1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/Transforms/Vectorize/VPlan.h

790 lines
30 KiB
C
Raw Normal View History

//===- VPlan.h - Represent A Vectorizer Plan ------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
/// VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
/// treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
/// within VPBasicBlocks;
/// 4. The VPlan class holding a candidate for vectorization;
/// 5. The VPlanPrinter class providing a way to print a plan in dot format.
/// These are documented in docs/VectorizationPlan.rst.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/Support/raw_ostream.h"
// The (re)use of existing LoopVectorize classes is subject to future VPlan
// refactoring.
namespace {
// Forward declarations.
//class InnerLoopVectorizer;
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
} // namespace
namespace llvm {
// Forward declarations.
class BasicBlock;
class InnerLoopVectorizer;
class VPBasicBlock;
/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.
/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
unsigned Part; ///< in [0..UF)
unsigned Lane; ///< in [0..VF)
};
/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
private:
/// The unroll factor. Each entry in the vector map contains UF vector values.
unsigned UF;
/// The vectorization factor. Each entry in the scalar map contains UF x VF
/// scalar values.
unsigned VF;
/// The vector and scalar map storage. We use std::map and not DenseMap
/// because insertions to DenseMap invalidate its iterators.
typedef SmallVector<Value *, 2> VectorParts;
typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
std::map<Value *, VectorParts> VectorMapStorage;
std::map<Value *, ScalarParts> ScalarMapStorage;
public:
/// Construct an empty map with the given unroll and vectorization factors.
VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
/// \return True if the map has any vector entry for \p Key.
bool hasAnyVectorValue(Value *Key) const {
return VectorMapStorage.count(Key);
}
/// \return True if the map has a vector entry for \p Key and \p Part.
bool hasVectorValue(Value *Key, unsigned Part) const {
assert(Part < UF && "Queried Vector Part is too large.");
if (!hasAnyVectorValue(Key))
return false;
const VectorParts &Entry = VectorMapStorage.find(Key)->second;
assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
return Entry[Part] != nullptr;
}
/// \return True if the map has any scalar entry for \p Key.
bool hasAnyScalarValue(Value *Key) const {
return ScalarMapStorage.count(Key);
}
/// \return True if the map has a scalar entry for \p Key and \p Instance.
bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
assert(Instance.Part < UF && "Queried Scalar Part is too large.");
assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
if (!hasAnyScalarValue(Key))
return false;
const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
assert(Entry[Instance.Part].size() == VF &&
"ScalarParts has wrong dimensions.");
return Entry[Instance.Part][Instance.Lane] != nullptr;
}
/// Retrieve the existing vector value that corresponds to \p Key and
/// \p Part.
Value *getVectorValue(Value *Key, unsigned Part) {
assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
return VectorMapStorage[Key][Part];
}
/// Retrieve the existing scalar value that corresponds to \p Key and
/// \p Instance.
Value *getScalarValue(Value *Key, const VPIteration &Instance) {
assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
}
/// Set a vector value associated with \p Key and \p Part. Assumes such a
/// value is not already set. If it is, use resetVectorValue() instead.
void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
if (!VectorMapStorage.count(Key)) {
VectorParts Entry(UF);
VectorMapStorage[Key] = Entry;
}
VectorMapStorage[Key][Part] = Vector;
}
/// Set a scalar value associated with \p Key and \p Instance. Assumes such a
/// value is not already set.
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
if (!ScalarMapStorage.count(Key)) {
ScalarParts Entry(UF);
// TODO: Consider storing uniform values only per-part, as they occupy
// lane 0 only, keeping the other VF-1 redundant entries null.
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part].resize(VF, nullptr);
ScalarMapStorage[Key] = Entry;
}
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
/// Reset the vector value associated with \p Key for the given \p Part.
/// This function can be used to update values that have already been
/// vectorized. This is the case for "fix-up" operations including type
/// truncation and the second phase of recurrence vectorization.
void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(hasVectorValue(Key, Part) && "Vector value not set for part");
VectorMapStorage[Key][Part] = Vector;
}
/// Reset the scalar value associated with \p Key for \p Part and \p Lane.
/// This function can be used to update values that have already been
/// scalarized. This is the case for "fix-up" operations including scalar phi
/// nodes for scalarized and predicated instructions.
void resetScalarValue(Value *Key, const VPIteration &Instance,
Value *Scalar) {
assert(hasScalarValue(Key, Instance) &&
"Scalar value not set for part and lane");
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
};
/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI,
class DominatorTree *DT, IRBuilder<> &Builder,
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV)
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
ValueMap(ValueMap), ILV(ILV) {}
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
unsigned VF;
unsigned UF;
/// Hold the indices to generate specific scalar instructions. Null indicates
/// that all instances are to be generated, using either scalar or vector
/// instructions.
Optional<VPIteration> Instance;
/// Hold state information used when constructing the CFG of the output IR,
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
struct CFGState {
/// The previous VPBasicBlock visited. Initially set to null.
VPBasicBlock *PrevVPBB;
/// The previous IR BasicBlock created or used. Initially set to the new
/// header BasicBlock.
BasicBlock *PrevBB;
/// The last IR BasicBlock in the output IR. Set to the new latch
/// BasicBlock, used for placing the newly created BasicBlocks.
BasicBlock *LastBB;
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
/// of replication, maps the BasicBlock of the last replica created.
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {}
} CFG;
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
class LoopInfo *LI;
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
class DominatorTree *DT;
/// Hold a reference to the IRBuilder used to generate output IR code.
IRBuilder<> &Builder;
/// Hold a reference to the Value state information used when generating the
/// Values of the output IR.
VectorizerValueMap &ValueMap;
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
class InnerLoopVectorizer *ILV;
};
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// An optional name for the block.
std::string Name;
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
/// it is a topmost VPBlockBase.
class VPRegionBlock *Parent;
/// List of predecessor blocks.
SmallVector<VPBlockBase *, 1> Predecessors;
/// List of successor blocks.
SmallVector<VPBlockBase *, 1> Successors;
/// Add \p Successor as the last successor to this block.
void appendSuccessor(VPBlockBase *Successor) {
assert(Successor && "Cannot add nullptr successor!");
Successors.push_back(Successor);
}
/// Add \p Predecessor as the last predecessor to this block.
void appendPredecessor(VPBlockBase *Predecessor) {
assert(Predecessor && "Cannot add nullptr predecessor!");
Predecessors.push_back(Predecessor);
}
/// Remove \p Predecessor from the predecessors of this block.
void removePredecessor(VPBlockBase *Predecessor) {
auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
assert(Pos && "Predecessor does not exist");
Predecessors.erase(Pos);
}
/// Remove \p Successor from the successors of this block.
void removeSuccessor(VPBlockBase *Successor) {
auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
assert(Pos && "Successor does not exist");
Successors.erase(Pos);
}
protected:
VPBlockBase(const unsigned char SC, const std::string &N)
: SubclassID(SC), Name(N), Parent(nullptr) {}
public:
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
/// that are actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPBlockBase objects. They are used for concrete
/// type identification.
typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy;
typedef SmallVectorImpl<VPBlockBase *> VPBlocksTy;
virtual ~VPBlockBase() {}
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPBlockID() const { return SubclassID; }
const VPRegionBlock *getParent() const { return Parent; }
void setParent(VPRegionBlock *P) { Parent = P; }
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getEntryBasicBlock() const;
VPBasicBlock *getEntryBasicBlock();
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getExitBasicBlock() const;
VPBasicBlock *getExitBasicBlock();
const VPBlocksTy &getSuccessors() const { return Successors; }
VPBlocksTy &getSuccessors() { return Successors; }
const VPBlocksTy &getPredecessors() const { return Predecessors; }
VPBlocksTy &getPredecessors() { return Predecessors; }
/// \return the successor of this VPBlockBase if it has a single successor.
/// Otherwise return a null pointer.
VPBlockBase *getSingleSuccessor() const {
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
}
/// \return the predecessor of this VPBlockBase if it has a single
/// predecessor. Otherwise return a null pointer.
VPBlockBase *getSinglePredecessor() const {
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
}
/// An Enclosing Block of a block B is any block containing B, including B
/// itself. \return the closest enclosing block starting from "this", which
/// has successors. \return the root enclosing block if all enclosing blocks
/// have no successors.
VPBlockBase *getEnclosingBlockWithSuccessors();
/// \return the closest enclosing block starting from "this", which has
/// predecessors. \return the root enclosing block if all enclosing blocks
/// have no predecessors.
VPBlockBase *getEnclosingBlockWithPredecessors();
/// \return the successors either attached directly to this VPBlockBase or, if
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
/// successors of its own, search recursively for the first enclosing
/// VPRegionBlock that has successors and return them. If no such
/// VPRegionBlock exists, return the (empty) successors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalSuccessors() {
return getEnclosingBlockWithSuccessors()->getSuccessors();
}
/// \return the hierarchical successor of this VPBlockBase if it has a single
/// hierarchical successor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalSuccessor() {
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
}
/// \return the predecessors either attached directly to this VPBlockBase or,
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
/// predecessors of its own, search recursively for the first enclosing
/// VPRegionBlock that has predecessors and return them. If no such
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalPredecessors() {
return getEnclosingBlockWithPredecessors()->getPredecessors();
}
/// \return the hierarchical predecessor of this VPBlockBase if it has a
/// single hierarchical predecessor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalPredecessor() {
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
}
/// Sets a given VPBlockBase \p Successor as the single successor and \return
/// \p Successor. The parent of this Block is copied to be the parent of
/// \p Successor.
VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
assert(Successors.empty() && "Setting one successor when others exist.");
appendSuccessor(Successor);
Successor->appendPredecessor(this);
Successor->Parent = Parent;
return Successor;
}
/// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
/// successors. The parent of this Block is copied to be the parent of both
/// \p IfTrue and \p IfFalse.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
assert(Successors.empty() && "Setting two successors when others exist.");
appendSuccessor(IfTrue);
appendSuccessor(IfFalse);
IfTrue->appendPredecessor(this);
IfFalse->appendPredecessor(this);
IfTrue->Parent = Parent;
IfFalse->Parent = Parent;
}
void disconnectSuccessor(VPBlockBase *Successor) {
assert(Successor && "Successor to disconnect is null.");
removeSuccessor(Successor);
Successor->removePredecessor(this);
}
/// The method which generates the output IR that correspond to this
/// VPBlockBase, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState *State) = 0;
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
static void deleteCFG(VPBlockBase *Entry);
};
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
friend VPBasicBlock;
private:
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// Each VPRecipe belongs to a single VPBasicBlock.
VPBasicBlock *Parent;
public:
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
/// that is actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
/// type identification.
typedef enum {
VPBranchOnMaskSC,
VPInterleaveSC,
VPPredInstPHISC,
VPReplicateSC,
VPWidenIntOrFpInductionSC,
VPWidenPHISC,
VPWidenSC,
} VPRecipeTy;
VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {}
virtual ~VPRecipeBase() {}
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPRecipeID() const { return SubclassID; }
/// \return the VPBasicBlock which this VPRecipe belongs to.
VPBasicBlock *getParent() { return Parent; }
const VPBasicBlock *getParent() const { return Parent; }
/// The method which generates the output IR instructions that correspond to
/// this VPRecipe, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState &State) = 0;
/// Each recipe prints itself.
virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
};
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
typedef iplist<VPRecipeBase> RecipeListTy;
private:
/// The VPRecipes held in the order of output instructions to generate.
RecipeListTy Recipes;
public:
/// Instruction iterators...
typedef RecipeListTy::iterator iterator;
typedef RecipeListTy::const_iterator const_iterator;
typedef RecipeListTy::reverse_iterator reverse_iterator;
typedef RecipeListTy::const_reverse_iterator const_reverse_iterator;
//===--------------------------------------------------------------------===//
/// Recipe iterator methods
///
inline iterator begin() { return Recipes.begin(); }
inline const_iterator begin() const { return Recipes.begin(); }
inline iterator end() { return Recipes.end(); }
inline const_iterator end() const { return Recipes.end(); }
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
inline reverse_iterator rend() { return Recipes.rend(); }
inline const_reverse_iterator rend() const { return Recipes.rend(); }
inline size_t size() const { return Recipes.size(); }
inline bool empty() const { return Recipes.empty(); }
inline const VPRecipeBase &front() const { return Recipes.front(); }
inline VPRecipeBase &front() { return Recipes.front(); }
inline const VPRecipeBase &back() const { return Recipes.back(); }
inline VPRecipeBase &back() { return Recipes.back(); }
/// \brief Returns a pointer to a member of the recipe list.
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
return &VPBasicBlock::Recipes;
}
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
: VPBlockBase(VPBasicBlockSC, Name.str()) {
if (Recipe)
appendRecipe(Recipe);
}
~VPBasicBlock() { Recipes.clear(); }
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
}
/// Augment the existing recipes of a VPBasicBlock with an additional
/// \p Recipe as the last recipe.
void appendRecipe(VPRecipeBase *Recipe) {
assert(Recipe && "No recipe to append.");
assert(!Recipe->Parent && "Recipe already in VPlan");
Recipe->Parent = this;
return Recipes.push_back(Recipe);
}
/// The method which generates the output IR instructions that correspond to
/// this VPBasicBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
private:
/// Create an IR BasicBlock to hold the output instructions generated by this
/// VPBasicBlock, and return it. Update the CFGState accordingly.
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
private:
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Entry;
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Exit;
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool IsReplicator;
public:
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
IsReplicator(IsReplicator) {
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
Entry->setParent(this);
Exit->setParent(this);
}
~VPRegionBlock() {
if (Entry)
deleteCFG(Entry);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
}
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *getEntry() { return Entry; }
const VPBlockBase *getExit() const { return Exit; }
VPBlockBase *getExit() { return Exit; }
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool isReplicator() const { return IsReplicator; }
/// The method which generates the output IR instructions that correspond to
/// this VPRegionBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
};
/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
private:
/// Hold the single entry to the Hierarchical CFG of the VPlan.
VPBlockBase *Entry;
/// Holds the VFs applicable to this VPlan.
SmallSet<unsigned, 2> VFs;
/// Holds the name of the VPlan, for printing.
std::string Name;
public:
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
~VPlan() {
if (Entry)
VPBlockBase::deleteCFG(Entry);
}
/// Generate the IR code for this VPlan.
void execute(struct VPTransformState *State);
VPBlockBase *getEntry() { return Entry; }
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
void addVF(unsigned VF) { VFs.insert(VF); }
bool hasVF(unsigned VF) { return VFs.count(VF); }
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
private:
/// Add to the given dominator tree the header block and every new basic block
/// that was created between it and the latch block, inclusive.
static void updateDominatorTree(class DominatorTree *DT,
BasicBlock *LoopPreHeaderBB,
BasicBlock *LoopLatchBB);
};
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
friend inline raw_ostream &operator<<(raw_ostream &OS,
const struct VPlanIngredient &I);
private:
raw_ostream &OS;
VPlan &Plan;
unsigned Depth;
unsigned TabWidth = 2;
std::string Indent;
unsigned BID = 0;
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
/// Handle indentation.
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
/// Print a given \p Block of the Plan.
void dumpBlock(const VPBlockBase *Block);
/// Print the information related to the CFG edges going out of a given
/// \p Block, followed by printing the successor blocks themselves.
void dumpEdges(const VPBlockBase *Block);
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
/// its successor blocks.
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
/// Print a given \p Region of the Plan.
void dumpRegion(const VPRegionBlock *Region);
unsigned getOrCreateBID(const VPBlockBase *Block) {
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
}
const Twine getOrCreateName(const VPBlockBase *Block);
const Twine getUID(const VPBlockBase *Block);
/// Print the information related to a CFG edge between two VPBlockBases.
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
const Twine &Label);
VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
void dump();
static void printAsIngredient(raw_ostream &O, Value *V);
};
struct VPlanIngredient {
Value *V;
VPlanIngredient(Value *V) : V(V) {}
};
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
VPlanPrinter::printAsIngredient(OS, I.V);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
VPlanPrinter Printer(OS, Plan);
Printer.dump();
return OS;
}
//===--------------------------------------------------------------------===//
// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs //
//===--------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes...
template <> struct GraphTraits<VPBlockBase *> {
typedef VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
template <> struct GraphTraits<const VPBlockBase *> {
typedef const VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::const_iterator ChildIteratorType;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
// for a VPBlockBase is considered to be when traversing the predecessors of a
// VPBlockBase instead of its successors.
//
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
typedef VPBlockBase *NodeRef;
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
return B;
}
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getPredecessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getPredecessors().end();
}
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H