1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 11:42:57 +01:00
llvm-mirror/tools/dsymutil/DwarfLinker.cpp

668 lines
25 KiB
C++
Raw Normal View History

//===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "DebugMap.h"
#include "BinaryHolder.h"
#include "DebugMap.h"
#include "dsymutil.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/Object/MachO.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/LEB128.h"
#include <string>
namespace llvm {
namespace dsymutil {
namespace {
/// \brief Stores all information relating to a compile unit, be it in
/// its original instance in the object file to its brand new cloned
/// and linked DIE tree.
class CompileUnit {
public:
/// \brief Information gathered about a DIE in the object file.
struct DIEInfo {
uint64_t Address; ///< Linked address of the described entity.
uint32_t ParentIdx; ///< The index of this DIE's parent.
bool Keep; ///< Is the DIE part of the linked output?
bool InDebugMap; ///< Was this DIE's entity found in the map?
};
CompileUnit(DWARFUnit &OrigUnit) : OrigUnit(OrigUnit) {
Info.resize(OrigUnit.getNumDIEs());
}
DWARFUnit &getOrigUnit() const { return OrigUnit; }
DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
private:
DWARFUnit &OrigUnit;
std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
};
/// \brief The core of the Dwarf linking logic.
///
/// The link of the dwarf information from the object files will be
/// driven by the selection of 'root DIEs', which are DIEs that
/// describe variables or functions that are present in the linked
/// binary (and thus have entries in the debug map). All the debug
/// information that will be linked (the DIEs, but also the line
/// tables, ranges, ...) is derived from that set of root DIEs.
///
/// The root DIEs are identified because they contain relocations that
/// correspond to a debug map entry at specific places (the low_pc for
/// a function, the location for a variable). These relocations are
/// called ValidRelocs in the DwarfLinker and are gathered as a very
/// first step when we start processing a DebugMapObject.
class DwarfLinker {
public:
DwarfLinker(StringRef OutputFilename, bool Verbose)
: OutputFilename(OutputFilename), Verbose(Verbose), BinHolder(Verbose) {}
/// \brief Link the contents of the DebugMap.
bool link(const DebugMap &);
private:
/// \brief Called at the start of a debug object link.
void startDebugObject(DWARFContext &);
/// \brief Called at the end of a debug object link.
void endDebugObject();
/// \defgroup FindValidRelocations Translate debug map into a list
/// of relevant relocations
///
/// @{
struct ValidReloc {
uint32_t Offset;
uint32_t Size;
uint64_t Addend;
const DebugMapObject::DebugMapEntry *Mapping;
ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
const DebugMapObject::DebugMapEntry *Mapping)
: Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
bool operator<(const ValidReloc &RHS) const { return Offset < RHS.Offset; }
};
/// \brief The valid relocations for the current DebugMapObject.
/// This vector is sorted by relocation offset.
std::vector<ValidReloc> ValidRelocs;
/// \brief Index into ValidRelocs of the next relocation to
/// consider. As we walk the DIEs in acsending file offset and as
/// ValidRelocs is sorted by file offset, keeping this index
/// uptodate is all we have to do to have a cheap lookup during the
/// root DIE selection.
unsigned NextValidReloc;
bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO);
bool findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO);
void findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO);
/// @}
/// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
///
/// @{
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
void lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
/// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
enum TravesalFlags {
TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept.
TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE.
TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE.
};
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
void keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags);
unsigned shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
unsigned shouldKeepVariableDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags);
unsigned shouldKeepSubprogramDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags);
bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info);
/// @}
/// \defgroup Helpers Various helper methods.
///
/// @{
const DWARFDebugInfoEntryMinimal *
resolveDIEReference(DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit *&ReferencedCU);
CompileUnit *getUnitForOffset(unsigned Offset);
void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
const DWARFDebugInfoEntryMinimal *DIE = nullptr);
/// @}
private:
std::string OutputFilename;
bool Verbose;
BinaryHolder BinHolder;
/// The units of the current debug map object.
std::vector<CompileUnit> Units;
/// The debug map object curently under consideration.
DebugMapObject *CurrentDebugObject;
};
/// \brief Similar to DWARFUnitSection::getUnitForOffset(), but
/// returning our CompileUnit object instead.
CompileUnit *DwarfLinker::getUnitForOffset(unsigned Offset) {
auto CU =
std::upper_bound(Units.begin(), Units.end(), Offset,
[](uint32_t LHS, const CompileUnit &RHS) {
return LHS < RHS.getOrigUnit().getNextUnitOffset();
});
return CU != Units.end() ? &*CU : nullptr;
}
/// \brief Resolve the DIE attribute reference that has been
/// extracted in \p RefValue. The resulting DIE migh be in another
/// CompileUnit which is stored into \p ReferencedCU.
/// \returns null if resolving fails for any reason.
const DWARFDebugInfoEntryMinimal *DwarfLinker::resolveDIEReference(
DWARFFormValue &RefValue, const DWARFUnit &Unit,
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
uint64_t RefOffset = *RefValue.getAsReference(&Unit);
if ((RefCU = getUnitForOffset(RefOffset)))
if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
return RefDie;
reportWarning("could not find referenced DIE", &Unit, &DIE);
return nullptr;
}
/// \brief Report a warning to the user, optionaly including
/// information about a specific \p DIE related to the warning.
void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
const DWARFDebugInfoEntryMinimal *DIE) {
if (CurrentDebugObject)
errs() << Twine("while processing ") +
CurrentDebugObject->getObjectFilename() + ":\n";
errs() << Twine("warning: ") + Warning + "\n";
if (!Verbose || !DIE)
return;
errs() << " in DIE:\n";
DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
6 /* Indent */);
}
/// \brief Recursive helper to gather the child->parent relationships in the
/// original compile unit.
static void gatherDIEParents(const DWARFDebugInfoEntryMinimal *DIE,
unsigned ParentIdx, CompileUnit &CU) {
unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
CU.getInfo(MyIdx).ParentIdx = ParentIdx;
if (DIE->hasChildren())
for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
gatherDIEParents(Child, MyIdx, CU);
}
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
switch (Tag) {
default:
return false;
case dwarf::DW_TAG_subprogram:
case dwarf::DW_TAG_lexical_block:
case dwarf::DW_TAG_subroutine_type:
case dwarf::DW_TAG_structure_type:
case dwarf::DW_TAG_class_type:
case dwarf::DW_TAG_union_type:
return true;
}
llvm_unreachable("Invalid Tag");
}
void DwarfLinker::startDebugObject(DWARFContext &Dwarf) {
Units.reserve(Dwarf.getNumCompileUnits());
NextValidReloc = 0;
}
void DwarfLinker::endDebugObject() {
Units.clear();
ValidRelocs.clear();
}
/// \brief Iterate over the relocations of the given \p Section and
/// store the ones that correspond to debug map entries into the
/// ValidRelocs array.
void DwarfLinker::findValidRelocsMachO(const object::SectionRef &Section,
const object::MachOObjectFile &Obj,
const DebugMapObject &DMO) {
StringRef Contents;
Section.getContents(Contents);
DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
for (const object::RelocationRef &Reloc : Section.relocations()) {
object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
uint64_t Offset64;
if ((RelocSize != 4 && RelocSize != 8) || Reloc.getOffset(Offset64)) {
reportWarning(" unsupported relocation in debug_info section.");
continue;
}
uint32_t Offset = Offset64;
// Mach-o uses REL relocations, the addend is at the relocation offset.
uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
auto Sym = Reloc.getSymbol();
if (Sym != Obj.symbol_end()) {
StringRef SymbolName;
if (Sym->getName(SymbolName)) {
reportWarning("error getting relocation symbol name.");
continue;
}
if (const auto *Mapping = DMO.lookupSymbol(SymbolName))
ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
} else if (const auto *Mapping = DMO.lookupObjectAddress(Addend)) {
// Do not store the addend. The addend was the address of the
// symbol in the object file, the address in the binary that is
// stored in the debug map doesn't need to be offseted.
ValidRelocs.emplace_back(Offset64, RelocSize, 0, Mapping);
}
}
}
/// \brief Dispatch the valid relocation finding logic to the
/// appropriate handler depending on the object file format.
bool DwarfLinker::findValidRelocs(const object::SectionRef &Section,
const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Dispatch to the right handler depending on the file type.
if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
findValidRelocsMachO(Section, *MachOObj, DMO);
else
reportWarning(Twine("unsupported object file type: ") + Obj.getFileName());
if (ValidRelocs.empty())
return false;
// Sort the relocations by offset. We will walk the DIEs linearly in
// the file, this allows us to just keep an index in the relocation
// array that we advance during our walk, rather than resorting to
// some associative container. See DwarfLinker::NextValidReloc.
std::sort(ValidRelocs.begin(), ValidRelocs.end());
return true;
}
/// \brief Look for relocations in the debug_info section that match
/// entries in the debug map. These relocations will drive the Dwarf
/// link by indicating which DIEs refer to symbols present in the
/// linked binary.
/// \returns wether there are any valid relocations in the debug info.
bool DwarfLinker::findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
const DebugMapObject &DMO) {
// Find the debug_info section.
for (const object::SectionRef &Section : Obj.sections()) {
StringRef SectionName;
Section.getName(SectionName);
SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
if (SectionName != "debug_info")
continue;
return findValidRelocs(Section, Obj, DMO);
}
return false;
}
/// \brief Checks that there is a relocation against an actual debug
/// map entry between \p StartOffset and \p NextOffset.
///
/// This function must be called with offsets in strictly ascending
/// order because it never looks back at relocations it already 'went past'.
/// \returns true and sets Info.InDebugMap if it is the case.
bool DwarfLinker::hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
CompileUnit::DIEInfo &Info) {
assert(NextValidReloc == 0 ||
StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
if (NextValidReloc >= ValidRelocs.size())
return false;
uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
// We might need to skip some relocs that we didn't consider. For
// example the high_pc of a discarded DIE might contain a reloc that
// is in the list because it actually corresponds to the start of a
// function that is in the debug map.
while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
RelocOffset = ValidRelocs[++NextValidReloc].Offset;
if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
return false;
const auto &ValidReloc = ValidRelocs[NextValidReloc++];
if (Verbose)
outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
<< " " << format("\t%016" PRIx64 " => %016" PRIx64,
ValidReloc.Mapping->getValue().ObjectAddress,
ValidReloc.Mapping->getValue().BinaryAddress);
Info.Address =
ValidReloc.Mapping->getValue().BinaryAddress + ValidReloc.Addend;
Info.InDebugMap = true;
return true;
}
/// \brief Get the starting and ending (exclusive) offset for the
/// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
/// supposed to point to the position of the first attribute described
/// by \p Abbrev.
/// \return [StartOffset, EndOffset) as a pair.
static std::pair<uint32_t, uint32_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
unsigned Offset, const DWARFUnit &Unit) {
DataExtractor Data = Unit.getDebugInfoExtractor();
for (unsigned i = 0; i < Idx; ++i)
DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
uint32_t End = Offset;
DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
return std::make_pair(Offset, End);
}
/// \brief Check if a variable describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepVariableDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
// Global variables with constant value can always be kept.
if (!(Flags & TF_InFunctionScope) &&
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
MyInfo.InDebugMap = true;
return Flags | TF_Keep;
}
uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
if (LocationIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LocationOffset, LocationEndOffset;
std::tie(LocationOffset, LocationEndOffset) =
getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
// See if there is a relocation to a valid debug map entry inside
// this variable's location. The order is important here. We want to
// always check in the variable has a valid relocation, so that the
// DIEInfo is filled. However, we don't want a static variable in a
// function to force us to keep the enclosing function.
if (!hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
(Flags & TF_InFunctionScope))
return Flags;
if (Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
return Flags | TF_Keep;
}
/// \brief Check if a function describing DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepSubprogramDIE(
const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
Flags |= TF_InFunctionScope;
uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
if (LowPcIdx == -1U)
return Flags;
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
const DWARFUnit &OrigUnit = Unit.getOrigUnit();
uint32_t LowPcOffset, LowPcEndOffset;
std::tie(LowPcOffset, LowPcEndOffset) =
getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
uint64_t LowPc =
DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
assert(LowPc != -1ULL && "low_pc attribute is not an address.");
if (LowPc == -1ULL ||
!hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
return Flags;
if (Verbose)
DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
return Flags | TF_Keep;
}
/// \brief Check if a DIE should be kept.
/// \returns updated TraversalFlags.
unsigned DwarfLinker::shouldKeepDIE(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit &Unit,
CompileUnit::DIEInfo &MyInfo,
unsigned Flags) {
switch (DIE.getTag()) {
case dwarf::DW_TAG_constant:
case dwarf::DW_TAG_variable:
return shouldKeepVariableDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_subprogram:
return shouldKeepSubprogramDIE(DIE, Unit, MyInfo, Flags);
case dwarf::DW_TAG_module:
case dwarf::DW_TAG_imported_module:
case dwarf::DW_TAG_imported_declaration:
case dwarf::DW_TAG_imported_unit:
// We always want to keep these.
return Flags | TF_Keep;
}
return Flags;
}
/// \brief Mark the passed DIE as well as all the ones it depends on
/// as kept.
///
/// This function is called by lookForDIEsToKeep on DIEs that are
/// newly discovered to be needed in the link. It recursively calls
/// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
/// TraversalFlags to inform it that it's not doing the primary DIE
/// tree walk.
void DwarfLinker::keepDIEAndDenpendencies(const DWARFDebugInfoEntryMinimal &DIE,
CompileUnit::DIEInfo &MyInfo,
const DebugMapObject &DMO,
CompileUnit &CU, unsigned Flags) {
const DWARFUnit &Unit = CU.getOrigUnit();
MyInfo.Keep = true;
// First mark all the parent chain as kept.
unsigned AncestorIdx = MyInfo.ParentIdx;
while (!CU.getInfo(AncestorIdx).Keep) {
lookForDIEsToKeep(*Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
TF_ParentWalk | TF_Keep | TF_DependencyWalk);
AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
}
// Then we need to mark all the DIEs referenced by this DIE's
// attributes as kept.
DataExtractor Data = Unit.getDebugInfoExtractor();
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
// Mark all DIEs referenced through atttributes as kept.
for (const auto &AttrSpec : Abbrev->attributes()) {
DWARFFormValue Val(AttrSpec.Form);
if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
continue;
}
Val.extractValue(Data, &Offset, &Unit);
CompileUnit *ReferencedCU;
if (const auto *RefDIE = resolveDIEReference(Val, Unit, DIE, ReferencedCU))
lookForDIEsToKeep(*RefDIE, DMO, *ReferencedCU,
TF_Keep | TF_DependencyWalk);
}
}
/// \brief Recursively walk the \p DIE tree and look for DIEs to
/// keep. Store that information in \p CU's DIEInfo.
///
/// This function is the entry point of the DIE selection
/// algorithm. It is expected to walk the DIE tree in file order and
/// (though the mediation of its helper) call hasValidRelocation() on
/// each DIE that might be a 'root DIE' (See DwarfLinker class
/// comment).
/// While walking the dependencies of root DIEs, this function is
/// also called, but during these dependency walks the file order is
/// not respected. The TF_DependencyWalk flag tells us which kind of
/// traversal we are currently doing.
void DwarfLinker::lookForDIEsToKeep(const DWARFDebugInfoEntryMinimal &DIE,
const DebugMapObject &DMO, CompileUnit &CU,
unsigned Flags) {
unsigned Idx = CU.getOrigUnit().getDIEIndex(&DIE);
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
bool AlreadyKept = MyInfo.Keep;
// If the Keep flag is set, we are marking a required DIE's
// dependencies. If our target is already marked as kept, we're all
// set.
if ((Flags & TF_DependencyWalk) && AlreadyKept)
return;
// We must not call shouldKeepDIE while called from keepDIEAndDenpendencies,
// because it would screw up the relocation finding logic.
if (!(Flags & TF_DependencyWalk))
Flags = shouldKeepDIE(DIE, CU, MyInfo, Flags);
// If it is a newly kept DIE mark it as well as all its dependencies as kept.
if (!AlreadyKept && (Flags & TF_Keep))
keepDIEAndDenpendencies(DIE, MyInfo, DMO, CU, Flags);
// The TF_ParentWalk flag tells us that we are currently walking up
// the parent chain of a required DIE, and we don't want to mark all
// the children of the parents as kept (consider for example a
// DW_TAG_namespace node in the parent chain). There are however a
// set of DIE types for which we want to ignore that directive and still
// walk their children.
if (dieNeedsChildrenToBeMeaningful(DIE.getTag()))
Flags &= ~TF_ParentWalk;
if (!DIE.hasChildren() || (Flags & TF_ParentWalk))
return;
for (auto *Child = DIE.getFirstChild(); Child && !Child->isNULL();
Child = Child->getSibling())
lookForDIEsToKeep(*Child, DMO, CU, Flags);
}
bool DwarfLinker::link(const DebugMap &Map) {
if (Map.begin() == Map.end()) {
errs() << "Empty debug map.\n";
return false;
}
for (const auto &Obj : Map.objects()) {
CurrentDebugObject = Obj.get();
if (Verbose)
outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
auto ErrOrObj = BinHolder.GetObjectFile(Obj->getObjectFilename());
if (std::error_code EC = ErrOrObj.getError()) {
reportWarning(Twine(Obj->getObjectFilename()) + ": " + EC.message());
continue;
}
// Look for relocations that correspond to debug map entries.
if (!findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
if (Verbose)
outs() << "No valid relocations found. Skipping.\n";
continue;
}
// Setup access to the debug info.
DWARFContextInMemory DwarfContext(*ErrOrObj);
startDebugObject(DwarfContext);
// In a first phase, just read in the debug info and store the DIE
// parent links that we will use during the next phase.
for (const auto &CU : DwarfContext.compile_units()) {
auto *CUDie = CU->getCompileUnitDIE(false);
if (Verbose) {
outs() << "Input compilation unit:";
CUDie->dump(outs(), CU.get(), 0);
}
Units.emplace_back(*CU);
gatherDIEParents(CUDie, 0, Units.back());
}
// Then mark all the DIEs that need to be present in the linked
// output and collect some information about them. Note that this
// loop can not be merged with the previous one becaue cross-cu
// references require the ParentIdx to be setup for every CU in
// the object file before calling this.
for (auto &CurrentUnit : Units)
lookForDIEsToKeep(*CurrentUnit.getOrigUnit().getCompileUnitDIE(), *Obj,
CurrentUnit, 0);
// Clean-up before starting working on the next object.
endDebugObject();
}
return true;
}
}
bool linkDwarf(StringRef OutputFilename, const DebugMap &DM, bool Verbose) {
DwarfLinker Linker(OutputFilename, Verbose);
return Linker.link(DM);
}
}
}