2017-07-05 03:16:29 +02:00
|
|
|
//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Run a sanity check on the IR to ensure that Safepoints - if they've been
|
|
|
|
// inserted - were inserted correctly. In particular, look for use of
|
|
|
|
// non-relocated values after a safepoint. It's primary use is to check the
|
|
|
|
// correctness of safepoint insertion immediately after insertion, but it can
|
|
|
|
// also be used to verify that later transforms have not found a way to break
|
|
|
|
// safepoint semenatics.
|
|
|
|
//
|
|
|
|
// In its current form, this verify checks a property which is sufficient, but
|
|
|
|
// not neccessary for correctness. There are some cases where an unrelocated
|
|
|
|
// pointer can be used after the safepoint. Consider this example:
|
|
|
|
//
|
|
|
|
// a = ...
|
|
|
|
// b = ...
|
|
|
|
// (a',b') = safepoint(a,b)
|
|
|
|
// c = cmp eq a b
|
|
|
|
// br c, ..., ....
|
|
|
|
//
|
|
|
|
// Because it is valid to reorder 'c' above the safepoint, this is legal. In
|
|
|
|
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
|
2017-07-07 15:02:29 +02:00
|
|
|
// idioms like this. The verifier knows about these cases and avoids reporting
|
|
|
|
// false positives.
|
2017-07-05 03:16:29 +02:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
|
|
#include "llvm/ADT/SetOperations.h"
|
|
|
|
#include "llvm/ADT/SetVector.h"
|
|
|
|
#include "llvm/IR/BasicBlock.h"
|
|
|
|
#include "llvm/IR/Dominators.h"
|
|
|
|
#include "llvm/IR/Function.h"
|
|
|
|
#include "llvm/IR/Instructions.h"
|
|
|
|
#include "llvm/IR/Intrinsics.h"
|
|
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#include "llvm/IR/Module.h"
|
|
|
|
#include "llvm/IR/Value.h"
|
|
|
|
#include "llvm/IR/SafepointIRVerifier.h"
|
|
|
|
#include "llvm/IR/Statepoint.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
|
|
|
|
#define DEBUG_TYPE "safepoint-ir-verifier"
|
|
|
|
|
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
/// This option is used for writing test cases. Instead of crashing the program
|
|
|
|
/// when verification fails, report a message to the console (for FileCheck
|
|
|
|
/// usage) and continue execution as if nothing happened.
|
|
|
|
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
|
|
|
|
cl::init(false));
|
|
|
|
|
|
|
|
static void Verify(const Function &F, const DominatorTree &DT);
|
|
|
|
|
2017-08-20 15:03:48 +02:00
|
|
|
namespace {
|
2017-07-05 03:16:29 +02:00
|
|
|
struct SafepointIRVerifier : public FunctionPass {
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
DominatorTree DT;
|
|
|
|
SafepointIRVerifier() : FunctionPass(ID) {
|
|
|
|
initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
|
|
|
|
}
|
|
|
|
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
|
|
DT.recalculate(F);
|
|
|
|
Verify(F, DT);
|
|
|
|
return false; // no modifications
|
|
|
|
}
|
|
|
|
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
AU.setPreservesAll();
|
|
|
|
}
|
|
|
|
|
|
|
|
StringRef getPassName() const override { return "safepoint verifier"; }
|
|
|
|
};
|
2017-08-20 15:03:48 +02:00
|
|
|
} // namespace
|
2017-07-05 03:16:29 +02:00
|
|
|
|
|
|
|
void llvm::verifySafepointIR(Function &F) {
|
|
|
|
SafepointIRVerifier pass;
|
|
|
|
pass.runOnFunction(F);
|
|
|
|
}
|
|
|
|
|
|
|
|
char SafepointIRVerifier::ID = 0;
|
|
|
|
|
|
|
|
FunctionPass *llvm::createSafepointIRVerifierPass() {
|
|
|
|
return new SafepointIRVerifier();
|
|
|
|
}
|
|
|
|
|
|
|
|
INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
|
|
|
|
"Safepoint IR Verifier", false, true)
|
|
|
|
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
|
|
|
|
"Safepoint IR Verifier", false, true)
|
|
|
|
|
|
|
|
static bool isGCPointerType(Type *T) {
|
|
|
|
if (auto *PT = dyn_cast<PointerType>(T))
|
|
|
|
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
|
|
|
|
// GC managed heap. We know that a pointer into this heap needs to be
|
|
|
|
// updated and that no other pointer does.
|
|
|
|
return (1 == PT->getAddressSpace());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool containsGCPtrType(Type *Ty) {
|
|
|
|
if (isGCPointerType(Ty))
|
|
|
|
return true;
|
|
|
|
if (VectorType *VT = dyn_cast<VectorType>(Ty))
|
|
|
|
return isGCPointerType(VT->getScalarType());
|
|
|
|
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
|
|
|
|
return containsGCPtrType(AT->getElementType());
|
|
|
|
if (StructType *ST = dyn_cast<StructType>(Ty))
|
|
|
|
return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
|
|
|
|
containsGCPtrType);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Debugging aid -- prints a [Begin, End) range of values.
|
|
|
|
template<typename IteratorTy>
|
|
|
|
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
|
|
|
|
OS << "[ ";
|
|
|
|
while (Begin != End) {
|
|
|
|
OS << **Begin << " ";
|
|
|
|
++Begin;
|
|
|
|
}
|
|
|
|
OS << "]";
|
|
|
|
}
|
|
|
|
|
|
|
|
/// The verifier algorithm is phrased in terms of availability. The set of
|
|
|
|
/// values "available" at a given point in the control flow graph is the set of
|
|
|
|
/// correctly relocated value at that point, and is a subset of the set of
|
|
|
|
/// definitions dominating that point.
|
|
|
|
|
|
|
|
/// State we compute and track per basic block.
|
|
|
|
struct BasicBlockState {
|
|
|
|
// Set of values available coming in, before the phi nodes
|
|
|
|
DenseSet<const Value *> AvailableIn;
|
|
|
|
|
|
|
|
// Set of values available going out
|
|
|
|
DenseSet<const Value *> AvailableOut;
|
|
|
|
|
|
|
|
// AvailableOut minus AvailableIn.
|
|
|
|
// All elements are Instructions
|
|
|
|
DenseSet<const Value *> Contribution;
|
|
|
|
|
|
|
|
// True if this block contains a safepoint and thus AvailableIn does not
|
|
|
|
// contribute to AvailableOut.
|
|
|
|
bool Cleared = false;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/// Gather all the definitions dominating the start of BB into Result. This is
|
|
|
|
/// simply the Defs introduced by every dominating basic block and the function
|
|
|
|
/// arguments.
|
|
|
|
static void GatherDominatingDefs(const BasicBlock *BB,
|
|
|
|
DenseSet<const Value *> &Result,
|
|
|
|
const DominatorTree &DT,
|
|
|
|
DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
|
|
|
|
DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
|
|
|
|
|
|
|
|
while (DTN->getIDom()) {
|
|
|
|
DTN = DTN->getIDom();
|
|
|
|
const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
|
|
|
|
Result.insert(Defs.begin(), Defs.end());
|
|
|
|
// If this block is 'Cleared', then nothing LiveIn to this block can be
|
|
|
|
// available after this block completes. Note: This turns out to be
|
|
|
|
// really important for reducing memory consuption of the initial available
|
|
|
|
// sets and thus peak memory usage by this verifier.
|
|
|
|
if (BlockMap[DTN->getBlock()]->Cleared)
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (const Argument &A : BB->getParent()->args())
|
|
|
|
if (containsGCPtrType(A.getType()))
|
|
|
|
Result.insert(&A);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Model the effect of an instruction on the set of available values.
|
|
|
|
static void TransferInstruction(const Instruction &I, bool &Cleared,
|
|
|
|
DenseSet<const Value *> &Available) {
|
|
|
|
if (isStatepoint(I)) {
|
|
|
|
Cleared = true;
|
|
|
|
Available.clear();
|
|
|
|
} else if (containsGCPtrType(I.getType()))
|
|
|
|
Available.insert(&I);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Compute the AvailableOut set for BB, based on the
|
|
|
|
/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set
|
|
|
|
/// when the verifier runs for the first time computing the AvailableOut set
|
|
|
|
/// for BB.
|
|
|
|
static void TransferBlock(const BasicBlock *BB,
|
|
|
|
BasicBlockState &BBS, bool FirstPass) {
|
|
|
|
|
|
|
|
const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
|
|
|
|
DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
|
|
|
|
|
|
|
|
if (BBS.Cleared) {
|
|
|
|
// AvailableOut does not change no matter how the input changes, just
|
|
|
|
// leave it be. We need to force this calculation the first time so that
|
|
|
|
// we have a AvailableOut at all.
|
|
|
|
if (FirstPass) {
|
|
|
|
AvailableOut = BBS.Contribution;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Otherwise, we need to reduce the AvailableOut set by things which are no
|
|
|
|
// longer in our AvailableIn
|
|
|
|
DenseSet<const Value *> Temp = BBS.Contribution;
|
|
|
|
set_union(Temp, AvailableIn);
|
|
|
|
AvailableOut = std::move(Temp);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
|
|
|
|
PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
|
|
|
|
dbgs() << " to ";
|
|
|
|
PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
|
|
|
|
dbgs() << "\n";);
|
|
|
|
}
|
|
|
|
|
2017-07-07 02:40:37 +02:00
|
|
|
/// A given derived pointer can have multiple base pointers through phi/selects.
|
|
|
|
/// This type indicates when the base pointer is exclusively constant
|
|
|
|
/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
|
|
|
|
/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
|
|
|
|
/// NonConstant.
|
|
|
|
enum BaseType {
|
|
|
|
NonConstant = 1, // Base pointers is not exclusively constant.
|
|
|
|
ExclusivelyNull,
|
|
|
|
ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
|
|
|
|
// set of constants, but they are not exclusively
|
|
|
|
// null.
|
|
|
|
};
|
2017-07-05 03:16:29 +02:00
|
|
|
|
2017-07-07 02:40:37 +02:00
|
|
|
/// Return the baseType for Val which states whether Val is exclusively
|
|
|
|
/// derived from constant/null, or not exclusively derived from constant.
|
|
|
|
/// Val is exclusively derived off a constant base when all operands of phi and
|
|
|
|
/// selects are derived off a constant base.
|
|
|
|
static enum BaseType getBaseType(const Value *Val) {
|
|
|
|
|
|
|
|
SmallVector<const Value *, 32> Worklist;
|
|
|
|
DenseSet<const Value *> Visited;
|
|
|
|
bool isExclusivelyDerivedFromNull = true;
|
|
|
|
Worklist.push_back(Val);
|
|
|
|
// Strip through all the bitcasts and geps to get base pointer. Also check for
|
|
|
|
// the exclusive value when there can be multiple base pointers (through phis
|
|
|
|
// or selects).
|
|
|
|
while(!Worklist.empty()) {
|
|
|
|
const Value *V = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(V).second)
|
|
|
|
continue;
|
2017-07-05 03:16:29 +02:00
|
|
|
|
2017-07-07 02:40:37 +02:00
|
|
|
if (const auto *CI = dyn_cast<CastInst>(V)) {
|
|
|
|
Worklist.push_back(CI->stripPointerCasts());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
|
|
|
|
Worklist.push_back(GEP->getPointerOperand());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// Push all the incoming values of phi node into the worklist for
|
|
|
|
// processing.
|
|
|
|
if (const auto *PN = dyn_cast<PHINode>(V)) {
|
|
|
|
for (Value *InV: PN->incoming_values())
|
|
|
|
Worklist.push_back(InV);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (const auto *SI = dyn_cast<SelectInst>(V)) {
|
|
|
|
// Push in the true and false values
|
|
|
|
Worklist.push_back(SI->getTrueValue());
|
|
|
|
Worklist.push_back(SI->getFalseValue());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (isa<Constant>(V)) {
|
|
|
|
// We found at least one base pointer which is non-null, so this derived
|
|
|
|
// pointer is not exclusively derived from null.
|
|
|
|
if (V != Constant::getNullValue(V->getType()))
|
|
|
|
isExclusivelyDerivedFromNull = false;
|
|
|
|
// Continue processing the remaining values to make sure it's exclusively
|
|
|
|
// constant.
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// At this point, we know that the base pointer is not exclusively
|
|
|
|
// constant.
|
|
|
|
return BaseType::NonConstant;
|
2017-07-05 03:16:29 +02:00
|
|
|
}
|
2017-07-07 02:40:37 +02:00
|
|
|
// Now, we know that the base pointer is exclusively constant, but we need to
|
|
|
|
// differentiate between exclusive null constant and non-null constant.
|
|
|
|
return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
|
|
|
|
: BaseType::ExclusivelySomeConstant;
|
2017-07-05 03:16:29 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
static void Verify(const Function &F, const DominatorTree &DT) {
|
|
|
|
SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
|
|
|
|
DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
|
|
|
|
|
|
|
|
DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
|
|
|
|
if (PrintOnly)
|
|
|
|
dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
|
|
|
|
|
|
|
|
|
|
|
|
for (const BasicBlock &BB : F) {
|
|
|
|
BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
|
|
|
|
for (const auto &I : BB)
|
|
|
|
TransferInstruction(I, BBS->Cleared, BBS->Contribution);
|
|
|
|
BlockMap[&BB] = BBS;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &BBI : BlockMap) {
|
|
|
|
GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
|
|
|
|
TransferBlock(BBI.first, *BBI.second, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
SetVector<const BasicBlock *> Worklist;
|
|
|
|
for (auto &BBI : BlockMap)
|
|
|
|
Worklist.insert(BBI.first);
|
|
|
|
|
|
|
|
// This loop iterates the AvailableIn and AvailableOut sets to a fixed point.
|
|
|
|
// The AvailableIn and AvailableOut sets decrease as we iterate.
|
|
|
|
while (!Worklist.empty()) {
|
|
|
|
const BasicBlock *BB = Worklist.pop_back_val();
|
|
|
|
BasicBlockState *BBS = BlockMap[BB];
|
|
|
|
|
|
|
|
size_t OldInCount = BBS->AvailableIn.size();
|
|
|
|
for (const BasicBlock *PBB : predecessors(BB))
|
|
|
|
set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
|
|
|
|
|
|
|
|
if (OldInCount == BBS->AvailableIn.size())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
assert(OldInCount > BBS->AvailableIn.size() && "invariant!");
|
|
|
|
|
|
|
|
size_t OldOutCount = BBS->AvailableOut.size();
|
|
|
|
TransferBlock(BB, *BBS, false);
|
|
|
|
if (OldOutCount != BBS->AvailableOut.size()) {
|
|
|
|
assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
|
|
|
|
Worklist.insert(succ_begin(BB), succ_end(BB));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// We now have all the information we need to decide if the use of a heap
|
|
|
|
// reference is legal or not, given our safepoint semantics.
|
|
|
|
|
|
|
|
bool AnyInvalidUses = false;
|
|
|
|
|
|
|
|
auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
|
|
|
|
const Instruction &I) {
|
|
|
|
errs() << "Illegal use of unrelocated value found!\n";
|
|
|
|
errs() << "Def: " << V << "\n";
|
|
|
|
errs() << "Use: " << I << "\n";
|
|
|
|
if (!PrintOnly)
|
|
|
|
abort();
|
|
|
|
AnyInvalidUses = true;
|
|
|
|
};
|
|
|
|
|
2017-07-07 02:40:37 +02:00
|
|
|
auto isNotExclusivelyConstantDerived = [](const Value *V) {
|
|
|
|
return getBaseType(V) == BaseType::NonConstant;
|
|
|
|
};
|
|
|
|
|
2017-07-05 03:16:29 +02:00
|
|
|
for (const BasicBlock &BB : F) {
|
|
|
|
// We destructively modify AvailableIn as we traverse the block instruction
|
|
|
|
// by instruction.
|
|
|
|
DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn;
|
|
|
|
for (const Instruction &I : BB) {
|
|
|
|
if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
|
|
if (containsGCPtrType(PN->getType()))
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
|
|
const BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
|
|
const Value *InValue = PN->getIncomingValue(i);
|
|
|
|
|
2017-07-07 02:40:37 +02:00
|
|
|
if (isNotExclusivelyConstantDerived(InValue) &&
|
2017-07-05 03:16:29 +02:00
|
|
|
!BlockMap[InBB]->AvailableOut.count(InValue))
|
|
|
|
ReportInvalidUse(*InValue, *PN);
|
|
|
|
}
|
2017-07-07 15:02:29 +02:00
|
|
|
} else if (isa<CmpInst>(I) &&
|
|
|
|
containsGCPtrType(I.getOperand(0)->getType())) {
|
|
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
|
|
enum BaseType baseTyLHS = getBaseType(LHS),
|
|
|
|
baseTyRHS = getBaseType(RHS);
|
|
|
|
|
|
|
|
// Returns true if LHS and RHS are unrelocated pointers and they are
|
|
|
|
// valid unrelocated uses.
|
|
|
|
auto hasValidUnrelocatedUse = [&AvailableSet, baseTyLHS, baseTyRHS, &LHS, &RHS] () {
|
|
|
|
// A cmp instruction has valid unrelocated pointer operands only if
|
|
|
|
// both operands are unrelocated pointers.
|
|
|
|
// In the comparison between two pointers, if one is an unrelocated
|
|
|
|
// use, the other *should be* an unrelocated use, for this
|
|
|
|
// instruction to contain valid unrelocated uses. This unrelocated
|
|
|
|
// use can be a null constant as well, or another unrelocated
|
|
|
|
// pointer.
|
|
|
|
if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
|
|
|
|
return false;
|
|
|
|
// Constant pointers (that are not exclusively null) may have
|
|
|
|
// meaning in different VMs, so we cannot reorder the compare
|
|
|
|
// against constant pointers before the safepoint. In other words,
|
|
|
|
// comparison of an unrelocated use against a non-null constant
|
|
|
|
// maybe invalid.
|
|
|
|
if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
|
|
|
|
baseTyRHS == BaseType::NonConstant) ||
|
|
|
|
(baseTyLHS == BaseType::NonConstant &&
|
|
|
|
baseTyRHS == BaseType::ExclusivelySomeConstant))
|
|
|
|
return false;
|
|
|
|
// All other cases are valid cases enumerated below:
|
|
|
|
// 1. Comparison between an exlusively derived null pointer and a
|
|
|
|
// constant base pointer.
|
|
|
|
// 2. Comparison between an exlusively derived null pointer and a
|
|
|
|
// non-constant unrelocated base pointer.
|
|
|
|
// 3. Comparison between 2 unrelocated pointers.
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
if (!hasValidUnrelocatedUse()) {
|
|
|
|
// Print out all non-constant derived pointers that are unrelocated
|
|
|
|
// uses, which are invalid.
|
|
|
|
if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
|
|
|
|
ReportInvalidUse(*LHS, I);
|
|
|
|
if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
|
|
|
|
ReportInvalidUse(*RHS, I);
|
|
|
|
}
|
2017-07-05 03:16:29 +02:00
|
|
|
} else {
|
|
|
|
for (const Value *V : I.operands())
|
|
|
|
if (containsGCPtrType(V->getType()) &&
|
2017-07-07 02:40:37 +02:00
|
|
|
isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
|
2017-07-05 03:16:29 +02:00
|
|
|
ReportInvalidUse(*V, I);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Cleared = false;
|
|
|
|
TransferInstruction(I, Cleared, AvailableSet);
|
|
|
|
(void)Cleared;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (PrintOnly && !AnyInvalidUses) {
|
|
|
|
dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
|
|
|
|
<< "\n";
|
|
|
|
}
|
|
|
|
}
|