1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/Passes/PassBuilder.cpp

760 lines
31 KiB
C++
Raw Normal View History

[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
//===- Parsing, selection, and construction of pass pipelines -------------===//
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
/// This file provides the implementation of the PassBuilder based on our
/// static pass registry as well as related functionality. It also provides
/// helpers to aid in analyzing, debugging, and testing passes and pass
/// pipelines.
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
///
//===----------------------------------------------------------------------===//
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
#include "llvm/Passes/PassBuilder.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasAnalysisEvaluator.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/DominanceFrontier.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/IVUsers.h"
[PM] Add a new "lazy" call graph analysis pass for the new pass manager. The primary motivation for this pass is to separate the call graph analysis used by the new pass manager's CGSCC pass management from the existing call graph analysis pass. That analysis pass is (somewhat unfortunately) over-constrained by the existing CallGraphSCCPassManager requirements. Those requirements make it *really* hard to cleanly layer the needed functionality for the new pass manager on top of the existing analysis. However, there are also a bunch of things that the pass manager would specifically benefit from doing differently from the existing call graph analysis, and this new implementation tries to address several of them: - Be lazy about scanning function definitions. The existing pass eagerly scans the entire module to build the initial graph. This new pass is significantly more lazy, and I plan to push this even further to maximize locality during CGSCC walks. - Don't use a single synthetic node to partition functions with an indirect call from functions whose address is taken. This node creates a huge choke-point which would preclude good parallelization across the fanout of the SCC graph when we got to the point of looking at such changes to LLVM. - Use a memory dense and lightweight representation of the call graph rather than value handles and tracking call instructions. This will require explicit update calls instead of some updates working transparently, but should end up being significantly more efficient. The explicit update calls ended up being needed in many cases for the existing call graph so we don't really lose anything. - Doesn't explicitly model SCCs and thus doesn't provide an "identity" for an SCC which is stable across updates. This is essential for the new pass manager to work correctly. - Only form the graph necessary for traversing all of the functions in an SCC friendly order. This is a much simpler graph structure and should be more memory dense. It does limit the ways in which it is appropriate to use this analysis. I wish I had a better name than "call graph". I've commented extensively this aspect. This is still very much a WIP, in fact it is really just the initial bits. But it is about the fourth version of the initial bits that I've implemented with each of the others running into really frustrating problms. This looks like it will actually work and I'd like to split the actual complexity across commits for the sake of my reviewers. =] The rest of the implementation along with lots of wiring will follow somewhat more rapidly now that there is a good path forward. Naturally, this doesn't impact any of the existing optimizer. This code is specific to the new pass manager. A bunch of thanks are deserved for the various folks that have helped with the design of this, especially Nick Lewycky who actually sat with me to go through the fundamentals of the final version here. llvm-svn: 200903
2014-02-06 05:37:03 +01:00
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Analysis/OptimizationDiagnosticInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/RegionInfo.h"
[PM] Port ScalarEvolution to the new pass manager. This change makes ScalarEvolution a stand-alone object and just produces one from a pass as needed. Making this work well requires making the object movable, using references instead of overwritten pointers in a number of places, and other refactorings. I've also wired it up to the new pass manager and added a RUN line to a test to exercise it under the new pass manager. This includes basic printing support much like with other analyses. But there is a big and somewhat scary change here. Prior to this patch ScalarEvolution was never *actually* invalidated!!! Re-running the pass just re-wired up the various other analyses and didn't remove any of the existing entries in the SCEV caches or clear out anything at all. This might seem OK as everything in SCEV that can uses ValueHandles to track updates to the values that serve as SCEV keys. However, this still means that as we ran SCEV over each function in the module, we kept accumulating more and more SCEVs into the cache. At the end, we would have a SCEV cache with every value that we ever needed a SCEV for in the entire module!!! Yowzers. The releaseMemory routine would dump all of this, but that isn't realy called during normal runs of the pipeline as far as I can see. To make matters worse, there *is* actually a key that we don't update with value handles -- there is a map keyed off of Loop*s. Because LoopInfo *does* release its memory from run to run, it is entirely possible to run SCEV over one function, then over another function, and then lookup a Loop* from the second function but find an entry inserted for the first function! Ouch. To make matters still worse, there are plenty of updates that *don't* trip a value handle. It seems incredibly unlikely that today GVN or another pass that invalidates SCEV can update values in *just* such a way that a subsequent run of SCEV will incorrectly find lookups in a cache, but it is theoretically possible and would be a nightmare to debug. With this refactoring, I've fixed all this by actually destroying and recreating the ScalarEvolution object from run to run. Technically, this could increase the amount of malloc traffic we see, but then again it is also technically correct. ;] I don't actually think we're suffering from tons of malloc traffic from SCEV because if we were, the fact that we never clear the memory would seem more likely to have come up as an actual problem before now. So, I've made the simple fix here. If in fact there are serious issues with too much allocation and deallocation, I can work on a clever fix that preserves the allocations (while clearing the data) between each run, but I'd prefer to do that kind of optimization with a test case / benchmark that shows why we need such cleverness (and that can test that we actually make it faster). It's possible that this will make some things faster by making the SCEV caches have higher locality (due to being significantly smaller) so until there is a clear benchmark, I think the simple change is best. Differential Revision: http://reviews.llvm.org/D12063 llvm-svn: 245193
2015-08-17 04:08:17 +02:00
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
#include "llvm/CodeGen/UnreachableBlockElim.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRPrintingPasses.h"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Regex.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/GCOVProfiler.h"
#include "llvm/Transforms/IPO/ConstantMerge.h"
#include "llvm/Transforms/IPO/CrossDSOCFI.h"
#include "llvm/Transforms/IPO/DeadArgumentElimination.h"
#include "llvm/Transforms/IPO/ElimAvailExtern.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/Transforms/IPO/GlobalOpt.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/PartialInlining.h"
#include "llvm/Transforms/IPO/SCCP.h"
#include "llvm/Transforms/IPO/StripDeadPrototypes.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstrProfiling.h"
#include "llvm/Transforms/PGOInstrumentation.h"
#include "llvm/Transforms/SampleProfile.h"
#include "llvm/Transforms/Scalar/ADCE.h"
#include "llvm/Transforms/Scalar/AlignmentFromAssumptions.h"
#include "llvm/Transforms/Scalar/BDCE.h"
2016-07-18 18:29:17 +02:00
#include "llvm/Transforms/Scalar/ConstantHoisting.h"
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/Transforms/Scalar/DCE.h"
#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/Float2Int.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/GuardWidening.h"
#include "llvm/Transforms/Scalar/IndVarSimplify.h"
#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopDeletion.h"
#include "llvm/Transforms/Scalar/LoopDistribute.h"
#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/Transforms/Scalar/LoopInstSimplify.h"
#include "llvm/Transforms/Scalar/LoopRotation.h"
#include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/LowerAtomic.h"
#include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h"
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
#include "llvm/Transforms/Scalar/MergedLoadStoreMotion.h"
#include "llvm/Transforms/Scalar/NaryReassociate.h"
#include "llvm/Transforms/Scalar/PartiallyInlineLibCalls.h"
#include "llvm/Transforms/Scalar/Reassociate.h"
#include "llvm/Transforms/Scalar/SCCP.h"
[PM] Port SROA to the new pass manager. In some ways this is a very boring port to the new pass manager as there are no interesting analyses or dependencies or other oddities. However, this does introduce the first good example of a transformation pass with non-trivial state porting to the new pass manager. I've tried to carve out patterns here to replicate elsewhere, and would appreciate comments on whether folks like these patterns: - A common need in the new pass manager is to effectively lift the pass class and some of its state into a public header file. Prior to this, LLVM used anonymous namespaces to provide "module private" types and utilities, but that doesn't scale to cases where a public header file is needed and the new pass manager will exacerbate that. The pattern I've adopted here is to use the namespace-cased-name of the core pass (what would be a module if we had them) as a module-private namespace. Then utility and other code can be declared and defined in this namespace. At some point in the future, we could even have (conditionally compiled) code that used modules features when available to do the same basic thing. - I've split the actual pass run method in two in order to expose a private method usable by the old pass manager to wrap the new class with a minimum of duplicated code. I actually looked at a bunch of ways to automate or generate these, but they are all quite terrible IMO. The fundamental need is to extract the set of analyses which need to cross this interface boundary, and that will end up being too unpredictable to effectively encapsulate IMO. This is also a relatively small amount of boiler plate that will live a relatively short time, so I'm not too worried about the fact that it is boiler plate. The rest of the patch is totally boring but results in a massive diff (sorry). It just moves code around and removes or adds qualifiers to reflect the new name and nesting structure. Differential Revision: http://reviews.llvm.org/D12773 llvm-svn: 247501
2015-09-12 11:09:14 +02:00
#include "llvm/Transforms/Scalar/SROA.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "llvm/Transforms/Scalar/Sink.h"
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
#include "llvm/Transforms/Utils/AddDiscriminators.h"
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
#include "llvm/Transforms/Utils/LCSSA.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/Mem2Reg.h"
#include "llvm/Transforms/Utils/MemorySSA.h"
#include "llvm/Transforms/Utils/SimplifyInstructions.h"
#include "llvm/Transforms/Utils/SymbolRewriter.h"
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
#include <type_traits>
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
using namespace llvm;
static Regex DefaultAliasRegex("^(default|lto-pre-link|lto)<(O[0123sz])>$");
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
namespace {
/// \brief No-op module pass which does nothing.
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
struct NoOpModulePass {
PreservedAnalyses run(Module &M, AnalysisManager<Module> &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpModulePass"; }
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
};
/// \brief No-op module analysis.
class NoOpModuleAnalysis : public AnalysisInfoMixin<NoOpModuleAnalysis> {
friend AnalysisInfoMixin<NoOpModuleAnalysis>;
static char PassID;
public:
struct Result {};
Result run(Module &, AnalysisManager<Module> &) { return Result(); }
static StringRef name() { return "NoOpModuleAnalysis"; }
};
/// \brief No-op CGSCC pass which does nothing.
struct NoOpCGSCCPass {
PreservedAnalyses run(LazyCallGraph::SCC &C,
AnalysisManager<LazyCallGraph::SCC> &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpCGSCCPass"; }
};
/// \brief No-op CGSCC analysis.
class NoOpCGSCCAnalysis : public AnalysisInfoMixin<NoOpCGSCCAnalysis> {
friend AnalysisInfoMixin<NoOpCGSCCAnalysis>;
static char PassID;
public:
struct Result {};
Result run(LazyCallGraph::SCC &, AnalysisManager<LazyCallGraph::SCC> &) {
return Result();
}
static StringRef name() { return "NoOpCGSCCAnalysis"; }
};
/// \brief No-op function pass which does nothing.
struct NoOpFunctionPass {
PreservedAnalyses run(Function &F, AnalysisManager<Function> &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpFunctionPass"; }
};
/// \brief No-op function analysis.
class NoOpFunctionAnalysis : public AnalysisInfoMixin<NoOpFunctionAnalysis> {
friend AnalysisInfoMixin<NoOpFunctionAnalysis>;
static char PassID;
public:
struct Result {};
Result run(Function &, AnalysisManager<Function> &) { return Result(); }
static StringRef name() { return "NoOpFunctionAnalysis"; }
};
/// \brief No-op loop pass which does nothing.
struct NoOpLoopPass {
PreservedAnalyses run(Loop &L, AnalysisManager<Loop> &) {
return PreservedAnalyses::all();
}
static StringRef name() { return "NoOpLoopPass"; }
};
/// \brief No-op loop analysis.
class NoOpLoopAnalysis : public AnalysisInfoMixin<NoOpLoopAnalysis> {
friend AnalysisInfoMixin<NoOpLoopAnalysis>;
static char PassID;
public:
struct Result {};
Result run(Loop &, AnalysisManager<Loop> &) { return Result(); }
static StringRef name() { return "NoOpLoopAnalysis"; }
};
char NoOpModuleAnalysis::PassID;
char NoOpCGSCCAnalysis::PassID;
char NoOpFunctionAnalysis::PassID;
char NoOpLoopAnalysis::PassID;
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
} // End anonymous namespace.
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
void PassBuilder::registerModuleAnalyses(ModuleAnalysisManager &MAM) {
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
MAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
void PassBuilder::registerCGSCCAnalyses(CGSCCAnalysisManager &CGAM) {
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
CGAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
void PassBuilder::registerFunctionAnalyses(FunctionAnalysisManager &FAM) {
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
FAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
void PassBuilder::registerLoopAnalyses(LoopAnalysisManager &LAM) {
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
LAM.registerPass([&] { return CREATE_PASS; });
#include "PassRegistry.def"
}
void PassBuilder::addPerModuleDefaultPipeline(ModulePassManager &MPM,
OptimizationLevel Level,
bool DebugLogging) {
// FIXME: Finish fleshing this out to match the legacy pipelines.
FunctionPassManager EarlyFPM(DebugLogging);
EarlyFPM.addPass(SimplifyCFGPass());
EarlyFPM.addPass(SROA());
EarlyFPM.addPass(EarlyCSEPass());
EarlyFPM.addPass(LowerExpectIntrinsicPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(EarlyFPM)));
}
void PassBuilder::addLTOPreLinkDefaultPipeline(ModulePassManager &MPM,
OptimizationLevel Level,
bool DebugLogging) {
// FIXME: We should use a customized pre-link pipeline!
addPerModuleDefaultPipeline(MPM, Level, DebugLogging);
}
void PassBuilder::addLTODefaultPipeline(ModulePassManager &MPM,
OptimizationLevel Level,
bool DebugLogging) {
// FIXME: Finish fleshing this out to match the legacy LTO pipelines.
FunctionPassManager LateFPM(DebugLogging);
LateFPM.addPass(InstCombinePass());
LateFPM.addPass(SimplifyCFGPass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(LateFPM)));
}
#ifndef NDEBUG
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
static bool isModulePassName(StringRef Name) {
// Manually handle aliases for pre-configured pipeline fragments.
if (Name.startswith("default") || Name.startswith("lto"))
return DefaultAliasRegex.match(Name);
#define MODULE_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true;
#include "PassRegistry.def"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
return false;
}
#endif
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
static bool isCGSCCPassName(StringRef Name) {
#define CGSCC_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true;
#include "PassRegistry.def"
return false;
}
static bool isFunctionPassName(StringRef Name) {
#define FUNCTION_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true;
#include "PassRegistry.def"
return false;
}
static bool isLoopPassName(StringRef Name) {
#define LOOP_PASS(NAME, CREATE_PASS) \
if (Name == NAME) \
return true;
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">" || Name == "invalidate<" NAME ">") \
return true;
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseModulePassName(ModulePassManager &MPM, StringRef Name,
bool DebugLogging) {
// Manually handle aliases for pre-configured pipeline fragments.
if (Name.startswith("default") || Name.startswith("lto")) {
SmallVector<StringRef, 3> Matches;
if (!DefaultAliasRegex.match(Name, &Matches))
return false;
assert(Matches.size() == 3 && "Must capture two matched strings!");
OptimizationLevel L = StringSwitch<OptimizationLevel>(Matches[2])
.Case("O0", O0)
.Case("O1", O1)
.Case("O2", O2)
.Case("O3", O3)
.Case("Os", Os)
.Case("Oz", Oz);
if (Matches[1] == "default") {
addPerModuleDefaultPipeline(MPM, L, DebugLogging);
} else if (Matches[1] == "lto-pre-link") {
addLTOPreLinkDefaultPipeline(MPM, L, DebugLogging);
} else {
assert(Matches[1] == "lto" && "Not one of the matched options!");
addLTODefaultPipeline(MPM, L, DebugLogging);
}
return true;
}
#define MODULE_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
MPM.addPass(CREATE_PASS); \
return true; \
[PM] Add a new "lazy" call graph analysis pass for the new pass manager. The primary motivation for this pass is to separate the call graph analysis used by the new pass manager's CGSCC pass management from the existing call graph analysis pass. That analysis pass is (somewhat unfortunately) over-constrained by the existing CallGraphSCCPassManager requirements. Those requirements make it *really* hard to cleanly layer the needed functionality for the new pass manager on top of the existing analysis. However, there are also a bunch of things that the pass manager would specifically benefit from doing differently from the existing call graph analysis, and this new implementation tries to address several of them: - Be lazy about scanning function definitions. The existing pass eagerly scans the entire module to build the initial graph. This new pass is significantly more lazy, and I plan to push this even further to maximize locality during CGSCC walks. - Don't use a single synthetic node to partition functions with an indirect call from functions whose address is taken. This node creates a huge choke-point which would preclude good parallelization across the fanout of the SCC graph when we got to the point of looking at such changes to LLVM. - Use a memory dense and lightweight representation of the call graph rather than value handles and tracking call instructions. This will require explicit update calls instead of some updates working transparently, but should end up being significantly more efficient. The explicit update calls ended up being needed in many cases for the existing call graph so we don't really lose anything. - Doesn't explicitly model SCCs and thus doesn't provide an "identity" for an SCC which is stable across updates. This is essential for the new pass manager to work correctly. - Only form the graph necessary for traversing all of the functions in an SCC friendly order. This is a much simpler graph structure and should be more memory dense. It does limit the ways in which it is appropriate to use this analysis. I wish I had a better name than "call graph". I've commented extensively this aspect. This is still very much a WIP, in fact it is really just the initial bits. But it is about the fourth version of the initial bits that I've implemented with each of the others running into really frustrating problms. This looks like it will actually work and I'd like to split the actual complexity across commits for the sake of my reviewers. =] The rest of the implementation along with lots of wiring will follow somewhat more rapidly now that there is a good path forward. Naturally, this doesn't impact any of the existing optimizer. This code is specific to the new pass manager. A bunch of thanks are deserved for the various folks that have helped with the design of this, especially Nick Lewycky who actually sat with me to go through the fundamentals of the final version here. llvm-svn: 200903
2014-02-06 05:37:03 +01:00
}
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define MODULE_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
MPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
MPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
}
#include "PassRegistry.def"
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
return false;
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parseCGSCCPassName(CGSCCPassManager &CGPM, StringRef Name) {
#define CGSCC_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
CGPM.addPass(CREATE_PASS); \
return true; \
}
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define CGSCC_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
CGPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
CGPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
}
#include "PassRegistry.def"
return false;
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parseFunctionPassName(FunctionPassManager &FPM,
StringRef Name) {
#define FUNCTION_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
FPM.addPass(CREATE_PASS); \
return true; \
}
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
#define FUNCTION_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
FPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
FPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
[PM] Add a utility to the new pass manager for generating a pass which is a no-op other than requiring some analysis results be available. This can be used in real pass pipelines to force the usually lazy analysis running to eagerly compute something at a specific point, and it can be used to test the pass manager infrastructure (my primary use at the moment). I've also added bit of pipeline parsing magic to support generating these directly from the opt command so that you can directly use these when debugging your analysis. The syntax is: require<analysis-name> This can be used at any level of the pass manager. For example: cgscc(function(require<my-analysis>,no-op-function)) This would produce a no-op function pass requiring my-analysis, followed by a fully no-op function pass, both of these in a function pass manager which is nested inside of a bottom-up CGSCC pass manager which is in the top-level (implicit) module pass manager. I have zero attachment to the particular syntax I'm using here. Consider it a straw man for use while I'm testing and fleshing things out. Suggestions for better syntax welcome, and I'll update everything based on any consensus that develops. I've used this new functionality to more directly test the analysis printing rather than relying on the cgscc pass manager running an analysis for me. This is still minimally tested because I need to have analyses to run first! ;] That patch is next, but wanted to keep this one separate for easier review and discussion. llvm-svn: 225236
2015-01-06 03:10:51 +01:00
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseLoopPassName(LoopPassManager &FPM, StringRef Name) {
#define LOOP_PASS(NAME, CREATE_PASS) \
if (Name == NAME) { \
FPM.addPass(CREATE_PASS); \
return true; \
}
#define LOOP_ANALYSIS(NAME, CREATE_PASS) \
if (Name == "require<" NAME ">") { \
FPM.addPass(RequireAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
} \
if (Name == "invalidate<" NAME ">") { \
FPM.addPass(InvalidateAnalysisPass< \
std::remove_reference<decltype(CREATE_PASS)>::type>()); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseAAPassName(AAManager &AA, StringRef Name) {
#define MODULE_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
if (Name == NAME) { \
AA.registerModuleAnalysis< \
std::remove_reference<decltype(CREATE_PASS)>::type>(); \
return true; \
}
#define FUNCTION_ALIAS_ANALYSIS(NAME, CREATE_PASS) \
if (Name == NAME) { \
AA.registerFunctionAnalysis< \
std::remove_reference<decltype(CREATE_PASS)>::type>(); \
return true; \
}
#include "PassRegistry.def"
return false;
}
bool PassBuilder::parseLoopPassPipeline(LoopPassManager &LPM,
StringRef &PipelineText,
bool VerifyEachPass,
bool DebugLogging) {
for (;;) {
// Parse nested pass managers by recursing.
if (PipelineText.startswith("loop(")) {
LoopPassManager NestedLPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("loop("));
if (!parseLoopPassPipeline(NestedLPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
LPM.addPass(std::move(NestedLPM));
} else {
// Otherwise try to parse a pass name.
size_t End = PipelineText.find_first_of(",)");
if (!parseLoopPassName(LPM, PipelineText.substr(0, End)))
return false;
// TODO: Ideally, we would run a LoopVerifierPass() here in the
// VerifyEachPass case, but we don't have such a verifier yet.
PipelineText = PipelineText.substr(End);
}
if (PipelineText.empty() || PipelineText[0] == ')')
return true;
assert(PipelineText[0] == ',');
PipelineText = PipelineText.substr(1);
}
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parseFunctionPassPipeline(FunctionPassManager &FPM,
StringRef &PipelineText,
bool VerifyEachPass,
bool DebugLogging) {
for (;;) {
// Parse nested pass managers by recursing.
if (PipelineText.startswith("function(")) {
FunctionPassManager NestedFPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("function("));
if (!parseFunctionPassPipeline(NestedFPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
FPM.addPass(std::move(NestedFPM));
} else if (PipelineText.startswith("loop(")) {
LoopPassManager NestedLPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("loop("));
if (!parseLoopPassPipeline(NestedLPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(NestedLPM)));
} else {
// Otherwise try to parse a pass name.
size_t End = PipelineText.find_first_of(",)");
if (!parseFunctionPassName(FPM, PipelineText.substr(0, End)))
return false;
if (VerifyEachPass)
FPM.addPass(VerifierPass());
PipelineText = PipelineText.substr(End);
}
if (PipelineText.empty() || PipelineText[0] == ')')
return true;
assert(PipelineText[0] == ',');
PipelineText = PipelineText.substr(1);
}
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parseCGSCCPassPipeline(CGSCCPassManager &CGPM,
StringRef &PipelineText,
bool VerifyEachPass,
bool DebugLogging) {
for (;;) {
// Parse nested pass managers by recursing.
if (PipelineText.startswith("cgscc(")) {
CGSCCPassManager NestedCGPM(DebugLogging);
// Parse the inner pipeline into the nested manager.
PipelineText = PipelineText.substr(strlen("cgscc("));
if (!parseCGSCCPassPipeline(NestedCGPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
CGPM.addPass(std::move(NestedCGPM));
} else if (PipelineText.startswith("function(")) {
FunctionPassManager NestedFPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("function("));
if (!parseFunctionPassPipeline(NestedFPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
CGPM.addPass(
createCGSCCToFunctionPassAdaptor(std::move(NestedFPM), DebugLogging));
} else {
// Otherwise try to parse a pass name.
size_t End = PipelineText.find_first_of(",)");
if (!parseCGSCCPassName(CGPM, PipelineText.substr(0, End)))
return false;
// FIXME: No verifier support for CGSCC passes!
PipelineText = PipelineText.substr(End);
}
if (PipelineText.empty() || PipelineText[0] == ')')
return true;
assert(PipelineText[0] == ',');
PipelineText = PipelineText.substr(1);
}
}
void PassBuilder::crossRegisterProxies(LoopAnalysisManager &LAM,
FunctionAnalysisManager &FAM,
CGSCCAnalysisManager &CGAM,
ModuleAnalysisManager &MAM) {
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
CGAM.registerPass([&] { return FunctionAnalysisManagerCGSCCProxy(FAM); });
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
}
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parseModulePassPipeline(ModulePassManager &MPM,
StringRef &PipelineText,
bool VerifyEachPass,
bool DebugLogging) {
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
for (;;) {
// Parse nested pass managers by recursing.
if (PipelineText.startswith("module(")) {
ModulePassManager NestedMPM(DebugLogging);
// Parse the inner pipeline into the nested manager.
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
PipelineText = PipelineText.substr(strlen("module("));
if (!parseModulePassPipeline(NestedMPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
return false;
assert(PipelineText[0] == ')');
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
PipelineText = PipelineText.substr(1);
// Now add the nested manager as a module pass.
MPM.addPass(std::move(NestedMPM));
} else if (PipelineText.startswith("cgscc(")) {
CGSCCPassManager NestedCGPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("cgscc("));
if (!parseCGSCCPassPipeline(NestedCGPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(NestedCGPM),
DebugLogging));
} else if (PipelineText.startswith("function(")) {
FunctionPassManager NestedFPM(DebugLogging);
// Parse the inner pipeline inte the nested manager.
PipelineText = PipelineText.substr(strlen("function("));
if (!parseFunctionPassPipeline(NestedFPM, PipelineText, VerifyEachPass,
DebugLogging) ||
PipelineText.empty())
return false;
assert(PipelineText[0] == ')');
PipelineText = PipelineText.substr(1);
// Add the nested pass manager with the appropriate adaptor.
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(NestedFPM)));
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
} else {
// Otherwise try to parse a pass name.
size_t End = PipelineText.find_first_of(",)");
if (!parseModulePassName(MPM, PipelineText.substr(0, End), DebugLogging))
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
return false;
if (VerifyEachPass)
MPM.addPass(VerifierPass());
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
PipelineText = PipelineText.substr(End);
}
if (PipelineText.empty() || PipelineText[0] == ')')
return true;
assert(PipelineText[0] == ',');
PipelineText = PipelineText.substr(1);
}
}
// Primary pass pipeline description parsing routine.
// FIXME: Should this routine accept a TargetMachine or require the caller to
// pre-populate the analysis managers with target-specific stuff?
[PM] Create a separate library for high-level pass management code. This will provide the analogous replacements for the PassManagerBuilder and other code long term. This code is extracted from the opt tool currently, and I plan to extend it as I build up support for using the new pass manager in Clang and other places. Mailing this out for review in part to let folks comment on the terrible names here. A brief word about why I chose the names I did. The library is called "Passes" to try and make it clear that it is a high-level utility and where *all* of the passes come together and are registered in a common library. I didn't want it to be *limited* to a registry though, the registry is just one component. The class is a "PassBuilder" but this name I'm less happy with. It doesn't build passes in any traditional sense and isn't a Builder-style API at all. The class is a PassRegisterer or PassAdder, but neither of those really make a lot of sense. This class is responsible for constructing passes for registry in an analysis manager or for population of a pass pipeline. If anyone has a better name, I would love to hear it. The other candidate I looked at was PassRegistrar, but that doesn't really fit either. There is no register of all the passes in use, and so I think continuing the "registry" analog outside of the registry of pass *names* and *types* is a mistake. The objects themselves are just objects with the new pass manager. Differential Revision: http://reviews.llvm.org/D8054 llvm-svn: 231556
2015-03-07 10:02:36 +01:00
bool PassBuilder::parsePassPipeline(ModulePassManager &MPM,
StringRef PipelineText, bool VerifyEachPass,
bool DebugLogging) {
// By default, try to parse the pipeline as-if it were within an implicit
// 'module(...)' pass pipeline. If this will parse at all, it needs to
// consume the entire string.
if (parseModulePassPipeline(MPM, PipelineText, VerifyEachPass, DebugLogging))
return PipelineText.empty();
// This isn't parsable as a module pipeline, look for the end of a pass name
// and directly drop down to that layer.
StringRef FirstName =
PipelineText.substr(0, PipelineText.find_first_of(",)"));
assert(!isModulePassName(FirstName) &&
"Already handled all module pipeline options.");
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
// If this looks like a CGSCC pass, parse the whole thing as a CGSCC
// pipeline.
if (PipelineText.startswith("cgscc(") || isCGSCCPassName(FirstName)) {
CGSCCPassManager CGPM(DebugLogging);
if (!parseCGSCCPassPipeline(CGPM, PipelineText, VerifyEachPass,
DebugLogging) ||
!PipelineText.empty())
return false;
MPM.addPass(
createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM), DebugLogging));
return true;
}
// Similarly, if this looks like a Function pass, parse the whole thing as
// a Function pipelien.
if (PipelineText.startswith("function(") || isFunctionPassName(FirstName)) {
FunctionPassManager FPM(DebugLogging);
if (!parseFunctionPassPipeline(FPM, PipelineText, VerifyEachPass,
DebugLogging) ||
!PipelineText.empty())
return false;
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
return true;
}
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
// If this looks like a Loop pass, parse the whole thing as a Loop pipeline.
if (PipelineText.startswith("loop(") || isLoopPassName(FirstName)) {
LoopPassManager LPM(DebugLogging);
if (!parseLoopPassPipeline(LPM, PipelineText, VerifyEachPass,
DebugLogging) ||
!PipelineText.empty())
return false;
FunctionPassManager FPM(DebugLogging);
FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
return true;
}
[PM] Add (very skeletal) support to opt for running the new pass manager. I cannot emphasize enough that this is a WIP. =] I expect it to change a great deal as things stabilize, but I think its really important to get *some* functionality here so that the infrastructure can be tested more traditionally from the commandline. The current design is looking something like this: ./bin/opt -passes='module(pass_a,pass_b,function(pass_c,pass_d))' So rather than custom-parsed flags, there is a single flag with a string argument that is parsed into the pass pipeline structure. This makes it really easy to have nice structural properties that are very explicit. There is one obvious and important shortcut. You can start off the pipeline with a pass, and the minimal context of pass managers will be built around the entire specified pipeline. This makes the common case for tests super easy: ./bin/opt -passes=instcombine,sroa,gvn But this won't introduce any of the complexity of the fully inferred old system -- we only ever do this for the *entire* argument, and we only look at the first pass. If the other passes don't fit in the pass manager selected it is a hard error. The other interesting aspect here is that I'm not relying on any registration facilities. Such facilities may be unavoidable for supporting plugins, but I have alternative ideas for plugins that I'd like to try first. My plan is essentially to build everything without registration until we hit an absolute requirement. Instead of registration of pass names, there will be a library dedicated to parsing pass names and the pass pipeline strings described above. Currently, this is directly embedded into opt for simplicity as it is very early, but I plan to eventually pull this into a library that opt, bugpoint, and even Clang can depend on. It should end up as a good home for things like the existing PassManagerBuilder as well. There are a bunch of FIXMEs in the code for the parts of this that are just stubbed out to make the patch more incremental. A quick list of what's coming up directly after this: - Support for function passes and building the structured nesting. - Support for printing the pass structure, and FileCheck tests of all of this code. - The .def-file based pass name parsing. - IR priting passes and the corresponding tests. Some obvious things that I'm not going to do right now, but am definitely planning on as the pass manager work gets a bit further: - Pull the parsing into library, including the builders. - Thread the rest of the target stuff into the new pass manager. - Wire support for the new pass manager up to llc. - Plugin support. Some things that I'd like to have, but are significantly lower on my priority list. I'll get to these eventually, but they may also be places where others want to contribute: - Adding nice error reporting for broken pass pipeline descriptions. - Typo-correction for pass names. llvm-svn: 198998
2014-01-11 09:16:35 +01:00
return false;
}
bool PassBuilder::parseAAPipeline(AAManager &AA, StringRef PipelineText) {
while (!PipelineText.empty()) {
StringRef Name;
std::tie(Name, PipelineText) = PipelineText.split(',');
if (!parseAAPassName(AA, Name))
return false;
}
return true;
}