mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
790 lines
30 KiB
C
790 lines
30 KiB
C
|
//===- VPlan.h - Represent A Vectorizer Plan ------------------------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
///
|
||
|
/// \file
|
||
|
/// This file contains the declarations of the Vectorization Plan base classes:
|
||
|
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
|
||
|
/// VPBlockBase, together implementing a Hierarchical CFG;
|
||
|
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
|
||
|
/// treated as proper graphs for generic algorithms;
|
||
|
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
|
||
|
/// within VPBasicBlocks;
|
||
|
/// 4. The VPlan class holding a candidate for vectorization;
|
||
|
/// 5. The VPlanPrinter class providing a way to print a plan in dot format.
|
||
|
/// These are documented in docs/VectorizationPlan.rst.
|
||
|
///
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||
|
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|
||
|
|
||
|
#include "llvm/ADT/GraphTraits.h"
|
||
|
#include "llvm/ADT/SmallSet.h"
|
||
|
#include "llvm/ADT/ilist.h"
|
||
|
#include "llvm/ADT/ilist_node.h"
|
||
|
#include "llvm/IR/IRBuilder.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
|
||
|
// The (re)use of existing LoopVectorize classes is subject to future VPlan
|
||
|
// refactoring.
|
||
|
namespace {
|
||
|
// Forward declarations.
|
||
|
//class InnerLoopVectorizer;
|
||
|
class LoopVectorizationLegality;
|
||
|
class LoopVectorizationCostModel;
|
||
|
} // namespace
|
||
|
|
||
|
namespace llvm {
|
||
|
|
||
|
// Forward declarations.
|
||
|
class BasicBlock;
|
||
|
class InnerLoopVectorizer;
|
||
|
class VPBasicBlock;
|
||
|
|
||
|
/// In what follows, the term "input IR" refers to code that is fed into the
|
||
|
/// vectorizer whereas the term "output IR" refers to code that is generated by
|
||
|
/// the vectorizer.
|
||
|
|
||
|
/// VPIteration represents a single point in the iteration space of the output
|
||
|
/// (vectorized and/or unrolled) IR loop.
|
||
|
struct VPIteration {
|
||
|
unsigned Part; ///< in [0..UF)
|
||
|
unsigned Lane; ///< in [0..VF)
|
||
|
};
|
||
|
|
||
|
/// This is a helper struct for maintaining vectorization state. It's used for
|
||
|
/// mapping values from the original loop to their corresponding values in
|
||
|
/// the new loop. Two mappings are maintained: one for vectorized values and
|
||
|
/// one for scalarized values. Vectorized values are represented with UF
|
||
|
/// vector values in the new loop, and scalarized values are represented with
|
||
|
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
|
||
|
/// vectorization factors, respectively.
|
||
|
///
|
||
|
/// Entries can be added to either map with setVectorValue and setScalarValue,
|
||
|
/// which assert that an entry was not already added before. If an entry is to
|
||
|
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
|
||
|
/// currently needed to modify the mapped values during "fix-up" operations that
|
||
|
/// occur once the first phase of widening is complete. These operations include
|
||
|
/// type truncation and the second phase of recurrence widening.
|
||
|
///
|
||
|
/// Entries from either map can be retrieved using the getVectorValue and
|
||
|
/// getScalarValue functions, which assert that the desired value exists.
|
||
|
|
||
|
struct VectorizerValueMap {
|
||
|
private:
|
||
|
/// The unroll factor. Each entry in the vector map contains UF vector values.
|
||
|
unsigned UF;
|
||
|
|
||
|
/// The vectorization factor. Each entry in the scalar map contains UF x VF
|
||
|
/// scalar values.
|
||
|
unsigned VF;
|
||
|
|
||
|
/// The vector and scalar map storage. We use std::map and not DenseMap
|
||
|
/// because insertions to DenseMap invalidate its iterators.
|
||
|
typedef SmallVector<Value *, 2> VectorParts;
|
||
|
typedef SmallVector<SmallVector<Value *, 4>, 2> ScalarParts;
|
||
|
std::map<Value *, VectorParts> VectorMapStorage;
|
||
|
std::map<Value *, ScalarParts> ScalarMapStorage;
|
||
|
|
||
|
public:
|
||
|
/// Construct an empty map with the given unroll and vectorization factors.
|
||
|
VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
|
||
|
|
||
|
/// \return True if the map has any vector entry for \p Key.
|
||
|
bool hasAnyVectorValue(Value *Key) const {
|
||
|
return VectorMapStorage.count(Key);
|
||
|
}
|
||
|
|
||
|
/// \return True if the map has a vector entry for \p Key and \p Part.
|
||
|
bool hasVectorValue(Value *Key, unsigned Part) const {
|
||
|
assert(Part < UF && "Queried Vector Part is too large.");
|
||
|
if (!hasAnyVectorValue(Key))
|
||
|
return false;
|
||
|
const VectorParts &Entry = VectorMapStorage.find(Key)->second;
|
||
|
assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
|
||
|
return Entry[Part] != nullptr;
|
||
|
}
|
||
|
|
||
|
/// \return True if the map has any scalar entry for \p Key.
|
||
|
bool hasAnyScalarValue(Value *Key) const {
|
||
|
return ScalarMapStorage.count(Key);
|
||
|
}
|
||
|
|
||
|
/// \return True if the map has a scalar entry for \p Key and \p Instance.
|
||
|
bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
|
||
|
assert(Instance.Part < UF && "Queried Scalar Part is too large.");
|
||
|
assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
|
||
|
if (!hasAnyScalarValue(Key))
|
||
|
return false;
|
||
|
const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
|
||
|
assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
|
||
|
assert(Entry[Instance.Part].size() == VF &&
|
||
|
"ScalarParts has wrong dimensions.");
|
||
|
return Entry[Instance.Part][Instance.Lane] != nullptr;
|
||
|
}
|
||
|
|
||
|
/// Retrieve the existing vector value that corresponds to \p Key and
|
||
|
/// \p Part.
|
||
|
Value *getVectorValue(Value *Key, unsigned Part) {
|
||
|
assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
|
||
|
return VectorMapStorage[Key][Part];
|
||
|
}
|
||
|
|
||
|
/// Retrieve the existing scalar value that corresponds to \p Key and
|
||
|
/// \p Instance.
|
||
|
Value *getScalarValue(Value *Key, const VPIteration &Instance) {
|
||
|
assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
|
||
|
return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
|
||
|
}
|
||
|
|
||
|
/// Set a vector value associated with \p Key and \p Part. Assumes such a
|
||
|
/// value is not already set. If it is, use resetVectorValue() instead.
|
||
|
void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
|
||
|
assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
|
||
|
if (!VectorMapStorage.count(Key)) {
|
||
|
VectorParts Entry(UF);
|
||
|
VectorMapStorage[Key] = Entry;
|
||
|
}
|
||
|
VectorMapStorage[Key][Part] = Vector;
|
||
|
}
|
||
|
|
||
|
/// Set a scalar value associated with \p Key and \p Instance. Assumes such a
|
||
|
/// value is not already set.
|
||
|
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
|
||
|
assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
|
||
|
if (!ScalarMapStorage.count(Key)) {
|
||
|
ScalarParts Entry(UF);
|
||
|
// TODO: Consider storing uniform values only per-part, as they occupy
|
||
|
// lane 0 only, keeping the other VF-1 redundant entries null.
|
||
|
for (unsigned Part = 0; Part < UF; ++Part)
|
||
|
Entry[Part].resize(VF, nullptr);
|
||
|
ScalarMapStorage[Key] = Entry;
|
||
|
}
|
||
|
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
|
||
|
}
|
||
|
|
||
|
/// Reset the vector value associated with \p Key for the given \p Part.
|
||
|
/// This function can be used to update values that have already been
|
||
|
/// vectorized. This is the case for "fix-up" operations including type
|
||
|
/// truncation and the second phase of recurrence vectorization.
|
||
|
void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
|
||
|
assert(hasVectorValue(Key, Part) && "Vector value not set for part");
|
||
|
VectorMapStorage[Key][Part] = Vector;
|
||
|
}
|
||
|
|
||
|
/// Reset the scalar value associated with \p Key for \p Part and \p Lane.
|
||
|
/// This function can be used to update values that have already been
|
||
|
/// scalarized. This is the case for "fix-up" operations including scalar phi
|
||
|
/// nodes for scalarized and predicated instructions.
|
||
|
void resetScalarValue(Value *Key, const VPIteration &Instance,
|
||
|
Value *Scalar) {
|
||
|
assert(hasScalarValue(Key, Instance) &&
|
||
|
"Scalar value not set for part and lane");
|
||
|
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// VPTransformState holds information passed down when "executing" a VPlan,
|
||
|
/// needed for generating the output IR.
|
||
|
struct VPTransformState {
|
||
|
|
||
|
VPTransformState(unsigned VF, unsigned UF, class LoopInfo *LI,
|
||
|
class DominatorTree *DT, IRBuilder<> &Builder,
|
||
|
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV)
|
||
|
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
|
||
|
ValueMap(ValueMap), ILV(ILV) {}
|
||
|
|
||
|
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
|
||
|
unsigned VF;
|
||
|
unsigned UF;
|
||
|
|
||
|
/// Hold the indices to generate specific scalar instructions. Null indicates
|
||
|
/// that all instances are to be generated, using either scalar or vector
|
||
|
/// instructions.
|
||
|
Optional<VPIteration> Instance;
|
||
|
|
||
|
/// Hold state information used when constructing the CFG of the output IR,
|
||
|
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
|
||
|
struct CFGState {
|
||
|
/// The previous VPBasicBlock visited. Initially set to null.
|
||
|
VPBasicBlock *PrevVPBB;
|
||
|
/// The previous IR BasicBlock created or used. Initially set to the new
|
||
|
/// header BasicBlock.
|
||
|
BasicBlock *PrevBB;
|
||
|
/// The last IR BasicBlock in the output IR. Set to the new latch
|
||
|
/// BasicBlock, used for placing the newly created BasicBlocks.
|
||
|
BasicBlock *LastBB;
|
||
|
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
|
||
|
/// of replication, maps the BasicBlock of the last replica created.
|
||
|
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
|
||
|
|
||
|
CFGState() : PrevVPBB(nullptr), PrevBB(nullptr), LastBB(nullptr) {}
|
||
|
} CFG;
|
||
|
|
||
|
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
|
||
|
class LoopInfo *LI;
|
||
|
|
||
|
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
|
||
|
class DominatorTree *DT;
|
||
|
|
||
|
/// Hold a reference to the IRBuilder used to generate output IR code.
|
||
|
IRBuilder<> &Builder;
|
||
|
|
||
|
/// Hold a reference to the Value state information used when generating the
|
||
|
/// Values of the output IR.
|
||
|
VectorizerValueMap &ValueMap;
|
||
|
|
||
|
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
|
||
|
class InnerLoopVectorizer *ILV;
|
||
|
};
|
||
|
|
||
|
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
|
||
|
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
|
||
|
class VPBlockBase {
|
||
|
private:
|
||
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
||
|
|
||
|
/// An optional name for the block.
|
||
|
std::string Name;
|
||
|
|
||
|
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
|
||
|
/// it is a topmost VPBlockBase.
|
||
|
class VPRegionBlock *Parent;
|
||
|
|
||
|
/// List of predecessor blocks.
|
||
|
SmallVector<VPBlockBase *, 1> Predecessors;
|
||
|
|
||
|
/// List of successor blocks.
|
||
|
SmallVector<VPBlockBase *, 1> Successors;
|
||
|
|
||
|
/// Add \p Successor as the last successor to this block.
|
||
|
void appendSuccessor(VPBlockBase *Successor) {
|
||
|
assert(Successor && "Cannot add nullptr successor!");
|
||
|
Successors.push_back(Successor);
|
||
|
}
|
||
|
|
||
|
/// Add \p Predecessor as the last predecessor to this block.
|
||
|
void appendPredecessor(VPBlockBase *Predecessor) {
|
||
|
assert(Predecessor && "Cannot add nullptr predecessor!");
|
||
|
Predecessors.push_back(Predecessor);
|
||
|
}
|
||
|
|
||
|
/// Remove \p Predecessor from the predecessors of this block.
|
||
|
void removePredecessor(VPBlockBase *Predecessor) {
|
||
|
auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
|
||
|
assert(Pos && "Predecessor does not exist");
|
||
|
Predecessors.erase(Pos);
|
||
|
}
|
||
|
|
||
|
/// Remove \p Successor from the successors of this block.
|
||
|
void removeSuccessor(VPBlockBase *Successor) {
|
||
|
auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
|
||
|
assert(Pos && "Successor does not exist");
|
||
|
Successors.erase(Pos);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
VPBlockBase(const unsigned char SC, const std::string &N)
|
||
|
: SubclassID(SC), Name(N), Parent(nullptr) {}
|
||
|
|
||
|
public:
|
||
|
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
|
||
|
/// that are actually instantiated. Values of this enumeration are kept in the
|
||
|
/// SubclassID field of the VPBlockBase objects. They are used for concrete
|
||
|
/// type identification.
|
||
|
typedef enum { VPBasicBlockSC, VPRegionBlockSC } VPBlockTy;
|
||
|
|
||
|
typedef SmallVectorImpl<VPBlockBase *> VPBlocksTy;
|
||
|
|
||
|
virtual ~VPBlockBase() {}
|
||
|
|
||
|
const std::string &getName() const { return Name; }
|
||
|
|
||
|
void setName(const Twine &newName) { Name = newName.str(); }
|
||
|
|
||
|
/// \return an ID for the concrete type of this object.
|
||
|
/// This is used to implement the classof checks. This should not be used
|
||
|
/// for any other purpose, as the values may change as LLVM evolves.
|
||
|
unsigned getVPBlockID() const { return SubclassID; }
|
||
|
|
||
|
const VPRegionBlock *getParent() const { return Parent; }
|
||
|
|
||
|
void setParent(VPRegionBlock *P) { Parent = P; }
|
||
|
|
||
|
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
|
||
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||
|
const VPBasicBlock *getEntryBasicBlock() const;
|
||
|
VPBasicBlock *getEntryBasicBlock();
|
||
|
|
||
|
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
|
||
|
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
|
||
|
/// VPBlockBase is a VPBasicBlock, it is returned.
|
||
|
const VPBasicBlock *getExitBasicBlock() const;
|
||
|
VPBasicBlock *getExitBasicBlock();
|
||
|
|
||
|
const VPBlocksTy &getSuccessors() const { return Successors; }
|
||
|
VPBlocksTy &getSuccessors() { return Successors; }
|
||
|
|
||
|
const VPBlocksTy &getPredecessors() const { return Predecessors; }
|
||
|
VPBlocksTy &getPredecessors() { return Predecessors; }
|
||
|
|
||
|
/// \return the successor of this VPBlockBase if it has a single successor.
|
||
|
/// Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleSuccessor() const {
|
||
|
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
|
||
|
}
|
||
|
|
||
|
/// \return the predecessor of this VPBlockBase if it has a single
|
||
|
/// predecessor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSinglePredecessor() const {
|
||
|
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
|
||
|
}
|
||
|
|
||
|
/// An Enclosing Block of a block B is any block containing B, including B
|
||
|
/// itself. \return the closest enclosing block starting from "this", which
|
||
|
/// has successors. \return the root enclosing block if all enclosing blocks
|
||
|
/// have no successors.
|
||
|
VPBlockBase *getEnclosingBlockWithSuccessors();
|
||
|
|
||
|
/// \return the closest enclosing block starting from "this", which has
|
||
|
/// predecessors. \return the root enclosing block if all enclosing blocks
|
||
|
/// have no predecessors.
|
||
|
VPBlockBase *getEnclosingBlockWithPredecessors();
|
||
|
|
||
|
/// \return the successors either attached directly to this VPBlockBase or, if
|
||
|
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
|
||
|
/// successors of its own, search recursively for the first enclosing
|
||
|
/// VPRegionBlock that has successors and return them. If no such
|
||
|
/// VPRegionBlock exists, return the (empty) successors of the topmost
|
||
|
/// VPBlockBase reached.
|
||
|
const VPBlocksTy &getHierarchicalSuccessors() {
|
||
|
return getEnclosingBlockWithSuccessors()->getSuccessors();
|
||
|
}
|
||
|
|
||
|
/// \return the hierarchical successor of this VPBlockBase if it has a single
|
||
|
/// hierarchical successor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleHierarchicalSuccessor() {
|
||
|
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
|
||
|
}
|
||
|
|
||
|
/// \return the predecessors either attached directly to this VPBlockBase or,
|
||
|
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
|
||
|
/// predecessors of its own, search recursively for the first enclosing
|
||
|
/// VPRegionBlock that has predecessors and return them. If no such
|
||
|
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
|
||
|
/// VPBlockBase reached.
|
||
|
const VPBlocksTy &getHierarchicalPredecessors() {
|
||
|
return getEnclosingBlockWithPredecessors()->getPredecessors();
|
||
|
}
|
||
|
|
||
|
/// \return the hierarchical predecessor of this VPBlockBase if it has a
|
||
|
/// single hierarchical predecessor. Otherwise return a null pointer.
|
||
|
VPBlockBase *getSingleHierarchicalPredecessor() {
|
||
|
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
|
||
|
}
|
||
|
|
||
|
/// Sets a given VPBlockBase \p Successor as the single successor and \return
|
||
|
/// \p Successor. The parent of this Block is copied to be the parent of
|
||
|
/// \p Successor.
|
||
|
VPBlockBase *setOneSuccessor(VPBlockBase *Successor) {
|
||
|
assert(Successors.empty() && "Setting one successor when others exist.");
|
||
|
appendSuccessor(Successor);
|
||
|
Successor->appendPredecessor(this);
|
||
|
Successor->Parent = Parent;
|
||
|
return Successor;
|
||
|
}
|
||
|
|
||
|
/// Sets two given VPBlockBases \p IfTrue and \p IfFalse to be the two
|
||
|
/// successors. The parent of this Block is copied to be the parent of both
|
||
|
/// \p IfTrue and \p IfFalse.
|
||
|
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
|
||
|
assert(Successors.empty() && "Setting two successors when others exist.");
|
||
|
appendSuccessor(IfTrue);
|
||
|
appendSuccessor(IfFalse);
|
||
|
IfTrue->appendPredecessor(this);
|
||
|
IfFalse->appendPredecessor(this);
|
||
|
IfTrue->Parent = Parent;
|
||
|
IfFalse->Parent = Parent;
|
||
|
}
|
||
|
|
||
|
void disconnectSuccessor(VPBlockBase *Successor) {
|
||
|
assert(Successor && "Successor to disconnect is null.");
|
||
|
removeSuccessor(Successor);
|
||
|
Successor->removePredecessor(this);
|
||
|
}
|
||
|
|
||
|
/// The method which generates the output IR that correspond to this
|
||
|
/// VPBlockBase, thereby "executing" the VPlan.
|
||
|
virtual void execute(struct VPTransformState *State) = 0;
|
||
|
|
||
|
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
|
||
|
static void deleteCFG(VPBlockBase *Entry);
|
||
|
};
|
||
|
|
||
|
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
|
||
|
/// instructions.
|
||
|
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
|
||
|
friend VPBasicBlock;
|
||
|
|
||
|
private:
|
||
|
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
|
||
|
|
||
|
/// Each VPRecipe belongs to a single VPBasicBlock.
|
||
|
VPBasicBlock *Parent;
|
||
|
|
||
|
public:
|
||
|
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
|
||
|
/// that is actually instantiated. Values of this enumeration are kept in the
|
||
|
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
|
||
|
/// type identification.
|
||
|
typedef enum {
|
||
|
VPBranchOnMaskSC,
|
||
|
VPInterleaveSC,
|
||
|
VPPredInstPHISC,
|
||
|
VPReplicateSC,
|
||
|
VPWidenIntOrFpInductionSC,
|
||
|
VPWidenPHISC,
|
||
|
VPWidenSC,
|
||
|
} VPRecipeTy;
|
||
|
|
||
|
VPRecipeBase(const unsigned char SC) : SubclassID(SC), Parent(nullptr) {}
|
||
|
|
||
|
virtual ~VPRecipeBase() {}
|
||
|
|
||
|
/// \return an ID for the concrete type of this object.
|
||
|
/// This is used to implement the classof checks. This should not be used
|
||
|
/// for any other purpose, as the values may change as LLVM evolves.
|
||
|
unsigned getVPRecipeID() const { return SubclassID; }
|
||
|
|
||
|
/// \return the VPBasicBlock which this VPRecipe belongs to.
|
||
|
VPBasicBlock *getParent() { return Parent; }
|
||
|
const VPBasicBlock *getParent() const { return Parent; }
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPRecipe, thereby "executing" the VPlan.
|
||
|
virtual void execute(struct VPTransformState &State) = 0;
|
||
|
|
||
|
/// Each recipe prints itself.
|
||
|
virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
|
||
|
};
|
||
|
|
||
|
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
|
||
|
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
|
||
|
/// output IR instructions.
|
||
|
class VPBasicBlock : public VPBlockBase {
|
||
|
public:
|
||
|
typedef iplist<VPRecipeBase> RecipeListTy;
|
||
|
|
||
|
private:
|
||
|
/// The VPRecipes held in the order of output instructions to generate.
|
||
|
RecipeListTy Recipes;
|
||
|
|
||
|
public:
|
||
|
/// Instruction iterators...
|
||
|
typedef RecipeListTy::iterator iterator;
|
||
|
typedef RecipeListTy::const_iterator const_iterator;
|
||
|
typedef RecipeListTy::reverse_iterator reverse_iterator;
|
||
|
typedef RecipeListTy::const_reverse_iterator const_reverse_iterator;
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
/// Recipe iterator methods
|
||
|
///
|
||
|
inline iterator begin() { return Recipes.begin(); }
|
||
|
inline const_iterator begin() const { return Recipes.begin(); }
|
||
|
inline iterator end() { return Recipes.end(); }
|
||
|
inline const_iterator end() const { return Recipes.end(); }
|
||
|
|
||
|
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
|
||
|
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
|
||
|
inline reverse_iterator rend() { return Recipes.rend(); }
|
||
|
inline const_reverse_iterator rend() const { return Recipes.rend(); }
|
||
|
|
||
|
inline size_t size() const { return Recipes.size(); }
|
||
|
inline bool empty() const { return Recipes.empty(); }
|
||
|
inline const VPRecipeBase &front() const { return Recipes.front(); }
|
||
|
inline VPRecipeBase &front() { return Recipes.front(); }
|
||
|
inline const VPRecipeBase &back() const { return Recipes.back(); }
|
||
|
inline VPRecipeBase &back() { return Recipes.back(); }
|
||
|
|
||
|
/// \brief Returns a pointer to a member of the recipe list.
|
||
|
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
|
||
|
return &VPBasicBlock::Recipes;
|
||
|
}
|
||
|
|
||
|
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
|
||
|
: VPBlockBase(VPBasicBlockSC, Name.str()) {
|
||
|
if (Recipe)
|
||
|
appendRecipe(Recipe);
|
||
|
}
|
||
|
|
||
|
~VPBasicBlock() { Recipes.clear(); }
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPBlockBase *V) {
|
||
|
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
|
||
|
}
|
||
|
|
||
|
/// Augment the existing recipes of a VPBasicBlock with an additional
|
||
|
/// \p Recipe as the last recipe.
|
||
|
void appendRecipe(VPRecipeBase *Recipe) {
|
||
|
assert(Recipe && "No recipe to append.");
|
||
|
assert(!Recipe->Parent && "Recipe already in VPlan");
|
||
|
Recipe->Parent = this;
|
||
|
return Recipes.push_back(Recipe);
|
||
|
}
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPBasicBlock, thereby "executing" the VPlan.
|
||
|
void execute(struct VPTransformState *State) override;
|
||
|
|
||
|
private:
|
||
|
/// Create an IR BasicBlock to hold the output instructions generated by this
|
||
|
/// VPBasicBlock, and return it. Update the CFGState accordingly.
|
||
|
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
|
||
|
};
|
||
|
|
||
|
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
|
||
|
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
|
||
|
/// A VPRegionBlock may indicate that its contents are to be replicated several
|
||
|
/// times. This is designed to support predicated scalarization, in which a
|
||
|
/// scalar if-then code structure needs to be generated VF * UF times. Having
|
||
|
/// this replication indicator helps to keep a single model for multiple
|
||
|
/// candidate VF's. The actual replication takes place only once the desired VF
|
||
|
/// and UF have been determined.
|
||
|
class VPRegionBlock : public VPBlockBase {
|
||
|
private:
|
||
|
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
|
||
|
VPBlockBase *Entry;
|
||
|
|
||
|
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
|
||
|
VPBlockBase *Exit;
|
||
|
|
||
|
/// An indicator whether this region is to generate multiple replicated
|
||
|
/// instances of output IR corresponding to its VPBlockBases.
|
||
|
bool IsReplicator;
|
||
|
|
||
|
public:
|
||
|
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
|
||
|
const std::string &Name = "", bool IsReplicator = false)
|
||
|
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
|
||
|
IsReplicator(IsReplicator) {
|
||
|
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
|
||
|
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
|
||
|
Entry->setParent(this);
|
||
|
Exit->setParent(this);
|
||
|
}
|
||
|
|
||
|
~VPRegionBlock() {
|
||
|
if (Entry)
|
||
|
deleteCFG(Entry);
|
||
|
}
|
||
|
|
||
|
/// Method to support type inquiry through isa, cast, and dyn_cast.
|
||
|
static inline bool classof(const VPBlockBase *V) {
|
||
|
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
|
||
|
}
|
||
|
|
||
|
const VPBlockBase *getEntry() const { return Entry; }
|
||
|
VPBlockBase *getEntry() { return Entry; }
|
||
|
|
||
|
const VPBlockBase *getExit() const { return Exit; }
|
||
|
VPBlockBase *getExit() { return Exit; }
|
||
|
|
||
|
/// An indicator whether this region is to generate multiple replicated
|
||
|
/// instances of output IR corresponding to its VPBlockBases.
|
||
|
bool isReplicator() const { return IsReplicator; }
|
||
|
|
||
|
/// The method which generates the output IR instructions that correspond to
|
||
|
/// this VPRegionBlock, thereby "executing" the VPlan.
|
||
|
void execute(struct VPTransformState *State) override;
|
||
|
};
|
||
|
|
||
|
/// VPlan models a candidate for vectorization, encoding various decisions take
|
||
|
/// to produce efficient output IR, including which branches, basic-blocks and
|
||
|
/// output IR instructions to generate, and their cost. VPlan holds a
|
||
|
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
|
||
|
/// VPBlock.
|
||
|
class VPlan {
|
||
|
private:
|
||
|
/// Hold the single entry to the Hierarchical CFG of the VPlan.
|
||
|
VPBlockBase *Entry;
|
||
|
|
||
|
/// Holds the VFs applicable to this VPlan.
|
||
|
SmallSet<unsigned, 2> VFs;
|
||
|
|
||
|
/// Holds the name of the VPlan, for printing.
|
||
|
std::string Name;
|
||
|
|
||
|
public:
|
||
|
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
|
||
|
|
||
|
~VPlan() {
|
||
|
if (Entry)
|
||
|
VPBlockBase::deleteCFG(Entry);
|
||
|
}
|
||
|
|
||
|
/// Generate the IR code for this VPlan.
|
||
|
void execute(struct VPTransformState *State);
|
||
|
|
||
|
VPBlockBase *getEntry() { return Entry; }
|
||
|
const VPBlockBase *getEntry() const { return Entry; }
|
||
|
|
||
|
VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
|
||
|
|
||
|
void addVF(unsigned VF) { VFs.insert(VF); }
|
||
|
|
||
|
bool hasVF(unsigned VF) { return VFs.count(VF); }
|
||
|
|
||
|
const std::string &getName() const { return Name; }
|
||
|
|
||
|
void setName(const Twine &newName) { Name = newName.str(); }
|
||
|
|
||
|
private:
|
||
|
/// Add to the given dominator tree the header block and every new basic block
|
||
|
/// that was created between it and the latch block, inclusive.
|
||
|
static void updateDominatorTree(class DominatorTree *DT,
|
||
|
BasicBlock *LoopPreHeaderBB,
|
||
|
BasicBlock *LoopLatchBB);
|
||
|
};
|
||
|
|
||
|
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
|
||
|
/// indented and follows the dot format.
|
||
|
class VPlanPrinter {
|
||
|
friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
|
||
|
friend inline raw_ostream &operator<<(raw_ostream &OS,
|
||
|
const struct VPlanIngredient &I);
|
||
|
|
||
|
private:
|
||
|
raw_ostream &OS;
|
||
|
VPlan &Plan;
|
||
|
unsigned Depth;
|
||
|
unsigned TabWidth = 2;
|
||
|
std::string Indent;
|
||
|
|
||
|
unsigned BID = 0;
|
||
|
|
||
|
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
|
||
|
|
||
|
/// Handle indentation.
|
||
|
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
|
||
|
|
||
|
/// Print a given \p Block of the Plan.
|
||
|
void dumpBlock(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print the information related to the CFG edges going out of a given
|
||
|
/// \p Block, followed by printing the successor blocks themselves.
|
||
|
void dumpEdges(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
|
||
|
/// its successor blocks.
|
||
|
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
|
||
|
|
||
|
/// Print a given \p Region of the Plan.
|
||
|
void dumpRegion(const VPRegionBlock *Region);
|
||
|
|
||
|
unsigned getOrCreateBID(const VPBlockBase *Block) {
|
||
|
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
|
||
|
}
|
||
|
|
||
|
const Twine getOrCreateName(const VPBlockBase *Block);
|
||
|
|
||
|
const Twine getUID(const VPBlockBase *Block);
|
||
|
|
||
|
/// Print the information related to a CFG edge between two VPBlockBases.
|
||
|
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
|
||
|
const Twine &Label);
|
||
|
|
||
|
VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
|
||
|
|
||
|
void dump();
|
||
|
|
||
|
static void printAsIngredient(raw_ostream &O, Value *V);
|
||
|
};
|
||
|
|
||
|
struct VPlanIngredient {
|
||
|
Value *V;
|
||
|
VPlanIngredient(Value *V) : V(V) {}
|
||
|
};
|
||
|
|
||
|
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
|
||
|
VPlanPrinter::printAsIngredient(OS, I.V);
|
||
|
return OS;
|
||
|
}
|
||
|
|
||
|
inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
|
||
|
VPlanPrinter Printer(OS, Plan);
|
||
|
Printer.dump();
|
||
|
return OS;
|
||
|
}
|
||
|
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
// GraphTraits specializations for VPlan/VPRegionBlock Control-Flow Graphs //
|
||
|
//===--------------------------------------------------------------------===//
|
||
|
|
||
|
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
|
||
|
// graph of VPBlockBase nodes...
|
||
|
|
||
|
template <> struct GraphTraits<VPBlockBase *> {
|
||
|
typedef VPBlockBase *NodeRef;
|
||
|
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
|
||
|
|
||
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
||
|
|
||
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
||
|
return N->getSuccessors().begin();
|
||
|
}
|
||
|
|
||
|
static inline ChildIteratorType child_end(NodeRef N) {
|
||
|
return N->getSuccessors().end();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <> struct GraphTraits<const VPBlockBase *> {
|
||
|
typedef const VPBlockBase *NodeRef;
|
||
|
typedef SmallVectorImpl<VPBlockBase *>::const_iterator ChildIteratorType;
|
||
|
|
||
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
||
|
|
||
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
||
|
return N->getSuccessors().begin();
|
||
|
}
|
||
|
|
||
|
static inline ChildIteratorType child_end(NodeRef N) {
|
||
|
return N->getSuccessors().end();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Provide specializations of GraphTraits to be able to treat a VPBlockBase as a
|
||
|
// graph of VPBlockBase nodes... and to walk it in inverse order. Inverse order
|
||
|
// for a VPBlockBase is considered to be when traversing the predecessors of a
|
||
|
// VPBlockBase instead of its successors.
|
||
|
//
|
||
|
|
||
|
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
|
||
|
typedef VPBlockBase *NodeRef;
|
||
|
typedef SmallVectorImpl<VPBlockBase *>::iterator ChildIteratorType;
|
||
|
|
||
|
static Inverse<VPBlockBase *> getEntryNode(Inverse<VPBlockBase *> B) {
|
||
|
return B;
|
||
|
}
|
||
|
|
||
|
static inline ChildIteratorType child_begin(NodeRef N) {
|
||
|
return N->getPredecessors().begin();
|
||
|
}
|
||
|
|
||
|
static inline ChildIteratorType child_end(NodeRef N) {
|
||
|
return N->getPredecessors().end();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace llvm
|
||
|
|
||
|
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
|