *DefiningExpr = nullptr;
// Actual members of this class.
MemberSet Members;
// True if this class has no members left. This is mainly used for assertion
// purposes, and for skipping empty classes.
2016-12-28 20:17:17 +01:00
bool Dead = false;
// Number of stores in this congruence class.
// This is used so we can detect store equivalence changes properly.
int StoreCount = 0;
// The most dominating leader after our current leader, because the member set
// is not sorted and is expensive to keep sorted all the time.
std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
2016-12-28 20:17:17 +01:00
explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
2016-12-28 20:17:17 +01:00
: ID(ID), RepLeader(Leader), DefiningExpr(E) {}
};
namespace llvm {
template <> struct DenseMapInfo<const Expression *> {
static const Expression *getEmptyKey() {
2016-12-28 20:17:17 +01:00
auto Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static const Expression *getTombstoneKey() {
2016-12-28 20:17:17 +01:00
auto Val = static_cast<uintptr_t>(~1U);
Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
return reinterpret_cast<const Expression *>(Val);
}
static unsigned getHashValue(const Expression *V) {
return static_cast<unsigned>(V->getHashValue());
}
static bool isEqual(const Expression *LHS, const Expression *RHS) {
if (LHS == RHS)
return true;
if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || RHS == getEmptyKey())
return false;
return *LHS == *RHS;
}
};
} // end namespace llvm
namespace {
class NewGVN : public FunctionPass {
DominatorTree *DT;
const DataLayout *DL;
const TargetLibraryInfo *TLI;
AssumptionCache *AC;
AliasAnalysis *AA;
MemorySSA *MSSA;
MemorySSAWalker *MSSAWalker;
std::unique_ptr<PredicateInfo> PredInfo;
BumpPtrAllocator ExpressionAllocator;
ArrayRecycler<Value *> ArgRecycler;
// Number of function arguments, used by ranking
unsigned int NumFuncArgs;
// Congruence class info.
// This class is called INITIAL in the paper. It is the class everything
// startsout in, and represents any value. Being an optimistic analysis,
// anything in the INITIAL class has the value TOP, which is indeterminate and
// equivalent to everything.
CongruenceClass *InitialClass;
std::vector<CongruenceClass *> CongruenceClasses;
unsigned NextCongruenceNum;
// Value Mappings.
DenseMap<Value *, CongruenceClass *> ValueToClass;
DenseMap<Value *, const Expression *> ValueToExpression;
// Mapping from predicate info we used to the instructions we used it with.
// In order to correctly ensure propagation, we must keep track of what
// comparisons we used, so that when the values of the comparisons change, we
// propagate the information to the places we used the comparison.
DenseMap<const Value *, SmallPtrSet<Instruction *, 2>> PredicateToUsers;
// A table storing which memorydefs/phis represent a memory state provably
// equivalent to another memory state.
// We could use the congruence class machinery, but the MemoryAccess's are
// abstract memory states, so they can only ever be equivalent to each other,
// and not to constants, etc.
DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
// Expression to class mapping.
using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
ExpressionClassMap ExpressionToClass;
// Which values have changed as a result of leader changes.
SmallPtrSet<Value *, 8> LeaderChanges;
// Reachability info.
2016-12-28 20:17:17 +01:00
using BlockEdge = BasicBlockEdge;
DenseSet<BlockEdge> ReachableEdges;
SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
// This is a bitvector because, on larger functions, we may have
// thousands of touched instructions at once (entire blocks,
// instructions with hundreds of uses, etc). Even with optimization
// for when we mark whole blocks as touched, when this was a
// SmallPtrSet or DenseSet, for some functions, we spent >20% of all
// the time in GVN just managing this list. The bitvector, on the
// other hand, efficiently supports test/set/clear of both
// individual and ranges, as well as "find next element" This
// enables us to use it as a worklist with essentially 0 cost.
BitVector TouchedInstructions;
DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>>
DominatedInstRange;
#ifndef NDEBUG
// Debugging for how many times each block and instruction got processed.
DenseMap<const Value *, unsigned> ProcessedCount;
#endif
// DFS info.
// This contains a mapping from Instructions to DFS numbers.
// The numbering starts at 1. An instruction with DFS number zero
// means that the instruction is dead.
DenseMap<const Value *, unsigned> InstrDFS;
// This contains the mapping DFS numbers to instructions.
SmallVector<Value *, 32> DFSToInstr;
// Deletion info.
SmallPtrSet<Instruction *, 8> InstructionsToErase;
public:
static char ID; // Pass identification, replacement for typeid.
NewGVN() : FunctionPass(ID) {
initializeNewGVNPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA);
private:
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<MemorySSAWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
}
// Expression handling.
const Expression *createExpression(Instruction *);
const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *);
PHIExpression *createPHIExpression(Instruction *);
const VariableExpression *createVariableExpression(Value *);
const ConstantExpression *createConstantExpression(Constant *);
const Expression *createVariableOrConstant(Value *V);
const UnknownExpression *createUnknownExpression(Instruction *);
const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *);
LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
MemoryAccess *);
const CallExpression *createCallExpression(CallInst *, MemoryAccess *);
const AggregateValueExpression *createAggregateValueExpression(Instruction *);
bool setBasicExpressionInfo(Instruction *, BasicExpression *);
// Congruence class handling.
CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
2016-12-28 20:17:17 +01:00
auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
CongruenceClasses.emplace_back(result);
return result;
}
CongruenceClass *createSingletonCongruenceClass(Value *Member) {
CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
CClass->Members.insert(Member);
ValueToClass[Member] = CClass;
return CClass;
}
void initializeCongruenceClasses(Function &F);
// Value number an Instruction or MemoryPhi.
void valueNumberMemoryPhi(MemoryPhi *);
void valueNumberInstruction(Instruction *);
// Symbolic evaluation.
const Expression *checkSimplificationResults(Expression *, Instruction *,
Value *);
const Expression *performSymbolicEvaluation(Value *);
const Expression *performSymbolicLoadEvaluation(Instruction *);
const Expression *performSymbolicStoreEvaluation(Instruction *);
const Expression *performSymbolicCallEvaluation(Instruction *);
const Expression *performSymbolicPHIEvaluation(Instruction *);
const Expression *performSymbolicAggrValueEvaluation(Instruction *);
const Expression *performSymbolicCmpEvaluation(Instruction *);
const Expression *performSymbolicPredicateInfoEvaluation(Instruction *);
// Congruence finding.
Value *lookupOperandLeader(Value *) const;
void performCongruenceFinding(Instruction *, const Expression *);
void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *,
CongruenceClass *);
bool setMemoryAccessEquivTo(MemoryAccess *From, CongruenceClass *To);
MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const;
bool isMemoryAccessTop(const MemoryAccess *) const;
// Ranking
unsigned int getRank(const Value *) const;
bool shouldSwapOperands(const Value *, const Value *) const;
// Reachability handling.
void updateReachableEdge(BasicBlock *, BasicBlock *);
void processOutgoingEdges(TerminatorInst *, BasicBlock *);
Value *findConditionEquivalence(Value *) const;
// Elimination.
struct ValueDFS;
void convertClassToDFSOrdered(const CongruenceClass::MemberSet &,
SmallVectorImpl<ValueDFS> &,
DenseMap<const Value *, unsigned int> &,
SmallPtrSetImpl<Instruction *> &);
void convertClassToLoadsAndStores(const CongruenceClass::MemberSet &,
SmallVectorImpl<ValueDFS> &);
bool eliminateInstructions(Function &);
void replaceInstruction(Instruction *, Value *);
void markInstructionForDeletion(Instruction *);
void deleteInstructionsInBlock(BasicBlock *);
// New instruction creation.
void handleNewInstruction(Instruction *){};
// Various instruction touch utilities
void markUsersTouched(Value *);
void markMemoryUsersTouched(MemoryAccess *);
void markPredicateUsersTouched(Instruction *);
void markLeaderChangeTouched(CongruenceClass *CC);
void addPredicateUsers(const PredicateBase *, Instruction *);
// Utilities.
void cleanupTables();
std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
void updateProcessedCount(Value *V);
void verifyMemoryCongruency() const;
void verifyComparisons(Function &F);
bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
};
} // end anonymous namespace
char NewGVN::ID = 0;
// createGVNPass - The public interface to this file.
FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); }
template <typename T>
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) ||
!LHS.BasicExpression::equals(RHS)) {
return false;
} else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) {
if (LHS.getDefiningAccess() != L->getDefiningAccess())
return false;
} else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) {
if (LHS.getDefiningAccess() != S->getDefiningAccess())
return false;
}
return true;
}
bool LoadExpression::equals(const Expression &Other) const {
return equalsLoadStoreHelper(*this, Other);
}
bool StoreExpression::equals(const Expression &Other) const {
2017-01-20 22:04:30 +01:00
bool Result = equalsLoadStoreHelper(*this, Other);
// Make sure that store vs store includes the value operand.
if (Result)
if (const auto *S = dyn_cast<StoreExpression>(&Other))
if (getStoredValue() != S->getStoredValue())
return false;
return Result;
}
#ifndef NDEBUG
static std::string getBlockName(const BasicBlock *B) {
return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
}
#endif
INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false)
PHIExpression *NewGVN::createPHIExpression(Instruction *I) {
BasicBlock *PHIBlock = I->getParent();
2016-12-28 20:17:17 +01:00
auto *PN = cast<PHINode>(I);
auto *E =
new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(I->getType());
E->setOpcode(I->getOpcode());
// Filter out unreachable phi operands.
auto Filtered = make_filter_range(PN->operands(), [&](const Use &U) {
return ReachableBlocks.count(PN->getIncomingBlock(U));
});
std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
[&](const Use &U) -> Value * {
// Don't try to transform self-defined phis.
if (U == PN)
return PN;
return lookupOperandLeader(U);
});
return E;
}
// Set basic expression info (Arguments, type, opcode) for Expression
// E from Instruction I in block B.
bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) {
bool AllConstant = true;
if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
E->setType(GEP->getSourceElementType());
else
E->setType(I->getType());
E->setOpcode(I->getOpcode());
E->allocateOperands(ArgRecycler, ExpressionAllocator);
// Transform the operand array into an operand leader array, and keep track of
// whether all members are constant.
std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
auto Operand = lookupOperandLeader(O);
AllConstant &= isa<Constant>(Operand);
return Operand;
});
return AllConstant;
}
const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
Value *Arg1, Value *Arg2) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator) BasicExpression(2);
E->setType(T);
E->setOpcode(Opcode);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
if (Instruction::isCommutative(Opcode)) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
if (shouldSwapOperands(Arg1, Arg2))
std::swap(Arg1, Arg2);
}
E->op_push_back(lookupOperandLeader(Arg1));
E->op_push_back(lookupOperandLeader(Arg2));
Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI,
DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
return SimplifiedE;
return E;
}
// Take a Value returned by simplification of Expression E/Instruction
// I, and see if it resulted in a simpler expression. If so, return
// that expression.
// TODO: Once finished, this should not take an Instruction, we only
// use it for printing.
const Expression *NewGVN::checkSimplificationResults(Expression *E,
Instruction *I, Value *V) {
if (!V)
return nullptr;
if (auto *C = dyn_cast<Constant>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " constant " << *C << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(C);
} else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " variable " << *V << "\n");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createVariableExpression(V);
}
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC && CC->DefiningExpr) {
if (I)
DEBUG(dbgs() << "Simplified " << *I << " to "
<< " expression " << *V << "\n");
NumGVNOpsSimplified++;
assert(isa<BasicExpression>(E) &&
"We should always have had a basic expression here");
cast<BasicExpression>(E)->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return CC->DefiningExpr;
}
return nullptr;
}
const Expression *NewGVN::createExpression(Instruction *I) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
bool AllConstant = setBasicExpressionInfo(I, E);
if (I->isCommutative()) {
// Ensure that commutative instructions that only differ by a permutation
// of their operands get the same value number by sorting the operand value
// numbers. Since all commutative instructions have two operands it is more
// efficient to sort by hand rather than using, say, std::sort.
assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
E->swapOperands(0, 1);
}
// Perform simplificaiton
// TODO: Right now we only check to see if we get a constant result.
// We may get a less than constant, but still better, result for
// some operations.
// IE
// add 0, x -> x
// and x, x -> x
// We should handle this by simply rewriting the expression.
if (auto *CI = dyn_cast<CmpInst>(I)) {
// Sort the operand value numbers so x<y and y>x get the same value
// number.
CmpInst::Predicate Predicate = CI->getPredicate();
if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
E->swapOperands(0, 1);
Predicate = CmpInst::getSwappedPredicate(Predicate);
}
E->setOpcode((CI->getOpcode() << 8) | Predicate);
// TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
"Wrong types on cmp instruction");
assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
E->getOperand(1)->getType() == I->getOperand(1)->getType()));
Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (isa<SelectInst>(I)) {
if (isa<Constant>(E->getOperand(0)) ||
E->getOperand(0) == E->getOperand(1)) {
assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
E->getOperand(2)->getType() == I->getOperand(2)->getType());
Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
E->getOperand(2), *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
} else if (I->isBinaryOp()) {
Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (auto *BI = dyn_cast<BitCastInst>(I)) {
Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (isa<GetElementPtrInst>(I)) {
Value *V = SimplifyGEPInst(E->getType(),
ArrayRef<Value *>(E->op_begin(), E->op_end()),
*DL, TLI, DT, AC);
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
} else if (AllConstant) {
// We don't bother trying to simplify unless all of the operands
// were constant.
// TODO: There are a lot of Simplify*'s we could call here, if we
// wanted to. The original motivating case for this code was a
// zext i1 false to i8, which we don't have an interface to
// simplify (IE there is no SimplifyZExt).
SmallVector<Constant *, 8> C;
for (Value *Arg : E->operands())
C.emplace_back(cast<Constant>(Arg));
if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI))
if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
return SimplifiedE;
}
return E;
}
const AggregateValueExpression *
NewGVN::createAggregateValueExpression(Instruction *I) {
if (auto *II = dyn_cast<InsertValueInst>(I)) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
setBasicExpressionInfo(I, E);
E->allocateIntOperands(ExpressionAllocator);
std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
return E;
} else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator)
AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
setBasicExpressionInfo(EI, E);
E->allocateIntOperands(ExpressionAllocator);
std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
return E;
}
llvm_unreachable("Unhandled type of aggregate value operation");
}
const VariableExpression *NewGVN::createVariableExpression(Value *V) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator) VariableExpression(V);
E->setOpcode(V->getValueID());
return E;
}
const Expression *NewGVN::createVariableOrConstant(Value *V) {
if (auto *C = dyn_cast<Constant>(V))
return createConstantExpression(C);
return createVariableExpression(V);
}
const ConstantExpression *NewGVN::createConstantExpression(Constant *C) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator) ConstantExpression(C);
E->setOpcode(C->getValueID());
return E;
}
const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) {
auto *E = new (ExpressionAllocator) UnknownExpression(I);
E->setOpcode(I->getOpcode());
return E;
}
const CallExpression *NewGVN::createCallExpression(CallInst *CI,
MemoryAccess *HV) {
// FIXME: Add operand bundles for calls.
2016-12-28 20:17:17 +01:00
auto *E =
new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV);
setBasicExpressionInfo(CI, E);
return E;
}
// See if we have a congruence class and leader for this operand, and if so,
// return it. Otherwise, return the operand itself.
Value *NewGVN::lookupOperandLeader(Value *V) const {
CongruenceClass *CC = ValueToClass.lookup(V);
if (CC) {
// Everything in INITIAL is represneted by undef, as it can be any value.
// We do have to make sure we get the type right though, so we can't set the
// RepLeader to undef.
if (CC == InitialClass)
return UndefValue::get(V->getType());
2017-01-20 22:04:30 +01:00
return CC->RepStoredValue ? CC->RepStoredValue : CC->RepLeader;
}
return V;
}
MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const {
auto *CC = MemoryAccessToClass.lookup(MA);
if (CC && CC->RepMemoryAccess)
return CC->RepMemoryAccess;
// FIXME: We need to audit all the places that current set a nullptr To, and
// fix them. There should always be *some* congruence class, even if it is
// singular. Right now, we don't bother setting congruence classes for
// anything but stores, which means we have to return the original access
// here. Otherwise, this should be unreachable.
return MA;
}
// Return true if the MemoryAccess is really equivalent to everything. This is
// equivalent to the lattice value "TOP" in most lattices. This is the initial
// state of all memory accesses.
bool NewGVN::isMemoryAccessTop(const MemoryAccess *MA) const {
return MemoryAccessToClass.lookup(MA) == InitialClass;
}
LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
LoadInst *LI, MemoryAccess *DA) {
2016-12-28 20:17:17 +01:00
auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(LoadType);
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(PointerOp));
if (LI)
E->setAlignment(LI->getAlignment());
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI,
MemoryAccess *DA) {
auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
2017-01-20 22:04:30 +01:00
auto *E = new (ExpressionAllocator)
StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, DA);
E->allocateOperands(ArgRecycler, ExpressionAllocator);
E->setType(SI->getValueOperand()->getType());
// Give store and loads same opcode so they value number together.
E->setOpcode(0);
E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
// TODO: Value number heap versions. We may be able to discover
// things alias analysis can't on it's own (IE that a store and a
// load have the same value, and thus, it isn't clobbering the load).
return E;
}
const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) {
// Unlike loads, we never try to eliminate stores, so we do not check if they
// are simple and avoid value numbering them.
2016-12-28 20:17:17 +01:00
auto *SI = cast<StoreInst>(I);
MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI);
// Get the expression, if any, for the RHS of the MemoryDef.
MemoryAccess *StoreRHS = lookupMemoryAccessEquiv(
cast<MemoryDef>(StoreAccess)->getDefiningAccess());
// If we are defined by ourselves, use the live on entry def.
if (StoreRHS == StoreAccess)
StoreRHS = MSSA->getLiveOnEntryDef();
if (SI->isSimple()) {
// See if we are defined by a previous store expression, it already has a
// value, and it's the same value as our current store. FIXME: Right now, we
// only do this for simple stores, we should expand to cover memcpys, etc.
const Expression *OldStore = createStoreExpression(SI, StoreRHS);
CongruenceClass *CC = ExpressionToClass.lookup(OldStore);
// Basically, check if the congruence class the store is in is defined by a
// store that isn't us, and has the same value. MemorySSA takes care of
// ensuring the store has the same memory state as us already.
2017-01-20 22:04:30 +01:00
// The RepStoredValue gets nulled if all the stores disappear in a class, so
// we don't need to check if the class contains a store besides us.
if (CC && CC->RepStoredValue == lookupOperandLeader(SI->getValueOperand()))
return createStoreExpression(SI, StoreRHS);
// Also check if our value operand is defined by a load of the same memory
// location, and the memory state is the same as it was then
// (otherwise, it could have been overwritten later. See test32 in
// transforms/DeadStoreElimination/simple.ll)
if (LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand())) {
if ((lookupOperandLeader(LI->getPointerOperand()) ==
lookupOperandLeader(SI->getPointerOperand())) &&
(lookupMemoryAccessEquiv(
MSSA->getMemoryAccess(LI)->getDefiningAccess()) == StoreRHS))
return createVariableExpression(LI);
}
}
return createStoreExpression(SI, StoreAccess);
}
const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) {
2016-12-28 20:17:17 +01:00
auto *LI = cast<LoadInst>(I);
// We can eliminate in favor of non-simple loads, but we won't be able to
// eliminate the loads themselves.
if (!LI->isSimple())
return nullptr;
Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
// Load of undef is undef.
if (isa<UndefValue>(LoadAddressLeader))
return createConstantExpression(UndefValue::get(LI->getType()));
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
Instruction *DefiningInst = MD->getMemoryInst();
// If the defining instruction is not reachable, replace with undef.
if (!ReachableBlocks.count(DefiningInst->getParent()))
return createConstantExpression(UndefValue::get(LI->getType()));
}
}
const Expression *E =
createLoadExpression(LI->getType(), LI->getPointerOperand(), LI,
lookupMemoryAccessEquiv(DefiningAccess));
return E;
}
const Expression *
NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) {
auto *PI = PredInfo->getPredicateInfoFor(I);
if (!PI)
return nullptr;
DEBUG(dbgs() << "Found predicate info from instruction !\n");
auto *PWC = dyn_cast<PredicateWithCondition>(PI);
if (!PWC)
return nullptr;
auto *CopyOf = I->getOperand(0);
auto *Cond = PWC->Condition;
// If this a copy of the condition, it must be either true or false depending
// on the predicate info type and edge
if (CopyOf == Cond) {
// We should not need to add predicate users because the predicate info is
// already a use of this operand.
if (isa<PredicateAssume>(PI))
return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
if (PBranch->TrueEdge)
return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
}
if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
}
// Not a copy of the condition, so see what the predicates tell us about this
// value. First, though, we check to make sure the value is actually a copy
// of one of the condition operands. It's possible, in certain cases, for it
// to be a copy of a predicateinfo copy. In particular, if two branch
// operations use the same condition, and one branch dominates the other, we
// will end up with a copy of a copy. This is currently a small deficiency in
// predicateinfo. What will end up happening here is that we will value
// number both copies the same anyway.
// Everything below relies on the condition being a comparison.
auto *Cmp = dyn_cast<CmpInst>(Cond);
if (!Cmp)
return nullptr;
if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
DEBUG(dbgs() << "Copy is not of any condition operands!");
return nullptr;
}
Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
bool SwappedOps = false;
// Sort the ops
if (shouldSwapOperands(FirstOp, SecondOp)) {
std::swap(FirstOp, SecondOp);
SwappedOps = true;
}
CmpInst::Predicate Predicate =
SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
if (isa<PredicateAssume>(PI)) {
// If the comparison is true when the operands are equal, then we know the
// operands are equal, because assumes must always be true.
if (CmpInst::isTrueWhenEqual(Predicate)) {
addPredicateUsers(PI, I);
return createVariableOrConstant(FirstOp);
}
}
if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
// If we are *not* a copy of the comparison, we may equal to the other
// operand when the predicate implies something about equality of
// operations. In particular, if the comparison is true/false when the
// operands are equal, and we are on the right edge, we know this operation
// is equal to something.
if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
(!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
addPredicateUsers(PI, I);
return createVariableOrConstant(FirstOp);
}
// Handle the special case of floating point.
if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
(!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
addPredicateUsers(PI, I);
return createConstantExpression(cast<Constant>(FirstOp));
}
}
return nullptr;
}
// Evaluate read only and pure calls, and create an expression result.
const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) {
2016-12-28 20:17:17 +01:00
auto *CI = cast<CallInst>(I);
if (auto *II = dyn_cast<IntrinsicInst>(I)) {
// Instrinsics with the returned attribute are copies of arguments.
if (auto *ReturnedValue = II->getReturnedArgOperand()) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy)
if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
return Result;
return createVariableOrConstant(ReturnedValue);
}
}
if (AA->doesNotAccessMemory(CI)) {
return createCallExpression(CI, nullptr);
} else if (AA->onlyReadsMemory(CI)) {
MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess));
}
return nullptr;
}
// Update the memory access equivalence table to say that From is equal to To,
// and return true if this is different from what already existed in the table.
// FIXME: We need to audit all the places that current set a nullptr To, and fix
// them. There should always be *some* congruence class, even if it is singular.
bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, CongruenceClass *To) {
DEBUG(dbgs() << "Setting " << *From);
if (To) {
DEBUG(dbgs() << " equivalent to congruence class ");
DEBUG(dbgs() << To->ID << " with current memory access leader ");
DEBUG(dbgs() << *To->RepMemoryAccess);
} else {
DEBUG(dbgs() << " equivalent to itself");
}
DEBUG(dbgs() << "\n");
auto LookupResult = MemoryAccessToClass.find(From);
bool Changed = false;
// If it's already in the table, see if the value changed.
if (LookupResult != MemoryAccessToClass.end()) {
if (To && LookupResult->second != To) {
// It wasn't equivalent before, and now it is.
LookupResult->second = To;
Changed = true;
} else if (!To) {
// It used to be equivalent to something, and now it's not.
MemoryAccessToClass.erase(LookupResult);
Changed = true;
}
} else {
assert(!To &&
"Memory equivalence should never change from nothing to something");
}
return Changed;
}
// Evaluate PHI nodes symbolically, and create an expression result.
const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) {
2016-12-28 20:17:17 +01:00
auto *E = cast<PHIExpression>(createPHIExpression(I));
// We match the semantics of SimplifyPhiNode from InstructionSimplify here.
// See if all arguaments are the same.
// We track if any were undef because they need special handling.
bool HasUndef = false;
auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
if (Arg == I)
return false;
if (isa<UndefValue>(Arg)) {
HasUndef = true;
return false;
}
return true;
});
// If we are left with no operands, it's undef
if (Filtered.begin() == Filtered.end()) {
DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createConstantExpression(UndefValue::get(I->getType()));
}
Value *AllSameValue = *(Filtered.begin());
++Filtered.begin();
// Can't use std::equal here, sadly, because filter.begin moves.
if (llvm::all_of(Filtered, [AllSameValue](const Value *V) {
return V == AllSameValue;
})) {
// In LLVM's non-standard representation of phi nodes, it's possible to have
// phi nodes with cycles (IE dependent on other phis that are .... dependent
// on the original phi node), especially in weird CFG's where some arguments
// are unreachable, or uninitialized along certain paths. This can cause
// infinite loops during evaluation. We work around this by not trying to
// really evaluate them independently, but instead using a variable
// expression to say if one is equivalent to the other.
// We also special case undef, so that if we have an undef, we can't use the
// common value unless it dominates the phi block.
if (HasUndef) {
// Only have to check for instructions
if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
if (!DT->dominates(AllSameInst, I))
return E;
}
NumGVNPhisAllSame++;
DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
<< "\n");
E->deallocateOperands(ArgRecycler);
ExpressionAllocator.Deallocate(E);
return createVariableOrConstant(AllSameValue);
}
return E;
}
const Expression *NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) {
if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
unsigned Opcode = 0;
// EI might be an extract from one of our recognised intrinsics. If it
// is we'll synthesize a semantically equivalent expression instead on
// an extract value expression.
switch (II->getIntrinsicID()) {
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
Opcode = Instruction::Add;
break;
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
Opcode = Instruction::Sub;
break;
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
Opcode = Instruction::Mul;
break;
default:
break;
}
if (Opcode != 0) {
// Intrinsic recognized. Grab its args to finish building the
// expression.
assert(II->getNumArgOperands() == 2 &&
"Expect two args for recognised intrinsics.");
return createBinaryExpression(
Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
}
}
}
return createAggregateValueExpression(I);
}
const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) {
auto *CI = dyn_cast<CmpInst>(I);
// See if our operands are equal to those of a previous predicate, and if so,
// if it implies true or false.
auto Op0 = lookupOperandLeader(CI->getOperand(0));
auto Op1 = lookupOperandLeader(CI->getOperand(1));
auto OurPredicate = CI->getPredicate();
if (shouldSwapOperands(Op0, Op1)) {
std::swap(Op0, Op1);
OurPredicate = CI->getSwappedPredicate();
}
// Avoid processing the same info twice
const PredicateBase *LastPredInfo = nullptr;
// See if we know something about the comparison itself, like it is the target
// of an assume.
auto *CmpPI = PredInfo->getPredicateInfoFor(I);
if (dyn_cast_or_null<PredicateAssume>(CmpPI))
return createConstantExpression(ConstantInt::getTrue(CI->getType()));
if (Op0 == Op1) {
// This condition does not depend on predicates, no need to add users
if (CI->isTrueWhenEqual())
return createConstantExpression(ConstantInt::getTrue(CI->getType()));
else if (CI->isFalseWhenEqual())
return createConstantExpression(ConstantInt::getFalse(CI->getType()));
}
// NOTE: Because we are comparing both operands here and below, and using
// previous comparisons, we rely on fact that predicateinfo knows to mark
// comparisons that use renamed operands as users of the earlier comparisons.
// It is *not* enough to just mark predicateinfo renamed operands as users of
// the earlier comparisons, because the *other* operand may have changed in a
// previous iteration.
// Example:
// icmp slt %a, %b
// %b.0 = ssa.copy(%b)
// false branch:
// icmp slt %c, %b.0
// %c and %a may start out equal, and thus, the code below will say the second
// %icmp is false. c may become equal to something else, and in that case the
// %second icmp *must* be reexamined, but would not if only the renamed
// %operands are considered users of the icmp.
// *Currently* we only check one level of comparisons back, and only mark one
// level back as touched when changes appen . If you modify this code to look
// back farther through comparisons, you *must* mark the appropriate
// comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
// we know something just from the operands themselves
// See if our operands have predicate info, so that we may be able to derive
// something from a previous comparison.
for (const auto &Op : CI->operands()) {
auto *PI = PredInfo->getPredicateInfoFor(Op);
if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
if (PI == LastPredInfo)
continue;
LastPredInfo = PI;
// TODO: Along the false edge, we may know more things too, like icmp of
// same operands is false.
// TODO: We only handle actual comparison conditions below, not and/or.
auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
if (!BranchCond)
continue;
auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
auto BranchPredicate = BranchCond->getPredicate();
if (shouldSwapOperands(BranchOp0, BranchOp1)) {
std::swap(BranchOp0, BranchOp1);
BranchPredicate = BranchCond->getSwappedPredicate();
}
if (BranchOp0 == Op0 && BranchOp1 == Op1) {
if (PBranch->TrueEdge) {
// If we know the previous predicate is true and we are in the true
// edge then we may be implied true or false.
if (CmpInst::isImpliedTrueByMatchingCmp(OurPredicate,
BranchPredicate)) {
addPredicateUsers(PI, I);
return createConstantExpression(
ConstantInt::getTrue(CI->getType()));
}
if (CmpInst::isImpliedFalseByMatchingCmp(OurPredicate,
BranchPredicate)) {
addPredicateUsers(PI, I);
return createConstantExpression(
ConstantInt::getFalse(CI->getType()));
}
} else {
// Just handle the ne and eq cases, where if we have the same
// operands, we may know something.
if (BranchPredicate == OurPredicate) {
addPredicateUsers(PI, I);
// Same predicate, same ops,we know it was false, so this is false.
return createConstantExpression(
ConstantInt::getFalse(CI->getType()));
} else if (BranchPredicate ==
CmpInst::getInversePredicate(OurPredicate)) {
addPredicateUsers(PI, I);
// Inverse predicate, we know the other was false, so this is true.
// FIXME: Double check this
return createConstantExpression(
ConstantInt::getTrue(CI->getType()));
}
}
}
}
}
// Create expression will take care of simplifyCmpInst
return createExpression(I);
}
// Substitute and symbolize the value before value numbering.
const Expression *NewGVN::performSymbolicEvaluation(Value *V) {
const Expression *E = nullptr;
if (auto *C = dyn_cast<Constant>(V))
E = createConstantExpression(C);
else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
E = createVariableExpression(V);
} else {
// TODO: memory intrinsics.
// TODO: Some day, we should do the forward propagation and reassociation
// parts of the algorithm.
2016-12-28 20:17:17 +01:00
auto *I = cast<Instruction>(V);
switch (I->getOpcode()) {
case Instruction::ExtractValue:
case Instruction::InsertValue:
E = performSymbolicAggrValueEvaluation(I);
break;
case Instruction::PHI:
E = performSymbolicPHIEvaluation(I);
break;
case Instruction::Call:
E = performSymbolicCallEvaluation(I);
break;
case Instruction::Store:
E = performSymbolicStoreEvaluation(I);
break;
case Instruction::Load:
E = performSymbolicLoadEvaluation(I);
break;
case Instruction::BitCast: {
E = createExpression(I);
} break;
case Instruction::ICmp:
case Instruction::FCmp: {
E = performSymbolicCmpEvaluation(I);
} break;
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::Select:
case Instruction::ExtractElement:
case Instruction::InsertElement:
case Instruction::ShuffleVector:
case Instruction::GetElementPtr:
E = createExpression(I);
break;
default:
return nullptr;
}
}
return E;
}
void NewGVN::markUsersTouched(Value *V) {
// Now mark the users as touched.
for (auto *User : V->users()) {
assert(isa<Instruction>(User) && "Use of value not within an instruction?");
TouchedInstructions.set(InstrDFS.lookup(User));
}
}
void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) {
for (auto U : MA->users()) {
if (auto *MUD = dyn_cast<MemoryUseOrDef>(U))
TouchedInstructions.set(InstrDFS.lookup(MUD->getMemoryInst()));
else
TouchedInstructions.set(InstrDFS.lookup(U));
}
}
// Add I to the set of users of a given predicate.
void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) {
if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
PredicateToUsers[PBranch->Condition].insert(I);
else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
PredicateToUsers[PAssume->Condition].insert(I);
}
// Touch all the predicates that depend on this instruction.
void NewGVN::markPredicateUsersTouched(Instruction *I) {
const auto Result = PredicateToUsers.find(I);
if (Result != PredicateToUsers.end())
for (auto *User : Result->second)
TouchedInstructions.set(InstrDFS.lookup(User));
}
// Touch the instructions that need to be updated after a congruence class has a
// leader change, and mark changed values.
void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) {
for (auto M : CC->Members) {
if (auto *I = dyn_cast<Instruction>(M))
TouchedInstructions.set(InstrDFS.lookup(I));
LeaderChanges.insert(M);
}
}
// Move a value, currently in OldClass, to be part of NewClass
// Update OldClass for the move (including changing leaders, etc)
void NewGVN::moveValueToNewCongruenceClass(Instruction *I,
CongruenceClass *OldClass,
CongruenceClass *NewClass) {
DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID
<< "\n");
if (I == OldClass->NextLeader.first)
OldClass->NextLeader = {nullptr, ~0U};
// It's possible, though unlikely, for us to discover equivalences such
// that the current leader does not dominate the old one.
// This statistic tracks how often this happens.
// We assert on phi nodes when this happens, currently, for debugging, because
// we want to make sure we name phi node cycles properly.
if (isa<Instruction>(NewClass->RepLeader) && NewClass->RepLeader &&
I != NewClass->RepLeader &&
DT->properlyDominates(
I->getParent(),
cast<Instruction>(NewClass->RepLeader)->getParent())) {
++NumGVNNotMostDominatingLeader;
assert(!isa<PHINode>(I) &&
"New class for instruction should not be dominated by instruction");
}
if (NewClass->RepLeader != I) {
auto DFSNum = InstrDFS.lookup(I);
if (DFSNum < NewClass->NextLeader.second)
NewClass->NextLeader = {I, DFSNum};
}
OldClass->Members.erase(I);
NewClass->Members.insert(I);
MemoryAccess *StoreAccess = nullptr;
if (auto *SI = dyn_cast<StoreInst>(I)) {
StoreAccess = MSSA->getMemoryAccess(SI);
--OldClass->StoreCount;
assert(OldClass->StoreCount >= 0);
++NewClass->StoreCount;
assert(NewClass->StoreCount > 0);
if (!NewClass->RepMemoryAccess) {
// If we don't have a representative memory access, it better be the only
// store in there.
assert(NewClass->StoreCount == 1);
NewClass->RepMemoryAccess = StoreAccess;
}
setMemoryAccessEquivTo(StoreAccess, NewClass);
}
ValueToClass[I] = NewClass;
// See if we destroyed the class or need to swap leaders.
if (OldClass->Members.empty() && OldClass != InitialClass) {
if (OldClass->DefiningExpr) {
OldClass->Dead = true;
DEBUG(dbgs() << "Erasing expression " << OldClass->DefiningExpr
<< " from table\n");
ExpressionToClass.erase(OldClass->DefiningExpr);
}
} else if (OldClass->RepLeader == I) {
// When the leader changes, the value numbering of
// everything may change due to symbolization changes, so we need to
// reprocess.
DEBUG(dbgs() << "Leader change!\n");
++NumGVNLeaderChanges;
2017-01-20 22:04:30 +01:00
// Destroy the stored value if there are no more stores to represent it.
if (OldClass->StoreCount == 0) {
if (OldClass->RepStoredValue != nullptr)
OldClass->RepStoredValue = nullptr;
if (OldClass->RepMemoryAccess != nullptr)
OldClass->RepMemoryAccess = nullptr;
}
// If we destroy the old access leader, we have to effectively destroy the
// congruence class. When it comes to scalars, anything with the same value
// is as good as any other. That means that one leader is as good as
// another, and as long as you have some leader for the value, you are
// good.. When it comes to *memory states*, only one particular thing really
// represents the definition of a given memory state. Once it goes away, we
// need to re-evaluate which pieces of memory are really still
// equivalent. The best way to do this is to re-value number things. The
// only way to really make that happen is to destroy the rest of the class.
// In order to effectively destroy the class, we reset ExpressionToClass for
// each by using the ValueToExpression mapping. The members later get
// marked as touched due to the leader change. We will create new
// congruence classes, and the pieces that are still equivalent will end
// back together in a new class. If this becomes too expensive, it is
// possible to use a versioning scheme for the congruence classes to avoid
// the expressions finding this old class.
if (OldClass->StoreCount > 0 && OldClass->RepMemoryAccess == StoreAccess) {
DEBUG(dbgs() << "Kicking everything out of class " << OldClass->ID
<< " because memory access leader changed");
for (auto Member : OldClass->Members)
ExpressionToClass.erase(ValueToExpression.lookup(Member));
}
2017-01-20 22:04:30 +01:00
// We don't need to sort members if there is only 1, and we don't care about
// sorting the INITIAL class because everything either gets out of it or is
// unreachable.
if (OldClass->Members.size() == 1 || OldClass == InitialClass) {
OldClass->RepLeader = *(OldClass->Members.begin());
} else if (OldClass->NextLeader.first) {
++NumGVNAvoidedSortedLeaderChanges;
OldClass->RepLeader = OldClass->NextLeader.first;
OldClass->NextLeader = {nullptr, ~0U};
} else {
++NumGVNSortedLeaderChanges;
// TODO: If this ends up to slow, we can maintain a dual structure for
// member testing/insertion, or keep things mostly sorted, and sort only
// here, or ....
std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U};
for (const auto X : OldClass->Members) {
auto DFSNum = InstrDFS.lookup(X);
if (DFSNum < MinDFS.second)
MinDFS = {X, DFSNum};
}
OldClass->RepLeader = MinDFS.first;
}
markLeaderChangeTouched(OldClass);
}
}
// Perform congruence finding on a given value numbering expression.
void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
ValueToExpression[I] = E;
// This is guaranteed to return something, since it will at least find
// TOP.
CongruenceClass *IClass = ValueToClass[I];
assert(IClass && "Should have found a IClass");
// Dead classes should have been eliminated from the mapping.
assert(!IClass->Dead && "Found a dead class");
CongruenceClass *EClass;
if (const auto *VE = dyn_cast<VariableExpression>(E)) {
EClass = ValueToClass[VE->getVariableValue()];
} else {
auto lookupResult = ExpressionToClass.insert({E, nullptr});
// If it's not in the value table, create a new congruence class.
if (lookupResult.second) {
CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
auto place = lookupResult.first;
place->second = NewClass;
// Constants and variables should always be made the leader.
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
NewClass->RepLeader = CE->getConstantValue();
} else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
StoreInst *SI = SE->getStoreInst();
2017-01-20 22:04:30 +01:00
NewClass->RepLeader = SI;
NewClass->RepStoredValue = lookupOperandLeader(SI->getValueOperand());
// The RepMemoryAccess field will be filled in properly by the
// moveValueToNewCongruenceClass call.
} else {
NewClass->RepLeader = I;
}
assert(!isa<VariableExpression>(E) &&
"VariableExpression should have been handled already");
EClass = NewClass;
DEBUG(dbgs() << "Created new congruence class for " << *I
<< " using expression " << *E << " at " << NewClass->ID
2017-01-20 22:04:30 +01:00
<< " and leader " << *(NewClass->RepLeader));
if (NewClass->RepStoredValue)
DEBUG(dbgs() << " and stored value " << *(NewClass->RepStoredValue));
DEBUG(dbgs() << "\n");
DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n");
} else {
EClass = lookupResult.first->second;
if (isa<ConstantExpression>(E))
assert(isa<Constant>(EClass->RepLeader) &&
"Any class with a constant expression should have a "
"constant leader");
assert(EClass && "Somehow don't have an eclass");
assert(!EClass->Dead && "We accidentally looked up a dead class");
}
}
bool ClassChanged = IClass != EClass;
bool LeaderChanged = LeaderChanges.erase(I);
if (ClassChanged || LeaderChanged) {
DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E
<< "\n");
if (ClassChanged)
moveValueToNewCongruenceClass(I, IClass, EClass);
markUsersTouched(I);
if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
markMemoryUsersTouched(MA);
if (auto *CI = dyn_cast<CmpInst>(I))
markPredicateUsersTouched(CI);
}
}
// Process the fact that Edge (from, to) is reachable, including marking
// any newly reachable blocks and instructions for processing.
void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
// Check if the Edge was reachable before.
if (ReachableEdges.insert({From, To}).second) {
// If this block wasn't reachable before, all instructions are touched.
if (ReachableBlocks.insert(To).second) {
DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n");
const auto &InstRange = BlockInstRange.lookup(To);
TouchedInstructions.set(InstRange.first, InstRange.second);
} else {
DEBUG(dbgs() << "Block " << getBlockName(To)
<< " was reachable, but new edge {" << getBlockName(From)
<< "," << getBlockName(To) << "} to it found\n");
// We've made an edge reachable to an existing block, which may
// impact predicates. Otherwise, only mark the phi nodes as touched, as
// they are the only thing that depend on new edges. Anything using their
// values will get propagated to if necessary.
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
TouchedInstructions.set(InstrDFS.lookup(MemPhi));
auto BI = To->begin();
while (isa<PHINode>(BI)) {
TouchedInstructions.set(InstrDFS.lookup(&*BI));
++BI;
}
}
}
}
// Given a predicate condition (from a switch, cmp, or whatever) and a block,
// see if we know some constant value for it already.
Value *NewGVN::findConditionEquivalence(Value *Cond) const {
auto Result = lookupOperandLeader(Cond);
if (isa<Constant>(Result))
return Result;
return nullptr;
}
// Process the outgoing edges of a block for reachability.
void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
// Evaluate reachability of terminator instruction.
BranchInst *BR;
if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
Value *Cond = BR->getCondition();
Value *CondEvaluated = findConditionEquivalence(Cond);
if (!CondEvaluated) {
if (auto *I = dyn_cast<Instruction>(Cond)) {
const Expression *E = createExpression(I);
if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
CondEvaluated = CE->getConstantValue();
}
} else if (isa<ConstantInt>(Cond)) {
CondEvaluated = Cond;
}
}
ConstantInt *CI;
BasicBlock *TrueSucc = BR->getSuccessor(0);
BasicBlock *FalseSucc = BR->getSuccessor(1);
if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
if (CI->isOne()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to true\n");
updateReachableEdge(B, TrueSucc);
} else if (CI->isZero()) {
DEBUG(dbgs() << "Condition for Terminator " << *TI
<< " evaluated to false\n");
updateReachableEdge(B, FalseSucc);
}
} else {
updateReachableEdge(B, TrueSucc);
updateReachableEdge(B, FalseSucc);
}
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
// For switches, propagate the case values into the case
// destinations.
// Remember how many outgoing edges there are to every successor.
SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
Value *SwitchCond = SI->getCondition();
Value *CondEvaluated = findConditionEquivalence(SwitchCond);
// See if we were able to turn this switch statement into a constant.
if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2016-12-28 20:17:17 +01:00
auto *CondVal = cast<ConstantInt>(CondEvaluated);
// We should be able to get case value for this.
auto CaseVal = SI->findCaseValue(CondVal);
if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) {
// We proved the value is outside of the range of the case.
// We can't do anything other than mark the default dest as reachable,
// and go home.
updateReachableEdge(B, SI->getDefaultDest());
return;
}
// Now get where it goes and mark it reachable.
BasicBlock *TargetBlock = CaseVal.getCaseSuccessor();
updateReachableEdge(B, TargetBlock);
} else {
for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = SI->getSuccessor(i);
++SwitchEdges[TargetBlock];
updateReachableEdge(B, TargetBlock);
}
}
} else {
// Otherwise this is either unconditional, or a type we have no
// idea about. Just mark successors as reachable.
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
BasicBlock *TargetBlock = TI->getSuccessor(i);
updateReachableEdge(B, TargetBlock);
}
// This also may be a memory defining terminator, in which case, set it
// equivalent to nothing.
if (MemoryAccess *MA = MSSA->getMemoryAccess(TI))
setMemoryAccessEquivTo(MA, nullptr);
}
}
// The algorithm initially places the values of the routine in the INITIAL
// congruence class. The leader of INITIAL is the undetermined value `TOP`.
// When the algorithm has finished, values still in INITIAL are unreachable.
void NewGVN::initializeCongruenceClasses(Function &F) {
// FIXME now i can't remember why this is 2
NextCongruenceNum = 2;
// Initialize all other instructions to be in INITIAL class.
CongruenceClass::MemberSet InitialValues;
InitialClass = createCongruenceClass(nullptr, nullptr);
InitialClass->RepMemoryAccess = MSSA->getLiveOnEntryDef();
for (auto &B : F) {
if (auto *MP = MSSA->getMemoryAccess(&B))
MemoryAccessToClass[MP] = InitialClass;
for (auto &I : B) {
// Don't insert void terminators into the class. We don't value number
// them, and they just end up sitting in INITIAL.
if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
continue;
InitialValues.insert(&I);
ValueToClass[&I] = InitialClass;
// All memory accesses are equivalent to live on entry to start. They must
// be initialized to something so that initial changes are noticed. For
// the maximal answer, we initialize them all to be the same as
// liveOnEntry. Note that to save time, we only initialize the
// MemoryDef's for stores and all MemoryPhis to be equal. Right now, no
// other expression can generate a memory equivalence. If we start
// handling memcpy/etc, we can expand this.
if (isa<StoreInst>(&I)) {
MemoryAccessToClass[MSSA->getMemoryAccess(&I)] = InitialClass;
++InitialClass->StoreCount;
assert(InitialClass->StoreCount > 0);
}
}
}
InitialClass->Members.swap(InitialValues);
// Initialize arguments to be in their own unique congruence classes
for (auto &FA : F.args())
createSingletonCongruenceClass(&FA);
}
void NewGVN::cleanupTables() {
for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has "
<< CongruenceClasses[i]->Members.size() << " members\n");
// Make sure we delete the congruence class (probably worth switching to
// a unique_ptr at some point.
delete CongruenceClasses[i];
CongruenceClasses[i] = nullptr;
}
ValueToClass.clear();
ArgRecycler.clear(ExpressionAllocator);
ExpressionAllocator.Reset();
CongruenceClasses.clear();
ExpressionToClass.clear();
ValueToExpression.clear();
ReachableBlocks.clear();
ReachableEdges.clear();
#ifndef NDEBUG
ProcessedCount.clear();
#endif
InstrDFS.clear();
InstructionsToErase.clear();
DFSToInstr.clear();
BlockInstRange.clear();
TouchedInstructions.clear();
DominatedInstRange.clear();
MemoryAccessToClass.clear();
PredicateToUsers.clear();
}
std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
unsigned Start) {
unsigned End = Start;
if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
InstrDFS[MemPhi] = End++;
DFSToInstr.emplace_back(MemPhi);
}
for (auto &I : *B) {
// There's no need to call isInstructionTriviallyDead more than once on
// an instruction. Therefore, once we know that an instruction is dead
// we change its DFS number so that it doesn't get value numbered.
if (isInstructionTriviallyDead(&I, TLI)) {
InstrDFS[&I] = 0;
DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
markInstructionForDeletion(&I);
continue;
}
InstrDFS[&I] = End++;
DFSToInstr.emplace_back(&I);
}
// All of the range functions taken half-open ranges (open on the end side).
// So we do not subtract one from count, because at this point it is one
// greater than the last instruction.
return std::make_pair(Start, End);
}
void NewGVN::updateProcessedCount(Value *V) {
#ifndef NDEBUG
if (ProcessedCount.count(V) == 0) {
ProcessedCount.insert({V, 1});
} else {
++ProcessedCount[V];
assert(ProcessedCount[V] < 100 &&
"Seem to have processed the same Value a lot");
}
#endif
}
// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
// If all the arguments are the same, the MemoryPhi has the same value as the
// argument.
// Filter out unreachable blocks and self phis from our operands.
auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
return lookupMemoryAccessEquiv(cast<MemoryAccess>(U)) != MP &&
!isMemoryAccessTop(cast<MemoryAccess>(U)) &&
ReachableBlocks.count(MP->getIncomingBlock(U));
});
// If all that is left is nothing, our memoryphi is undef. We keep it as
// InitialClass. Note: The only case this should happen is if we have at
// least one self-argument.
if (Filtered.begin() == Filtered.end()) {
if (setMemoryAccessEquivTo(MP, InitialClass))
markMemoryUsersTouched(MP);
return;
}
// Transform the remaining operands into operand leaders.
// FIXME: mapped_iterator should have a range version.
auto LookupFunc = [&](const Use &U) {
return lookupMemoryAccessEquiv(cast<MemoryAccess>(U));
};
auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
// and now check if all the elements are equal.
// Sadly, we can't use std::equals since these are random access iterators.
MemoryAccess *AllSameValue = *MappedBegin;
++MappedBegin;
bool AllEqual = std::all_of(
MappedBegin, MappedEnd,
[&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
if (AllEqual)
DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n");
else
DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
if (setMemoryAccessEquivTo(
MP, AllEqual ? MemoryAccessToClass.lookup(AllSameValue) : nullptr))
markMemoryUsersTouched(MP);
}
// Value number a single instruction, symbolically evaluating, performing
// congruence finding, and updating mappings.
void NewGVN::valueNumberInstruction(Instruction *I) {
DEBUG(dbgs() << "Processing instruction " << *I << "\n");
if (!I->isTerminator()) {
const Expression *Symbolized = nullptr;
if (DebugCounter::shouldExecute(VNCounter)) {
Symbolized = performSymbolicEvaluation(I);
} else {
// Mark the instruction as unused so we don't value number it again.
InstrDFS[I] = 0;
}
// If we couldn't come up with a symbolic expression, use the unknown
// expression
if (Symbolized == nullptr)
Symbolized = createUnknownExpression(I);
performCongruenceFinding(I, Symbolized);
} else {
// Handle terminators that return values. All of them produce values we
// don't currently understand. We don't place non-value producing
// terminators in a class.
if (!I->getType()->isVoidTy()) {
auto *Symbolized = createUnknownExpression(I);
performCongruenceFinding(I, Symbolized);
}
processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
}
}
// Check if there is a path, using single or equal argument phi nodes, from
// First to Second.
bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
const MemoryAccess *Second) const {
if (First == Second)
return true;
if (auto *FirstDef = dyn_cast<MemoryUseOrDef>(First)) {
auto *DefAccess = FirstDef->getDefiningAccess();
return singleReachablePHIPath(DefAccess, Second);
} else {
auto *MP = cast<MemoryPhi>(First);
auto ReachableOperandPred = [&](const Use &U) {
return ReachableBlocks.count(MP->getIncomingBlock(U));
};
auto FilteredPhiArgs =
make_filter_range(MP->operands(), ReachableOperandPred);
SmallVector<const Value *, 32> OperandList;
std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
std::back_inserter(OperandList));
bool Okay = OperandList.size() == 1;
if (!Okay)
Okay = std::equal(OperandList.begin(), OperandList.end(),
OperandList.begin());
if (Okay)
return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
return false;
}
}
// Verify the that the memory equivalence table makes sense relative to the
// congruence classes. Note that this checking is not perfect, and is currently
// subject to very rare false negatives. It is only useful for
// testing/debugging.
void NewGVN::verifyMemoryCongruency() const {
// Anything equivalent in the memory access table should be in the same
// congruence class.
// Filter out the unreachable and trivially dead entries, because they may
// never have been updated if the instructions were not processed.
auto ReachableAccessPred =
[&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
bool Result = ReachableBlocks.count(Pair.first->getBlock());
if (!Result)
return false;
if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
return !isInstructionTriviallyDead(MemDef->getMemoryInst());
return true;
};
auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
for (auto KV : Filtered) {
// Unreachable instructions may not have changed because we never process
// them.
if (!ReachableBlocks.count(KV.first->getBlock()))
continue;
if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->RepMemoryAccess);
if (FirstMUD && SecondMUD)
assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||
ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
"The instructions for these memory operations should have "
"been in the same congruence class or reachable through"
"a single argument phi");
} else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
// We can only sanely verify that MemoryDefs in the operand list all have
// the same class.
auto ReachableOperandPred = [&](const Use &U) {
return ReachableBlocks.count(FirstMP->getIncomingBlock(U)) &&
isa<MemoryDef>(U);
};
// All arguments should in the same class, ignoring unreachable arguments
auto FilteredPhiArgs =
make_filter_range(FirstMP->operands(), ReachableOperandPred);
SmallVector<const CongruenceClass *, 16> PhiOpClasses;
std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
std::back_inserter(PhiOpClasses), [&](const Use &U) {
const MemoryDef *MD = cast<MemoryDef>(U);
return ValueToClass.lookup(MD->getMemoryInst());
});
assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
PhiOpClasses.begin()) &&
"All MemoryPhi arguments should be in the same class");
}
}
}
// Re-evaluate all the comparisons after value numbering and ensure they don't
// change. If they changed, we didn't mark them touched properly.
void NewGVN::verifyComparisons(Function &F) {
#ifndef NDEBUG
for (auto &BB : F) {
if (!ReachableBlocks.count(&BB))
continue;
for (auto &I : BB) {
if (InstrDFS.lookup(&I) == 0)
continue;
if (isa<CmpInst>(&I)) {
auto *CurrentVal = ValueToClass.lookup(&I);
valueNumberInstruction(&I);
assert(CurrentVal == ValueToClass.lookup(&I) &&
"Re-evaluating comparison changed value");
}
}
}
#endif
}
// This is the main transformation entry point.
bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC,
TargetLibraryInfo *_TLI, AliasAnalysis *_AA,
MemorySSA *_MSSA) {
bool Changed = false;
NumFuncArgs = F.arg_size();
DT = _DT;
AC = _AC;
TLI = _TLI;
AA = _AA;
MSSA = _MSSA;
PredInfo = make_unique<PredicateInfo>(F, *DT, *AC);
DL = &F.getParent()->getDataLayout();
MSSAWalker = MSSA->getWalker();
// Count number of instructions for sizing of hash tables, and come
// up with a global dfs numbering for instructions.
unsigned ICount = 1;
// Add an empty instruction to account for the fact that we start at 1
DFSToInstr.emplace_back(nullptr);
// Note: We want ideal RPO traversal of the blocks, which is not quite the
// same as dominator tree order, particularly with regard whether backedges
// get visited first or second, given a block with multiple successors.
// If we visit in the wrong order, we will end up performing N times as many
// iterations.
NewGVN: Sort Dominator Tree in RPO order, and use that for generating order. Summary: The optimal iteration order for this problem is RPO order. We want to process as many preds of a backedge as we can before we process the backedge. At the same time, as we add predicate handling, we want to be able to touch instructions that are dominated by a given block by ranges (because a change in value numbering a predicate possibly affects all users we dominate that are using that predicate). If we don't do it this way, we can't do value inference over backedges (the paper covers this in depth). The newgvn branch currently overshoots the last part, and guarantees that it will touch *at least* the right set of instructions, but it does touch more. This is because the bitvector instruction ranges are currently generated in RPO order (so we take the max and the min of the ranges of dominated blocks, which means there are some in the middle we didn't have to touch that we did). We can do better by sorting the dominator tree, and then just using dominator tree order. As a preliminary, the dominator tree has some RPO guarantees, but not enough. It guarantees that for a given node, your idom must come before you in the RPO ordering. It guarantees no relative RPO ordering for siblings. We add siblings in whatever order they appear in the module. So that is what we fix. We sort the children array of the domtree into RPO order, and then use the dominator tree for ordering, instead of RPO, since the dominator tree is now a valid RPO ordering. Note: This would help any other pass that iterates a forward problem in dominator tree order. Most of them are single pass. It will still maximize whatever result they compute. We could also build the dominator tree in this order, but our incremental updates would still put it out of sort order, and recomputing the sort order is almost as hard as general incremental updates of the domtree. Also note that the sorting does not affect any tests, etc. Nothing depends on domtree order, including the verifier, the equals functions for domtree nodes, etc. How much could this matter, you ask? Here are the current numbers. This is generated by running NewGVN over all files in LLVM. Note that once we propagate equalities, the differences go up by an order of magnitude or two (IE instead of 29, the max ends up in the thousands, since the worst case we add a factor of N, where N is the number of branch predicates). So while it doesn't look that stark for the default ordering, it gets *much much* worse. There are also programs in the wild where the difference is already pretty stark (2 iterations vs hundreds). RPO ordering: 759040 Number of iterations is 1 112908 Number of iterations is 2 Default dominator tree ordering: 755081 Number of iterations is 1 116234 Number of iterations is 2 603 Number of iterations is 3 27 Number of iterations is 4 2 Number of iterations is 5 1 Number of iterations is 7 Dominator tree sorted: 759040 Number of iterations is 1 112908 Number of iterations is 2 <yay!> Really bad ordering (sort domtree siblings in postorder. not quite the worst possible, but yeah): 754008 Number of iterations is 1 21 Number of iterations is 10 8 Number of iterations is 11 6 Number of iterations is 12 5 Number of iterations is 13 2 Number of iterations is 14 2 Number of iterations is 15 3 Number of iterations is 16 1 Number of iterations is 17 2 Number of iterations is 18 96642 Number of iterations is 2 1 Number of iterations is 20 2 Number of iterations is 21 1 Number of iterations is 22 1 Number of iterations is 29 17266 Number of iterations is 3 2598 Number of iterations is 4 798 Number of iterations is 5 273 Number of iterations is 6 186 Number of iterations is 7 80 Number of iterations is 8 42 Number of iterations is 9 Reviewers: chandlerc, davide Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D28129 llvm-svn: 290699
2016-12-29 02:12:36 +01:00
// The dominator tree does guarantee that, for a given dom tree node, it's
// parent must occur before it in the RPO ordering. Thus, we only need to sort
// the siblings.
DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
ReversePostOrderTraversal<Function *> RPOT(&F);
NewGVN: Sort Dominator Tree in RPO order, and use that for generating order. Summary: The optimal iteration order for this problem is RPO order. We want to process as many preds of a backedge as we can before we process the backedge. At the same time, as we add predicate handling, we want to be able to touch instructions that are dominated by a given block by ranges (because a change in value numbering a predicate possibly affects all users we dominate that are using that predicate). If we don't do it this way, we can't do value inference over backedges (the paper covers this in depth). The newgvn branch currently overshoots the last part, and guarantees that it will touch *at least* the right set of instructions, but it does touch more. This is because the bitvector instruction ranges are currently generated in RPO order (so we take the max and the min of the ranges of dominated blocks, which means there are some in the middle we didn't have to touch that we did). We can do better by sorting the dominator tree, and then just using dominator tree order. As a preliminary, the dominator tree has some RPO guarantees, but not enough. It guarantees that for a given node, your idom must come before you in the RPO ordering. It guarantees no relative RPO ordering for siblings. We add siblings in whatever order they appear in the module. So that is what we fix. We sort the children array of the domtree into RPO order, and then use the dominator tree for ordering, instead of RPO, since the dominator tree is now a valid RPO ordering. Note: This would help any other pass that iterates a forward problem in dominator tree order. Most of them are single pass. It will still maximize whatever result they compute. We could also build the dominator tree in this order, but our incremental updates would still put it out of sort order, and recomputing the sort order is almost as hard as general incremental updates of the domtree. Also note that the sorting does not affect any tests, etc. Nothing depends on domtree order, including the verifier, the equals functions for domtree nodes, etc. How much could this matter, you ask? Here are the current numbers. This is generated by running NewGVN over all files in LLVM. Note that once we propagate equalities, the differences go up by an order of magnitude or two (IE instead of 29, the max ends up in the thousands, since the worst case we add a factor of N, where N is the number of branch predicates). So while it doesn't look that stark for the default ordering, it gets *much much* worse. There are also programs in the wild where the difference is already pretty stark (2 iterations vs hundreds). RPO ordering: 759040 Number of iterations is 1 112908 Number of iterations is 2 Default dominator tree ordering: 755081 Number of iterations is 1 116234 Number of iterations is 2 603 Number of iterations is 3 27 Number of iterations is 4 2 Number of iterations is 5 1 Number of iterations is 7 Dominator tree sorted: 759040 Number of iterations is 1 112908 Number of iterations is 2 <yay!> Really bad ordering (sort domtree siblings in postorder. not quite the worst possible, but yeah): 754008 Number of iterations is 1 21 Number of iterations is 10 8 Number of iterations is 11 6 Number of iterations is 12 5 Number of iterations is 13 2 Number of iterations is 14 2 Number of iterations is 15 3 Number of iterations is 16 1 Number of iterations is 17 2 Number of iterations is 18 96642 Number of iterations is 2 1 Number of iterations is 20 2 Number of iterations is 21 1 Number of iterations is 22 1 Number of iterations is 29 17266 Number of iterations is 3 2598 Number of iterations is 4 798 Number of iterations is 5 273 Number of iterations is 6 186 Number of iterations is 7 80 Number of iterations is 8 42 Number of iterations is 9 Reviewers: chandlerc, davide Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D28129 llvm-svn: 290699
2016-12-29 02:12:36 +01:00
unsigned Counter = 0;
for (auto &B : RPOT) {
auto *Node = DT->getNode(B);
assert(Node && "RPO and Dominator tree should have same reachability");
RPOOrdering[Node] = ++Counter;
}
// Sort dominator tree children arrays into RPO.
for (auto &B : RPOT) {
NewGVN: Sort Dominator Tree in RPO order, and use that for generating order. Summary: The optimal iteration order for this problem is RPO order. We want to process as many preds of a backedge as we can before we process the backedge. At the same time, as we add predicate handling, we want to be able to touch instructions that are dominated by a given block by ranges (because a change in value numbering a predicate possibly affects all users we dominate that are using that predicate). If we don't do it this way, we can't do value inference over backedges (the paper covers this in depth). The newgvn branch currently overshoots the last part, and guarantees that it will touch *at least* the right set of instructions, but it does touch more. This is because the bitvector instruction ranges are currently generated in RPO order (so we take the max and the min of the ranges of dominated blocks, which means there are some in the middle we didn't have to touch that we did). We can do better by sorting the dominator tree, and then just using dominator tree order. As a preliminary, the dominator tree has some RPO guarantees, but not enough. It guarantees that for a given node, your idom must come before you in the RPO ordering. It guarantees no relative RPO ordering for siblings. We add siblings in whatever order they appear in the module. So that is what we fix. We sort the children array of the domtree into RPO order, and then use the dominator tree for ordering, instead of RPO, since the dominator tree is now a valid RPO ordering. Note: This would help any other pass that iterates a forward problem in dominator tree order. Most of them are single pass. It will still maximize whatever result they compute. We could also build the dominator tree in this order, but our incremental updates would still put it out of sort order, and recomputing the sort order is almost as hard as general incremental updates of the domtree. Also note that the sorting does not affect any tests, etc. Nothing depends on domtree order, including the verifier, the equals functions for domtree nodes, etc. How much could this matter, you ask? Here are the current numbers. This is generated by running NewGVN over all files in LLVM. Note that once we propagate equalities, the differences go up by an order of magnitude or two (IE instead of 29, the max ends up in the thousands, since the worst case we add a factor of N, where N is the number of branch predicates). So while it doesn't look that stark for the default ordering, it gets *much much* worse. There are also programs in the wild where the difference is already pretty stark (2 iterations vs hundreds). RPO ordering: 759040 Number of iterations is 1 112908 Number of iterations is 2 Default dominator tree ordering: 755081 Number of iterations is 1 116234 Number of iterations is 2 603 Number of iterations is 3 27 Number of iterations is 4 2 Number of iterations is 5 1 Number of iterations is 7 Dominator tree sorted: 759040 Number of iterations is 1 112908 Number of iterations is 2 <yay!> Really bad ordering (sort domtree siblings in postorder. not quite the worst possible, but yeah): 754008 Number of iterations is 1 21 Number of iterations is 10 8 Number of iterations is 11 6 Number of iterations is 12 5 Number of iterations is 13 2 Number of iterations is 14 2 Number of iterations is 15 3 Number of iterations is 16 1 Number of iterations is 17 2 Number of iterations is 18 96642 Number of iterations is 2 1 Number of iterations is 20 2 Number of iterations is 21 1 Number of iterations is 22 1 Number of iterations is 29 17266 Number of iterations is 3 2598 Number of iterations is 4 798 Number of iterations is 5 273 Number of iterations is 6 186 Number of iterations is 7 80 Number of iterations is 8 42 Number of iterations is 9 Reviewers: chandlerc, davide Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D28129 llvm-svn: 290699
2016-12-29 02:12:36 +01:00
auto *Node = DT->getNode(B);
if (Node->getChildren().size() > 1)
std::sort(Node->begin(), Node->end(),
[&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) {
return RPOOrdering[A] < RPOOrdering[B];
});
}
// Now a standard depth first ordering of the domtree is equivalent to RPO.
auto DFI = df_begin(DT->getRootNode());
for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) {
BasicBlock *B = DFI->getBlock();
const auto &BlockRange = assignDFSNumbers(B, ICount);
BlockInstRange.insert({B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
// Handle forward unreachable blocks and figure out which blocks
// have single preds.
for (auto &B : F) {
// Assign numbers to unreachable blocks.
NewGVN: Sort Dominator Tree in RPO order, and use that for generating order. Summary: The optimal iteration order for this problem is RPO order. We want to process as many preds of a backedge as we can before we process the backedge. At the same time, as we add predicate handling, we want to be able to touch instructions that are dominated by a given block by ranges (because a change in value numbering a predicate possibly affects all users we dominate that are using that predicate). If we don't do it this way, we can't do value inference over backedges (the paper covers this in depth). The newgvn branch currently overshoots the last part, and guarantees that it will touch *at least* the right set of instructions, but it does touch more. This is because the bitvector instruction ranges are currently generated in RPO order (so we take the max and the min of the ranges of dominated blocks, which means there are some in the middle we didn't have to touch that we did). We can do better by sorting the dominator tree, and then just using dominator tree order. As a preliminary, the dominator tree has some RPO guarantees, but not enough. It guarantees that for a given node, your idom must come before you in the RPO ordering. It guarantees no relative RPO ordering for siblings. We add siblings in whatever order they appear in the module. So that is what we fix. We sort the children array of the domtree into RPO order, and then use the dominator tree for ordering, instead of RPO, since the dominator tree is now a valid RPO ordering. Note: This would help any other pass that iterates a forward problem in dominator tree order. Most of them are single pass. It will still maximize whatever result they compute. We could also build the dominator tree in this order, but our incremental updates would still put it out of sort order, and recomputing the sort order is almost as hard as general incremental updates of the domtree. Also note that the sorting does not affect any tests, etc. Nothing depends on domtree order, including the verifier, the equals functions for domtree nodes, etc. How much could this matter, you ask? Here are the current numbers. This is generated by running NewGVN over all files in LLVM. Note that once we propagate equalities, the differences go up by an order of magnitude or two (IE instead of 29, the max ends up in the thousands, since the worst case we add a factor of N, where N is the number of branch predicates). So while it doesn't look that stark for the default ordering, it gets *much much* worse. There are also programs in the wild where the difference is already pretty stark (2 iterations vs hundreds). RPO ordering: 759040 Number of iterations is 1 112908 Number of iterations is 2 Default dominator tree ordering: 755081 Number of iterations is 1 116234 Number of iterations is 2 603 Number of iterations is 3 27 Number of iterations is 4 2 Number of iterations is 5 1 Number of iterations is 7 Dominator tree sorted: 759040 Number of iterations is 1 112908 Number of iterations is 2 <yay!> Really bad ordering (sort domtree siblings in postorder. not quite the worst possible, but yeah): 754008 Number of iterations is 1 21 Number of iterations is 10 8 Number of iterations is 11 6 Number of iterations is 12 5 Number of iterations is 13 2 Number of iterations is 14 2 Number of iterations is 15 3 Number of iterations is 16 1 Number of iterations is 17 2 Number of iterations is 18 96642 Number of iterations is 2 1 Number of iterations is 20 2 Number of iterations is 21 1 Number of iterations is 22 1 Number of iterations is 29 17266 Number of iterations is 3 2598 Number of iterations is 4 798 Number of iterations is 5 273 Number of iterations is 6 186 Number of iterations is 7 80 Number of iterations is 8 42 Number of iterations is 9 Reviewers: chandlerc, davide Subscribers: llvm-commits Differential Revision: https://reviews.llvm.org/D28129 llvm-svn: 290699
2016-12-29 02:12:36 +01:00
if (!DFI.nodeVisited(DT->getNode(&B))) {
const auto &BlockRange = assignDFSNumbers(&B, ICount);
BlockInstRange.insert({&B, BlockRange});
ICount += BlockRange.second - BlockRange.first;
}
}
TouchedInstructions.resize(ICount);
DominatedInstRange.reserve(F.size());
// Ensure we don't end up resizing the expressionToClass map, as
// that can be quite expensive. At most, we have one expression per
// instruction.
ExpressionToClass.reserve(ICount);
// Initialize the touched instructions to include the entry block.
const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
TouchedInstructions.set(InstRange.first, InstRange.second);
ReachableBlocks.insert(&F.getEntryBlock());
initializeCongruenceClasses(F);
unsigned int Iterations = 0;
// We start out in the entry block.
BasicBlock *LastBlock = &F.getEntryBlock();
while (TouchedInstructions.any()) {
++Iterations;
// Walk through all the instructions in all the blocks in RPO.
// TODO: As we hit a new block, we should push and pop equalities into a
// table lookupOperandLeader can use, to catch things PredicateInfo
// might miss, like edge-only equivalences.
for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1;
InstrNum = TouchedInstructions.find_next(InstrNum)) {
// This instruction was found to be dead. We don't bother looking
// at it again.
if (InstrNum == 0) {
TouchedInstructions.reset(InstrNum);
continue;
}
Value *V = DFSToInstr[InstrNum];
BasicBlock *CurrBlock = nullptr;
2016-12-28 20:17:17 +01:00
if (auto *I = dyn_cast<Instruction>(V))
CurrBlock = I->getParent();
2016-12-28 20:17:17 +01:00
else if (auto *MP = dyn_cast<MemoryPhi>(V))
CurrBlock = MP->getBlock();
else
llvm_unreachable("DFSToInstr gave us an unknown type of instruction");
// If we hit a new block, do reachability processing.
if (CurrBlock != LastBlock) {
LastBlock = CurrBlock;
bool BlockReachable = ReachableBlocks.count(CurrBlock);
const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
// If it's not reachable, erase any touched instructions and move on.
if (!BlockReachable) {
TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
DEBUG(dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock)
<< " because it is unreachable\n");
continue;
}
updateProcessedCount(CurrBlock);
}
2016-12-28 20:17:17 +01:00
if (auto *MP = dyn_cast<MemoryPhi>(V)) {
DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
valueNumberMemoryPhi(MP);
2016-12-28 20:17:17 +01:00
} else if (auto *I = dyn_cast<Instruction>(V)) {
valueNumberInstruction(I);
} else {
llvm_unreachable("Should have been a MemoryPhi or Instruction");
}
updateProcessedCount(V);
// Reset after processing (because we may mark ourselves as touched when
// we propagate equalities).
TouchedInstructions.reset(InstrNum);
}
}
NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
#ifndef NDEBUG
verifyMemoryCongruency();
verifyComparisons(F);
#endif
Changed |= eliminateInstructions(F);
// Delete all instructions marked for deletion.
for (Instruction *ToErase : InstructionsToErase) {
if (!ToErase->use_empty())
ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
ToErase->eraseFromParent();
}
// Delete all unreachable blocks.
auto UnreachableBlockPred = [&](const BasicBlock &BB) {
return !ReachableBlocks.count(&BB);
};
for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
<< " is unreachable\n");
deleteInstructionsInBlock(&BB);
Changed = true;
}
cleanupTables();
return Changed;
}
bool NewGVN::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
&getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
&getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
&getAnalysis<AAResultsWrapperPass>().getAAResults(),
&getAnalysis<MemorySSAWrapperPass>().getMSSA());
}
PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
NewGVN Impl;
// Apparently the order in which we get these results matter for
// the old GVN (see Chandler's comment in GVN.cpp). I'll keep
// the same order here, just in case.
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AA = AM.getResult<AAManager>(F);
auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA);
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<GlobalsAA>();
return PA;
}
// Return true if V is a value that will always be available (IE can
// be placed anywhere) in the function. We don't do globals here
// because they are often worse to put in place.
// TODO: Separate cost from availability
static bool alwaysAvailable(Value *V) {
return isa<Constant>(V) || isa<Argument>(V);
}
// Get the basic block from an instruction/value.
static BasicBlock *getBlockForValue(Value *V) {
if (auto *I = dyn_cast<Instruction>(V))
return I->getParent();
return nullptr;
}
struct NewGVN::ValueDFS {
2016-12-28 20:17:17 +01:00
int DFSIn = 0;
int DFSOut = 0;
int LocalNum = 0;
// Only one of Def and U will be set.
Value *Def = nullptr;
2016-12-28 20:17:17 +01:00
Use *U = nullptr;
bool operator<(const ValueDFS &Other) const {
// It's not enough that any given field be less than - we have sets
// of fields that need to be evaluated together to give a proper ordering.
// For example, if you have;
// DFS (1, 3)
// Val 0
// DFS (1, 2)
// Val 50
// We want the second to be less than the first, but if we just go field
// by field, we will get to Val 0 < Val 50 and say the first is less than
// the second. We only want it to be less than if the DFS orders are equal.
//
// Each LLVM instruction only produces one value, and thus the lowest-level
// differentiator that really matters for the stack (and what we use as as a
// replacement) is the local dfs number.
// Everything else in the structure is instruction level, and only affects
// the order in which we will replace operands of a given instruction.
//
// For a given instruction (IE things with equal dfsin, dfsout, localnum),
// the order of replacement of uses does not matter.
// IE given,
// a = 5
// b = a + a
// When you hit b, you will have two valuedfs with the same dfsin, out, and
// localnum.
// The .val will be the same as well.
// The .u's will be different.
// You will replace both, and it does not matter what order you replace them
// in (IE whether you replace operand 2, then operand 1, or operand 1, then
// operand 2).
// Similarly for the case of same dfsin, dfsout, localnum, but different
// .val's
// a = 5
// b = 6
// c = a + b
// in c, we will a valuedfs for a, and one for b,with everything the same
// but .val and .u.
// It does not matter what order we replace these operands in.
// You will always end up with the same IR, and this is guaranteed.
return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
Other.U);
}
};
// This function converts the set of members for a congruence class from values,
// to sets of defs and uses with associated DFS info. The total number of
// reachable uses for each value is stored in UseCount, and instructions that
// seem
// dead (have no non-dead uses) are stored in ProbablyDead.
void NewGVN::convertClassToDFSOrdered(
const CongruenceClass::MemberSet &Dense,
SmallVectorImpl<ValueDFS> &DFSOrderedSet,
DenseMap<const Value *, unsigned int> &UseCounts,
SmallPtrSetImpl<Instruction *> &ProbablyDead) {
for (auto D : Dense) {
// First add the value.
BasicBlock *BB = getBlockForValue(D);
// Constants are handled prior to ever calling this function, so
// we should only be left with instructions as members.
assert(BB && "Should have figured out a basic block for value");
ValueDFS VDDef;
DomTreeNode *DomNode = DT->getNode(BB);
VDDef.DFSIn = DomNode->getDFSNumIn();
VDDef.DFSOut = DomNode->getDFSNumOut();
2017-01-20 22:04:30 +01:00
// If it's a store, use the leader of the value operand.
if (auto *SI = dyn_cast<StoreInst>(D)) {
auto Leader = lookupOperandLeader(SI->getValueOperand());
VDDef.Def = alwaysAvailable(Leader) ? Leader : SI->getValueOperand();
2017-01-20 22:04:30 +01:00
} else {
VDDef.Def = D;
2017-01-20 22:04:30 +01:00
}
assert(isa<Instruction>(D) &&
"The dense set member should always be an instruction");
VDDef.LocalNum = InstrDFS.lookup(D);
DFSOrderedSet.emplace_back(VDDef);
Instruction *Def = cast<Instruction>(D);
unsigned int UseCount = 0;
// Now add the uses.
for (auto &U : Def->uses()) {
if (auto *I = dyn_cast<Instruction>(U.getUser())) {
// Don't try to replace into dead uses
if (InstructionsToErase.count(I))
continue;
ValueDFS VDUse;
// Put the phi node uses in the incoming block.
BasicBlock *IBlock;
if (auto *P = dyn_cast<PHINode>(I)) {
IBlock = P->getIncomingBlock(U);
// Make phi node users appear last in the incoming block
// they are from.
VDUse.LocalNum = InstrDFS.size() + 1;
} else {
IBlock = I->getParent();
VDUse.LocalNum = InstrDFS.lookup(I);
}
// Skip uses in unreachable blocks, as we're going
// to delete them.
if (ReachableBlocks.count(IBlock) == 0)
continue;
DomTreeNode *DomNode = DT->getNode(IBlock);
VDUse.DFSIn = DomNode->getDFSNumIn();
VDUse.DFSOut = DomNode->getDFSNumOut();
VDUse.U = &U;
++UseCount;
DFSOrderedSet.emplace_back(VDUse);
}
}
// If there are no uses, it's probably dead (but it may have side-effects,
// so not definitely dead. Otherwise, store the number of uses so we can
// track if it becomes dead later).
if (UseCount == 0)
ProbablyDead.insert(Def);
else
UseCounts[Def] = UseCount;
}
}
// This function converts the set of members for a congruence class from values,
// to the set of defs for loads and stores, with associated DFS info.
void NewGVN::convertClassToLoadsAndStores(
const CongruenceClass::MemberSet &Dense,
SmallVectorImpl<ValueDFS> &LoadsAndStores) {
for (auto D : Dense) {
if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
continue;
BasicBlock *BB = getBlockForValue(D);
ValueDFS VD;
DomTreeNode *DomNode = DT->getNode(BB);
VD.DFSIn = DomNode->getDFSNumIn();
VD.DFSOut = DomNode->getDFSNumOut();
VD.Def = D;
// If it's an instruction, use the real local dfs number.
if (auto *I = dyn_cast<Instruction>(D))
VD.LocalNum = InstrDFS.lookup(I);
else
llvm_unreachable("Should have been an instruction");
LoadsAndStores.emplace_back(VD);
}
}
static void patchReplacementInstruction(Instruction *I, Value *Repl) {
auto *ReplInst = dyn_cast<Instruction>(Repl);
if (!ReplInst)
return;
// Patch the replacement so that it is not more restrictive than the value
// being replaced.
// Note that if 'I' is a load being replaced by some operation,
// for example, by an arithmetic operation, then andIRFlags()
// would just erase all math flags from the original arithmetic
// operation, which is clearly not wanted and not needed.
if (!isa<LoadInst>(I))
ReplInst->andIRFlags(I);
// FIXME: If both the original and replacement value are part of the
// same control-flow region (meaning that the execution of one
// guarantees the execution of the other), then we can combine the
// noalias scopes here and do better than the general conservative
// answer used in combineMetadata().
// In general, GVN unifies expressions over different control-flow
// regions, and so we need a conservative combination of the noalias
// scopes.
static const unsigned KnownIDs[] = {
LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
LLVMContext::MD_noalias, LLVMContext::MD_range,
LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
LLVMContext::MD_invariant_group};
combineMetadata(ReplInst, I, KnownIDs);
}
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
patchReplacementInstruction(I, Repl);
I->replaceAllUsesWith(Repl);
}
void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
++NumGVNBlocksDeleted;
// Delete the instructions backwards, as it has a reduced likelihood of having
// to update as many def-use and use-def chains. Start after the terminator.
auto StartPoint = BB->rbegin();
++StartPoint;
// Note that we explicitly recalculate BB->rend() on each iteration,
// as it may change when we remove the first instruction.
for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
Instruction &Inst = *I++;
if (!Inst.use_empty())
Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
if (isa<LandingPadInst>(Inst))
continue;
Inst.eraseFromParent();
++NumGVNInstrDeleted;
}
// Now insert something that simplifycfg will turn into an unreachable.
Type *Int8Ty = Type::getInt8Ty(BB->getContext());
new StoreInst(UndefValue::get(Int8Ty),
Constant::getNullValue(Int8Ty->getPointerTo()),
BB->getTerminator());
}
void NewGVN::markInstructionForDeletion(Instruction *I) {
DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
InstructionsToErase.insert(I);
}
void NewGVN::replaceInstruction(Instruction *I, Value *V) {
DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
patchAndReplaceAllUsesWith(I, V);
// We save the actual erasing to avoid invalidating memory
// dependencies until we are done with everything.
markInstructionForDeletion(I);
}
namespace {
// This is a stack that contains both the value and dfs info of where
// that value is valid.
class ValueDFSStack {
public:
Value *back() const { return ValueStack.back(); }
std::pair<int, int> dfs_back() const { return DFSStack.back(); }
void push_back(Value *V, int DFSIn, int DFSOut) {
ValueStack.emplace_back(V);
DFSStack.emplace_back(DFSIn, DFSOut);
}
bool empty() const { return DFSStack.empty(); }
bool isInScope(int DFSIn, int DFSOut) const {
if (empty())
return false;
return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
}
void popUntilDFSScope(int DFSIn, int DFSOut) {
// These two should always be in sync at this point.
assert(ValueStack.size() == DFSStack.size() &&
"Mismatch between ValueStack and DFSStack");
while (
!DFSStack.empty() &&
!(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
DFSStack.pop_back();
ValueStack.pop_back();
}
}
private:
SmallVector<Value *, 8> ValueStack;
SmallVector<std::pair<int, int>, 8> DFSStack;
};
}
bool NewGVN::eliminateInstructions(Function &F) {
// This is a non-standard eliminator. The normal way to eliminate is
// to walk the dominator tree in order, keeping track of available
// values, and eliminating them. However, this is mildly
// pointless. It requires doing lookups on every instruction,
// regardless of whether we will ever eliminate it. For
// instructions part of most singleton congruence classes, we know we
// will never eliminate them.
// Instead, this eliminator looks at the congruence classes directly, sorts
// them into a DFS ordering of the dominator tree, and then we just
// perform elimination straight on the sets by walking the congruence
// class member uses in order, and eliminate the ones dominated by the
// last member. This is worst case O(E log E) where E = number of
// instructions in a single congruence class. In theory, this is all
// instructions. In practice, it is much faster, as most instructions are
// either in singleton congruence classes or can't possibly be eliminated
// anyway (if there are no overlapping DFS ranges in class).
// When we find something not dominated, it becomes the new leader
// for elimination purposes.
// TODO: If we wanted to be faster, We could remove any members with no
// overlapping ranges while sorting, as we will never eliminate anything
// with those members, as they don't dominate anything else in our set.
bool AnythingReplaced = false;
// Since we are going to walk the domtree anyway, and we can't guarantee the
// DFS numbers are updated, we compute some ourselves.
DT->updateDFSNumbers();
for (auto &B : F) {
if (!ReachableBlocks.count(&B)) {
for (const auto S : successors(&B)) {
for (auto II = S->begin(); isa<PHINode>(II); ++II) {
2016-12-28 20:17:17 +01:00
auto &Phi = cast<PHINode>(*II);
DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "
<< getBlockName(&B)
<< " with undef due to it being unreachable\n");
for (auto &Operand : Phi.incoming_values())
if (Phi.getIncomingBlock(Operand) == &B)
Operand.set(UndefValue::get(Phi.getType()));
}
}
}
}
// Map to store the use counts
DenseMap<const Value *, unsigned int> UseCounts;
for (CongruenceClass *CC : reverse(CongruenceClasses)) {
// Track the equivalent store info so we can decide whether to try
// dead store elimination.
SmallVector<ValueDFS, 8> PossibleDeadStores;
SmallPtrSet<Instruction *, 8> ProbablyDead;
if (CC->Dead)
continue;
// Everything still in the INITIAL class is unreachable or dead.
if (CC == InitialClass) {
#ifndef NDEBUG
for (auto M : CC->Members)
assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
InstructionsToErase.count(cast<Instruction>(M))) &&
"Everything in INITIAL should be unreachable or dead at this "
"point");
#endif
continue;
}
assert(CC->RepLeader && "We should have had a leader");
// If this is a leader that is always available, and it's a
// constant or has no equivalences, just replace everything with
// it. We then update the congruence class with whatever members
// are left.
2017-01-20 22:04:30 +01:00
Value *Leader = CC->RepStoredValue ? CC->RepStoredValue : CC->RepLeader;
if (alwaysAvailable(Leader)) {
SmallPtrSet<Value *, 4> MembersLeft;
for (auto M : CC->Members) {
Value *Member = M;
// Void things have no uses we can replace.
if (Member == Leader || Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
2017-01-20 22:04:30 +01:00
DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Member
<< "\n");
// Due to equality propagation, these may not always be
// instructions, they may be real values. We don't really
// care about trying to replace the non-instructions.
if (auto *I = dyn_cast<Instruction>(Member)) {
2017-01-20 22:04:30 +01:00
assert(Leader != I && "About to accidentally remove our leader");
replaceInstruction(I, Leader);
AnythingReplaced = true;
continue;
} else {
MembersLeft.insert(I);
}
}
CC->Members.swap(MembersLeft);
} else {
DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n");
// If this is a singleton, we can skip it.
if (CC->Members.size() != 1) {
// This is a stack because equality replacement/etc may place
// constants in the middle of the member list, and we want to use
// those constant values in preference to the current leader, over
// the scope of those constants.
ValueDFSStack EliminationStack;
// Convert the members to DFS ordered sets and then merge them.
SmallVector<ValueDFS, 8> DFSOrderedSet;
convertClassToDFSOrdered(CC->Members, DFSOrderedSet, UseCounts,
ProbablyDead);
// Sort the whole thing.
std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
for (auto &VD : DFSOrderedSet) {
int MemberDFSIn = VD.DFSIn;
int MemberDFSOut = VD.DFSOut;
Value *Def = VD.Def;
Use *U = VD.U;
// We ignore void things because we can't get a value from them.
if (Def && Def->getType()->isVoidTy())
continue;
if (EliminationStack.empty()) {
DEBUG(dbgs() << "Elimination Stack is empty\n");
} else {
DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << ","
<< EliminationStack.dfs_back().second << ")\n");
}
DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
<< MemberDFSOut << ")\n");
// First, we see if we are out of scope or empty. If so,
// and there equivalences, we try to replace the top of
// stack with equivalences (if it's on the stack, it must
// not have been eliminated yet).
// Then we synchronize to our current scope, by
// popping until we are back within a DFS scope that
// dominates the current member.
// Then, what happens depends on a few factors
// If the stack is now empty, we need to push
// If we have a constant or a local equivalence we want to
// start using, we also push.
// Otherwise, we walk along, processing members who are
// dominated by this scope, and eliminate them.
bool ShouldPush = Def && EliminationStack.empty();
bool OutOfScope =
!EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
if (OutOfScope || ShouldPush) {
// Sync to our current scope.
EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
bool ShouldPush = Def && EliminationStack.empty();
if (ShouldPush) {
EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
}
}
// Skip the Def's, we only want to eliminate on their uses. But mark
// dominated defs as dead.
if (Def) {
// For anything in this case, what and how we value number
// guarantees that any side-effets that would have occurred (ie
// throwing, etc) can be proven to either still occur (because it's
// dominated by something that has the same side-effects), or never
// occur. Otherwise, we would not have been able to prove it value
// equivalent to something else. For these things, we can just mark
// it all dead. Note that this is different from the "ProbablyDead"
// set, which may not be dominated by anything, and thus, are only
// easy to prove dead if they are also side-effect free.
if (!EliminationStack.empty() && Def != EliminationStack.back() &&
isa<Instruction>(Def))
markInstructionForDeletion(cast<Instruction>(Def));
continue;
}
// At this point, we know it is a Use we are trying to possibly
// replace.
assert(isa<Instruction>(U->get()) &&
"Current def should have been an instruction");
assert(isa<Instruction>(U->getUser()) &&
"Current user should have been an instruction");
// If the thing we are replacing into is already marked to be dead,
// this use is dead. Note that this is true regardless of whether
// we have anything dominating the use or not. We do this here
// because we are already walking all the uses anyway.
Instruction *InstUse = cast<Instruction>(U->getUser());
if (InstructionsToErase.count(InstUse)) {
auto &UseCount = UseCounts[U->get()];
if (--UseCount == 0) {
ProbablyDead.insert(cast<Instruction>(U->get()));
}
}
// If we get to this point, and the stack is empty we must have a use
// with nothing we can use to eliminate this use, so just skip it.
if (EliminationStack.empty())
continue;
Value *DominatingLeader = EliminationStack.back();
// Don't replace our existing users with ourselves.
if (U->get() == DominatingLeader)
continue;
DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "
<< *U->get() << " in " << *(U->getUser()) << "\n");
// If we replaced something in an instruction, handle the patching of
// metadata. Skip this if we are replacing predicateinfo with its
// original operand, as we already know we can just drop it.
auto *ReplacedInst = cast<Instruction>(U->get());
auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
if (!PI || DominatingLeader != PI->OriginalOp)
patchReplacementInstruction(ReplacedInst, DominatingLeader);
U->set(DominatingLeader);
// This is now a use of the dominating leader, which means if the
// dominating leader was dead, it's now live!
auto &LeaderUseCount = UseCounts[DominatingLeader];
// It's about to be alive again.
if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
ProbablyDead.erase(cast<Instruction>(DominatingLeader));
++LeaderUseCount;
AnythingReplaced = true;
}
}
}
// At this point, anything still in the ProbablyDead set is actually dead if
// would be trivially dead.
for (auto *I : ProbablyDead)
if (wouldInstructionBeTriviallyDead(I))
markInstructionForDeletion(I);
// Cleanup the congruence class.
SmallPtrSet<Value *, 4> MembersLeft;
for (Value *Member : CC->Members) {
if (Member->getType()->isVoidTy()) {
MembersLeft.insert(Member);
continue;
}
MembersLeft.insert(Member);
}
CC->Members.swap(MembersLeft);
// If we have possible dead stores to look at, try to eliminate them.
if (CC->StoreCount > 0) {
convertClassToLoadsAndStores(CC->Members, PossibleDeadStores);
std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
ValueDFSStack EliminationStack;
for (auto &VD : PossibleDeadStores) {
int MemberDFSIn = VD.DFSIn;
int MemberDFSOut = VD.DFSOut;
Instruction *Member = cast<Instruction>(VD.Def);
if (EliminationStack.empty() ||
!EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
// Sync to our current scope.
EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
if (EliminationStack.empty()) {
EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
continue;
}
}
// We already did load elimination, so nothing to do here.
if (isa<LoadInst>(Member))
continue;
assert(!EliminationStack.empty());
Instruction *Leader = cast<Instruction>(EliminationStack.back());
(void)Leader;
assert(DT->dominates(Leader->getParent(), Member->getParent()));
// Member is dominater by Leader, and thus dead
DEBUG(dbgs() << "Marking dead store " << *Member
<< " that is dominated by " << *Leader << "\n");
markInstructionForDeletion(Member);
CC->Members.erase(Member);
++NumGVNDeadStores;
}
}
}
return AnythingReplaced;
}
// This function provides global ranking of operations so that we can place them
// in a canonical order. Note that rank alone is not necessarily enough for a
// complete ordering, as constants all have the same rank. However, generally,
// we will simplify an operation with all constants so that it doesn't matter
// what order they appear in.
unsigned int NewGVN::getRank(const Value *V) const {
// Prefer undef to anything else
if (isa<UndefValue>(V))
return 0;
if (isa<Constant>(V))
return 1;
else if (auto *A = dyn_cast<Argument>(V))
return 2 + A->getArgNo();
// Need to shift the instruction DFS by number of arguments + 3 to account for
// the constant and argument ranking above.
unsigned Result = InstrDFS.lookup(V);
if (Result > 0)
return 3 + NumFuncArgs + Result;
// Unreachable or something else, just return a really large number.
return ~0;
}
// This is a function that says whether two commutative operations should
// have their order swapped when canonicalizing.
bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
// Because we only care about a total ordering, and don't rewrite expressions
// in this order, we order by rank, which will give a strict weak ordering to
// everything but constants, and then we order by pointer address.
return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
}